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Abstract

A Greedy Defining Set is a set of entries in a Latin square with the prop-
erty that when the square is systematically filled in with a greedy algo-
rithm, the greedy algorithm succeeds. Let g(n) be the smallest Greedy
Defining Set for any Latin square of order n. We give theorems on the
upper bounds of g(n) and a table listing upper bounds of g(n) for small
values of n. For a circulant Latin square, we find that the size of the
smallest Greedy Defining Set is LW(E;DJ

1 Introduction

The first paper on Greedy Defining Sets appeared in Zaker [2] and dealt with these
sets in graphs. Also in this paper, Greedy Defining Sets in Latin squares were defined
and attributed to Eric Mendelsohn. The first results on Greedy Defining Sets in Latin
squares appeared in Zaker’s thesis [4]. The first paper on Greedy Defining Sets in
Latin squares appeared in Zaker [3]. Since we are only discussing Greedy Defining
Sets in Latin squares, we define Latin squares and then Greedy Defining Sets in Latin
squares.

A Latin square is an n X n array whose entries are single elements from some
set, N, of n elements with the property that each element appears exactly once in
each row and exactly once in each column. The integer n is the order of the Latin
square. We will also talk about the order of the GDS which is the order of the Latin
square containing the GDS. In this paper, the set N will be the integers from 1 to
n, inclusive. We will also label the rows and columns from 1 to n. A Latin square
can also be considered as a set of 3-tuples, (¢, j, k) where i is the row label, j is the
column label and k is the integer or element in the (4,5) position in the Latin square.
The conjugate of a Latin square is the Latin square produced when the coordinate
positions of the triples have been permuted. There are six conjugates but they need
not all be different.
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Next we need to define a greedy algorithm for putting entries in the empty cells
of an Latin square of order n. The entries will be the integers from 1 to n. The cells
or (i,j) positions of the Latin square are filled in from left to right and from top to
bottom. Hence (1,1) is filled in first, (1,2) next and so on until (n,n) is filled. To fill
in a cell, (4, ), the least integer possible is used that does not violate a Latin square
property, i.e. the element put into (,j) must be distinct from any element already
filled in that row or column. If at some cell, all the integers in N are ruled out, then
the algorithm fails. Zaker [3] has shown that this algorithm is successful if and only
if the order of a Latin square is a power of 2. If we want the greedy algorithm to
succeed for orders that are not a power of 2, then we need to fill in some of the cells
in the Latin square before the algorithm is invoked. So we define a Greedy Defining
Set (GDS) of order n and size s to be a set of s triples of a Latin square of order n
that will cause the greedy algorithm to successfully fill in the complete Latin square.
It is understood that the algorithm skips over the cells that are part of the defining
set. Of course, the entries in the rows (columns) of a GDS must also be unique. We
denote by g(n) the size of the minimum GDS of any Latin square of order n. We
also define the conjugates of a GDS similar to the conjugates of a Latin square.

The following example is a Latin square and its GDS. The elements of the GDS
are enclosed by brackets.
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Let Ly be the Latin square of order 2 with the first row in natural order and let €
be the direct product operator. We are now ready to record Zaker’s first proposition.

Proposition 1.1 g(n) = 0 if and only if n is a power of 2. The Latin square so
defined is Lo@ Lo @ -+ Ly = LY.

Zaker [3] defined the notion of a descent in a Latin square. A descent in a Latin
square is a set of three cells in a Latin square, {(a,b, e), (a,c¢, f) and (d, b, f)} where
a < d,b < cand f < e. The element (a,b,e), which has another element of the
descent in its row and another element of the descent in its column, is called the
apex of the descent. The element of the descent in the same row as the apex is called
the hand of the descent and the remaining element is called the foot of the descent.
In the example above {(1,1,5),(1,2,1),(2,1,1)} and {(2,3,4), (2,5,3) (5,3,3)} are both
descents with (1,1,5) and (2,3,4) being the apexes of their descents, with (1,2,1) and
(2,5,3) being the hands of their descents and with (2,1,1) and (5,3,3) being the feet
of their descents. Clearly, for the greedy algorithm to put a 5 into position (1,1)
requires that at least one element in the first descent intersects the Greedy Defining
Set. The following was proved by Zaker [3].
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Theorem 1.2 A subset of a Latin square is a Greedy Defining Set if and only if the
subset intersects every descent.

The following is the first new result and it will be useful in our computer searches.
Lemma 1.3 Conjugacy leaves descents invariant.

Proof If {(a,b,¢), (a,c, f) and (d,b, f)} where a < d,b < cand f < e is a
descent in a Latin square L, then so is {(a,e,b), (a, f,c) and (d, f,b)} a descent in
the corresponding conjugate of L. The other 4 conjugates can also be checked. []

This immediately gives us the following theorem.

Theorem 1.4 Let a be a particular permutation of the symbols, rows and columns.
If S is the GDS of a Latin square L, then the a-conjugate of S is a GDS of of the
a-congugate of L.

Another important idea is that often an m x m subsquare in the larger Latin
square can be filled in, under certain conditions, in isolation from the rest of the
square. For instance an m x m subsquare based on the elements 1 to m in the top
left corner of a larger Latin square can be completed in isolation from the rest of the
Latin square if the GDS does not contain any 3-tuples like (a, b, c) where a,c < m
and b > m or where b,c < m and a > m or where a,b < m and ¢ > m.

In the next section we show some new minimal GDSs and prove some recursive
constructions. In the following section we disprove a conjecture of Zaker’s [3] and
at the same time prove a conjecture of Zaker’s [4] on GDSs for back-circulant Latin
squares. In the last section, we print a table of best known upper bounds for GDS
in Latin squares of small orders.

2 Bounds

The number of values known for g(n), other than powers of 2 is quite small. Zaker
computed g(n) for n < 6. Using a backtrack program, we tried all possible GDSs
starting at size 1 and then increasing the number of elements in our set until we find
a GDS. We also give the number, #g¢(n), of inequivalent such minimal GDSs up to
conjugacy when we know them. This table gives the intuition something to go on
when contemplating GDSs.

n [1[2]3]4]5[6[7]8] 9 [10
g(n) ol 212130/ 4]5
Hgm) [TT1]4]1]30][3]4]1[30] 7

—_

Another backtrack approach by John A. Bate [1], computes the number of de-
flections in a Latin square. This is a position in the square that does not contain
the element that normally the greedy algorithm would put there. Clearly a point of
deflection must be the apex of a descent. Finding Latin squares with h (h small)
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apexes is straight forward—put in the apexes in all possible ways and see if the
greedy algorithm completes. Of course, a Latin square of order n with the smallest
number of apexes will also have a small but not necessarily smallest greedy set for
Latin squares of that order. The size of the greedy set for the square constructed
by Bate’s algorithm would be less than or equal to h. We let the smallest number
of apexes for a Latin square of order n be h(n). In the following figure we add the
column g(n) for comparison.

n[1 2 3456 7 8 9 10
gm)|0 01022 30 4 5
h(n)|0 01 0 22 40 5 6

Lofh(n)|1 1 4 1 8 4 236 1 30 64

The following example is from Bate [1]. The Latin square has 4 apexes which is
best possible. Its smallest greedy set has size 4 which is not best possible over all
Latin squares.

1 (2314|567
2|1 |5%|3[4| 76
3|16%| 1127145
132 ]1|6]5 |4
41516 |7|1]2]3
514117 16[23%|1
6| 7145|312

The first recursive theorem is due to Zaker [3]. It handles the GDS for a direct
product and the proof will not be given in this paper.

Theorem 2.1 Let n =rs. Then g(n) < r?g(s) + s%g(r) — g(s)g(r).

The second recursive theorem, also due to Zaker, is now stated.
Theorem 2.2 Let n = 2F — 1 for some integer k > 1. Then g(n) <n — k.

Zaker uses these two theorems to show that there are families of Latin squares in
which the GDS grows at most linearly.

Next, we give a modified direct product construction when one of the subsquares
is of order 2. The construction, for n = 3 gives Zaker’s 6 x 6 example in his Figure
2 in [3].

Theorem 2.3 If there exists a GDS, S, of order n and size f with a 3-tuple (1,1,n),
then g(2n) < 4f — 2.

Proof We construct G, the GDS of order 2n as follows: For every 3-tuple
(a,b,c) € S, G contains the 3-tuples (a,b,c), (a,b+ n,c+n), (a +n,b,c+ n) and
(a+mn,b+n,c). So G defines the Latin square which is the direct product of the
order n Latin square with the order 2 standard Latin square. This was proved in [3].
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We will now produce G’ from G as follows: delete from G, the 2 x 2 Latin square, Lo
with entries (1,1,n), (I,n+1,2n), (n+1,1,2n) and (n+ 1,n + 1,n) and replace it
with the entries (1,1, 2n) and (n+1,n+1,2n). The Latin square greedily defined by
G', call it L', is the same as L except Lo has been replaced by the other Latin square
of order 2 on the same symbols. Now, (1,n+ 1,n) can not be the apex of any descent
as the entries to the right of it in row 1 of L’ are all larger than n. Also, (1,n+ 1,n)
can not be the hand of any descent as the entries to the left of it in row 1 of L' are
smaller than n, except for (1,1,2n). Finally, (1,7 4 1,n) can not be the foot of any
descent as it is in the first row of the Latin square. Similarly, (n 4 1,1,n) does not
intersect any descents in L’ except for the one that has (1,1,2n) as the apex. Since
(1,1,2n) and (n+1,n+1,2n) are in G, (1,n + 1,n) and (n + 1,1,n) do not have
to be in G’. The construction does produce some other descents but they all have
(1,1,2n) and (n + 1,n + 1,2n) as their apex. So the set G’ intersects all descents
in L. 0

To use Theorem 2.3 to get an improved upper bound on ¢g(2n) requires a greedy
set of minimum size to contain the triple (1,1, n). This occurs for the GDSs of order
5, 6 and 10 which are listed in the Conclusion. The above theorem can be modified
for a GDS of order n containing a three tuple (a,1,n) or (1,a,n), where a # 1, but
we only get 1 less rather than 2 less elements in G'. Examples of these GDS’s are
also found in the Conclusion.

Theorem 2.4 If there exists a GDS, S, of order n and size f with a 3-tuple (a,1,n)
or (1,a,n), where 1 < a <n, then g(2n) <4f — 1.

Proof We will prove the (a,1,n), a # 1 case. The proof is almost the same as the
proof in Theorem 2.3 except in 2 places. The first place is that (a,7,n) is not in row
1. However, since there is only one n in the upper right quadrant, (a,n+1,n),a # 1
can not be the foot of a descent. The second place the proof diverges is that it does
not work for (a +n,1,n),a # 1 at all, so (a + n, 1,n) must be in G'. ]

The resulting GDS, G’ in the proof of Theorem 2.3 contains (1,1, 2n) and so G’
can also be used as an input to the construction. Iterating this gives the following
corollary.

Corollary 2.5 If there is a GDS of order n and size f which contains the tuple
Kk
(1,1,n), then for positive k, g(n2F) < f4* — 2(43—_1).

The resulting GDS in Theorem 2.4 contains (a,1,2n) (or (1,a,n)), a # 1, and
the GDS can also be used as an input to the construction. Iterating this gives the
following corollary.

Corollary 2.6 If there is a GDS of order n and size f which contains the tuple
(a,1,n) (or (1,a,n)) where 1 < a < n, then for positive k, g(n2F) < f4*F — MZ;D.
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We note that a conjugate of the GDS constructed in the previous results have at
least 2 entries in the last row (or column) of the Latin square it defines.

We have just given a doubling construction to produce GDS’s of even order so
now we give a doubling construction to produce GDS’s of odd order. Conceptually,
we divide the big Latin square into 4 nearly equal pieces. The construction requires
a GDS, G, of order n, a GDS, Gs, of order n + 1 with as many elements in the last
row as possible and a GDS, Gj3 of order n + 1 with a constant diagonal. Roughly
speaking, G goes in the top left, G5 goes in the top right,G% goes in the bottom left
and a modified G3 goes in the bottom right. More precisely, we give you the theorem
and proof.

Theorem 2.7 If there is a GDS, Gs, of order n 4+ 1 and size p with r elements of
the GDS in the last row and there is a GDS, G3, of order n + 1 and size q which
defines a Latin square with a constant main diagonal and if there is a GDS, G, of
order n and size s then g(2n+1) <s+2(p—1r)+n+q.

Proof Let G be the GDS of order 2n + 1 that we are constructing. Let L be
the Latin square that is produced by G. If a # n + 1, and (a,b,c) € Gy , let G
contain the 3-tuples (a,b+ n,c+n) and (b+n,a,c+n). If (n+ 1,b,¢) is a 3-tuple
of the last row of the Latin square defined by G5, then GG should also contain the
3-tuples (b +mn,b+n,c+n) if b # n+ 1. Finally, consider the GDS, G5. Delete
any 3-tuples (a,b,c) from G, that have a = b. Call this new set H. Let m be the
constant diagonal element in the Latin square defined by G3. If any third element in
a 3-tuple of H is larger than m then subtract 1 from it. Let G contain the modified
H. Now G obeys the Latin property and has the right number of elements but does
it define a Latin square.

Since G does not contain 3-tuples like (a, b, ¢) where a,¢ < n and b > n or where
b,c < nand a > n or where a,b < n and ¢ > n, L’s top left n x n corner is filled
in with a Latin square of order n. The top right corner is filled in like the first n
rows of a n+ 1 x n+ 1 Latin square based on the symbols {n+1,n+2,...,2n+1}.
It is true that the elements, if any, of the GDS on the last row have been projected
down onto the main diagonal but they still do the same defining role as they did
for the first n rows of a m + 1 x n + 1 Latin square. By symmetry, the bottom left
corner is also filled in as the first n columns of a n + 1 x n + 1 Latin square based
on the symbols {n + 1,n+2,...,2n + 1}. Finally, the bottom right corner is filled
in like the Latin square based on the symbols {1,2,...,n} defined by the modified
H, except for the diagonal. Since the diagonal (except for (2n + 2,2n + 2)) is in G
and is larger than n, this corner completes also. H

It is possible that in order to get the best result possible from this theorem, G,
and (3 are not minimal GDSs. If we use a minimum G in the above theorem, then
we can state the following corollary.

Corollary 2.8 If there is a GDS, Ga, of order n+1 and size p with r elements of the
GDS in the last row and there is a GDS, Gs, of order n+ 1 and size ¢ which defines
a Latin square with a constant main diagonal then g(2n+1) < g(n)+2(p—7r)+n-+q.
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In Theorem 2.7, if n+ 1 is a power of 2, and G, Gy and G5 are minimal defining
sets of L}, then we get Theorem 2.2.

3 GDS’s and Circulant Latin Squares

The first theorem of this section gives an upper bound on the size of a GDS of any
order. We will do this for the GDS that defines the circulant Latin square CL =
{(i,4,(j —i+1)(mod * n))} where (modn) is (mod n) except that 0 is interpreted
as n. These Latin squares are defined for all orders. In [3], Zaker conjectured that
the minimum GDS for this Latin square is L@j Unfortunately this is only true

for n < 4. However, in [4], Zaker did construct a GDS of size L@J in the back-
circulant Latin square and conjectured that it was the minimum for that square.
Although he knew that circulant Latin squares were conjugates, he did not have the
theorem that conjugacy leaves descents invariant. The following theorem is a direct
consequence of Zaker’s Theorem and Theorem 1.4, but since Zaker’s thesis is hard
to get and in Persian, the complete proof is given. All arithmetic in the proof of the
following theorem is done mod *n.

Theorem 3.1 The GDS for the Latin square CL of order n has size less than or
equal to L@J

Proof The following is a GDS for the Latin square CL. It consists of three
triangles of entries within the Latin square which we will call the top, side and bottom
triangles for obvious reasons. The top triangle consists of the tuples: {(¢,7,j—i+1) |
1=23,..., L”T“”L j=1,2,...i—1}. The side triangle consists of tuples: {(i,7,j —
i+ 1) [i= 20, 2 i =n,n—1,...n— |2 ] + i}, The bottom triangle
consists of the tuples: {(i,7,j —i+1) |i= 2] ... n;j=1,2,...i— 2]}
Since the triangles do not have any elements in common, the number of elements in

UglHnlgl o Amg+olmgt | A"22I+01"32) _ am-1)
3 3 31 4 3 3 -4 3 5 3 _|_ 5 J

the triangles is

If the numbers to the left of the 1’s in the rows of CL are forced correctly then
the 1’s and the numbers to the right of the 1s in the rows will clearly also be forced
correctly. So the first L%J rows are obviously filled in correctly. So consider the
greedy algorithm when it fills the position (|%2] +1,1). There are |%] defining
set elements in that column from the top triangle, L"glj defining set elements in
that row from the side triangle L”T’Qj defining set elements in that column from the
bottom triangle and there is a 1 already forced in that column in position (1,1). All
these elements are distinct. That leaves only n— %] — [251] — [252] —1 = 1 element
left and hence that element, LQ"; 2], must go in that position.

When the algorithm fills in the next position in that row, (L"T”’j + 1,2), the set
of elements in that row and column coming from the Greedy Defining Set or already
placed by the greedy algorithm is almost the same as when the algorithm filled in the
previous position, (L”T“”j +1,1). The elements in column 2 of the bottom triangle
are the same as the elements in column 1 of the bottom triangle except that there

is an element, 2, in column 1 but not in column 2 of the bottom triangle. But 2 has
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already been placed by the algorithm in position (1,2). Also the elements in column
2 of the top triangle are almost the same as the elements in column 1 of the upper
triangle except that there is one element in column 1 that is not in column 2 of the
top triangle, i.e., element [2:2| 4+ 1 in position (|22 1). In the row |22] 41,
the only difference in the elements between the two cases is that the algorithm has
added the element [#22] in position (|22] + 1,1). Hence there is exactly one
element missing from row |2 ] + 1 and column 2 and the element [2%2 | + 1 must
be filled in by the algorithm in position (|2 4 1,2). This same process continues
to fill in the row correctly as the greedy algorithm fills in row L”T“”j + 1 from left
to right until it fills in the 1 and from there the rest of the row is obviously filled in
correctly.

When the greedy algorithm starts the next row in position ([%2| +2,1), the
elements in column 1 and row L"THJ + 2 that are in the GDS or already placed by
the algorithm is almost the same as when the algorithm was about to fill (| %2]+1,1).
The only difference is that the element L%J in (L%J + 1, 1) has been added and
an element, [222]| — 1, from the side triangle in position (|22] 4 1,n) has been
dropped. The two elements are different from each other and different from the
other elements in the top or bottom triangle in column 1 and side triangle in row
L”T“”j + 2. Hence again there is only one choice for the element to go in position
(L”T“”j +2,1), ie, L%J — 1. The analysis of the algorithm correctly placing the
rest of the elements in row %] 4 2 is similar to the previous row. This continues
until the last row is filled in. There is a slight perturbation in the algorithm due to
the bottom triangle is already defined but this causes no problems. |

In order to change the inequality to an equality in the above theorem we need to
study the descents in CL.

First, we will count the number of descents through each position of the Latin
square and put these numbers in an order n matrix, called the counting matriz. As
a default let every integer in the counting array be initialized to 0. We will fill in
the non-zero entries in the columns of the counting square a pair of positions at a
time. In column 4, for i < [(n — 1)/2], positions (i + 1,i) and (n,i) have integer
n — 2i. For a while these entries decrease by 1 as we fill in the pairs in the column
moving towards the center. This happens ¢ — 1 times, i.e., for column 1 it does not
happen, that is, column 1 is a constant n — 2 except for (1, 1) which is 0: for column
2 it happens once, that is, (3,2) and (n,2) have symbol n — 4, (4,2) and (n — 1,2)
have symbol n — 5 and the rest of the positions in between these positions in column
2 have symbol n — 5 also. The partial columns containing these non-zero integers
are called the southwest corner of the counting matrix. We will also use the term
southwest corner for the same partial columns in the Latin square and for the GDS.
More particular, for 1 < i < |(n—1)/2], columns i from row ¢ + 1 to row n inclusive
form the southwest corner of a square. See the figure below for an example.

There is another region of non-zeroes in the counting square which we call the
northeast corner of the counting matrix. In row i, 2 <14 < n — 1 the non-zero entries
are from column i + 1 to column n inclusive. The first integer on the left in a row
is always 1. The entries from left to right in a row then increase by 1 until they are
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equal to i — 1 at which point they stay constant. Of course, the bottom rows never
reach the point where the entries stay constant. Again check the figure for guidance.
Note that the southwest and northeast corners do not overlap.

112[3[4(5]6|7 0/0]0[0|0]|0]O
7111231456 5101111111
6(711]2|3]4]|5 513(0|112(2]2
516711234 5121|101 (2]3
415167123 5(2]0(0]|0]1]2
3456|712 5(2|0(0]|0]0]|1
2(314|5]6|7]|1 5(3/1(0]|0]0]|0
Latin square CL(7) Counting Matrix for CL(7)

We first count the number of descents in the Latin square. Since any descent
has a hand in the northeast corner and since the northeast corner contains only the
hands of descents, we just need to add up the numbers in the northeast corner to

get the number of descents in the Latin square. For order n, the column sums of the
(n—-1)
1

northeast corner are 1,2,4,6,9,...,|
Latin square is:

n(n -2)2n+1)
24

,_
ol

1.

s

z 2
-5
We record this as a proposition.

n(n—2)(2n+1) -‘ .

Proposition 3.2 The number of descents in CL of order n is: | o7

So we want to find the minimum sized GDS that intersects each one of the
[nln=2)Cntl) 2"+1 )] descents. Before we can do that, we need to maximize the number of
dlstmct descents that a set of positions in a column in the southwest corner of CL
can intersect. We find that the best way to do this is to greedily pick positions with
the largest values in that column of the counting matrix of the southwest corner
of CL. To prove that this selection in the row is optimal we show that any better
solution leads to a contradiction.

Lemma 3.3 Any i elements confined to column j of the southwest corner of the
Latin square, CL, of order n can intersect at most (n —2j) + (n —2j — 1) +--- +
(n—2j —i+ 1) = h distinct descents.

Proof If we choose a elements from the top a rows of column j and a—i elements
from the bottom a — i rows of column j, we find these i elements intersect h distinct
descents. To prove this let us examine column j in the counting matrix. From the
top, column j has j 0 entries followed by entries n —2j, n —2j—1, n—2j — 2, and so
on until the minimum of n — 35 + 1 or 0 is reached. From the bottom column j has
entries n—2j7, n—25—1, n—2j —2, and so on until the minimum of n—35+41 or 0 is
reached. All other entries in the middle of column j have the value min(n — 35+ 1,0).



192 G.H.J. VAN REES

The cell (j+1,4) in the southwest corner of CL intersects n — 25 descents in the
apex which are those descents that are also intersected in the foot by the bottom
n — 2 elements in column j. If (j + 1,7) is chosen as one of the i elements from
column j, then this choice contributes n — 2 distinct descents to the sum of the
distinct descents intersected by the i elements from column j. Since we do not want
to count descents twice,, we should delete from the values in the counting matrix
the descents already intersected by the top non-zero element in column j. When we
do this, column j becomes, starting at row j +1: O,n —2j —1,n—25 —2,...,n —
3j,n—3j4,...,n—3j,n—35+1,...,n—25 — 1. The only change is that there is one
less non-zero at the top of the column and the bottom n — 2j entries are reduced by
1. This has the same form as what we started with except when we now pick the
remaining top non-zero integer in column j, the number of descents is one less. The
same is true if we consider the bottom entry of column j. Continuing in this fashion
picking from the top or bottom non-zero from column j, we see that if the set of
positions consists of the top a elements and bottom ¢ — a elements of column j, then
h distinct descents can be intersected.

But is A the maximum number of distinct descents that can be intersected by 4
elements from column j in the southwest corner of CL? Let us assume that there
is a maximum configuration of ¢ elements in column j that intersects more than h
distinct descents. Let us pick one, C, that has a elements from the top a rows in
column j and b elements from the bottom b rows of column j such that ¢ = a+b is as
large as possible but a+0b < i. Let us call those ¢ entries in column j the start of the
configuration. The size of the start will be denoted by ¢. We will show that there is
a configuration with the same maximum value for the number of descents intersected
but has a larger start, larger by 1. This contradiction will prove the lemma.

Consider the elements of column j in the southwest corner of the Latin square,
and all the elements of the descents that they intersect. The elements making up
these descents are column j along with a subset of the northeast corner of the matrix
which are all hands of the descent whose apex is in column j. We give an example
to make this clear. Here, n = 15 and j = 3.

15 4756789101112 [9]
14 4156|7819 |10 11 8
13 4156|7819 10 7
12 4151671819 7
11 41516 |78 7
10 41516 |7 7
9 4 15| 6 7
8 4 |5 7
7 4 7
6 7
5 8
4 9
Part of CL of order 15 column 3 of

counting matrix
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Consider an element like 10 in column j = 3. It intersects 4 descents for which it
is the apex and whose hands are the other 4 elements in the row of the matrix, i.e.,
4,5,6,7. But it also intersects 3 descents for which it is the foot, i.e., the other ele-
ment 10’s on a diagonal in the northeast corner of the matrix. are the corresponding
hands of the descents. So as to not overcount the descents that intersect C, we will
count the intersections by attaching an intersected descent to an element in column j
in C. If the descent is intersected by elements in column j in both the apex and foot
then the descent is attached to the apex element. So, in the example, let C' contain
the following elements in column three, 15, 10 and 6. There would be 9 descents
attached to element 15 in column 3 as 15 is the apex for 9 descents), there would be
6 descents attached to element 10 in column 3 as 10 is the apex for 4 descents and
is the foot for 3-1=2 unattached descents and there would be 5 descents attached
to element 6 in column 3 as 5 is the foot for 7 — 2 = 5 unattached descents. So C'
intersects 9 + 6 + 5 = 20 distinct descents.

Consider C in full generality again. Let the elements n,n —1,...,n —a+1in
column j and the elements j+1,j+2,...,j+b in column j be the start of C. The
start may be null. The elements n — a and j + b+ 1 in column j are not in C.
Let element d in row ¢ and column j be the element of C' with the smallest value of
column j such that d is not in the start of C'. Then j+b+1 < d < n—a—1. The idea
is to form a new set C’ from C' by replacing the element d with the element n — a. If
this can be done without decreasing the intersection count we have a contradiction.

We will count the descents by attached descents to avoid double counting. Divide
column j into 3 parts depending on the counting matrix. The part of column j where
the counting matrix decreases we call the downslope, the part where it stays constant
we call the flat and the part where it increases we call the upslope. In the figure
holding the example n = 15 and j = 3, the downslope consists of the first 3 positions
shown in column 3, The upslope consists of the last 3 positions in column 3. The flat
consists of the positions between the upslope and the downslope. There are 4 cases
to consider depending on which part of column j the element d and its replacement
reside in.

Case 1: Assume that d is in the upslope. Then so is n — a. Since d and n — ¢ are
in the upslope, neither one is the foot of a descent. So if d is replaced by n — a to
form C’; the number of attached descents goes up from d — 2j to n — a — 2j for an
increase of n—a —d. Note that if d was the apex for a descent whose foot was x € C,
then n — a is the apex for a descent whose foot is the same x. So this does not affect
the count of intersected distinct descents. But it is also possible that n — a is also
the apex for some extra descents whose feet are elements of C' but these descents do
not intersect d in column j. This will affect the count when C” is formed. But there
are at most (n —a) —d = n —a— d of them. In order to avoid double-counting when
counting intersections for C'; we must subtract this number from n —a — d. But this
still means that the number of distinct descents intersected by C' does not go down
when d is replaced by n — a to form C”.

Case 2: If d is in the downslope, then we consider d’. Let d' be the element of C
in row ¢ and column j with the largest value of ¢ such that d is not in the start of
C. We replace d’ with b+ j + 1. This case is now symmetric to case 1.
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Case 3: Let d be in the flat and let n — a in the upslope. Recall that C has
no elements between n — a and d. The element d intersects d — 25 descents in
the apex and n — j + 1 — d descents in the foot. However some of these latter
descents may be attached to other elements in C' and so may not be attached to d.
This number is min(n — j + 1 — d,a). So the number of descents attached to d is
d—2j+n—j+1—d—min(n—j+1—d,a) = n—3j+1—min(n—j+1—d, a). The element
n — a intersects n — a — 2j descents in the apex and 0 descents in the foot. So the
number of descents attached to n—a is n—a—2j. So when d is replaced by n—a, the
number of attached descents increases by n—a—2j—(n—3j+1—min(n—j+1—d,a)) =
min(j —1,n—a—d). But some of the descents attached to n—a in C’ may originally
have been attached to elements lower in column j in C, i.e., intersected in the foot.
There are n — a — d more elements in the row (possible hands) containing n — a in
column j, then in the row containing d in column j. But these elements must have
a value between d — 1 and d — j + 1, so there are at most j — 1 of them. So when we
count the number the distinct descents intersected by elements in column j in C’; we
must subtract min(j — 1,n — a — d) from the previous number, min(j —1,n —a — d).
The net affect is always that the count for C’ stays the same as the count for C'.

Case 4: Let d and n — a both be in the flat. The only difference between this
case and the previous case is that n — a is the foot of several descents but they do
not contribute to n — a’s count as they have been attributed to elements above n —a
in column j. The rest of the argument is the same.

So in each case, we can modify C' to make a larger start without decreasing the
number of distinct descents intersected by elements in column j of C'. This is a
contradiction. 0

So now we know that for ¢ elements in column j of the southwest corner of the
Latin square, the maximum number of intersected distinct descents is (n — 2j) +
(n—2j—1)+---+(n—25—i+1). Let the last(smallest) summand in column
j be s;. So if there are 7 > 0 elements in column j of the southwest corner then
s; = (n—2j — i+ 1). But how many elements should we choose for a particular
column in order to maximize the number of distinct descents intersected by elements
of the GDS only from the southwest corner given that the number of elements in the
southwest corner of the GDS is fixed?

First we note, that each column, j of an optimal southwest corner of the GDS
should intersect (n —2j) + (n —2j — 1) +--- + (n — 2j — i + 1) distinct descents.
Suppose this was not true. Then, since elements from different columns of the
southwest corner of the GDS intersect distinct descents, we could replace the non-
optimal configuration of column j with an optimal configuration. Then we would
have the southwest corner of the new GDS intersect more distinct descents than the
optimal configuration. This is a contradiction. So we may assume that an optimal
southwest corner of the GDS has each column intersecting (n —2j) + (n — 25 — 1) +
-4 (n—2j —i+ 1) distinct descents. So s; = (n — 2j — i + 1) is defined for each
column of an optimal southwest corner of a GDS. Then the problem becomes how
many elements of the southwest corner of fixed size of the GDS should be in each
column of the southwest corner. The next lemma answers this obliquely. Note that
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optimal refers to a set that intersects the maximum number of distinct descents.

Lemma 3.4 Let a GDS have a fized number of elements in the southwest corner
of the Latin square, CL. Any optimal southwest corner of a GDS has the property
that for j a column of the southwest part of the Latin square containing at least
one element of the GDS and for jI any column of the southwest corner of the Latin
square, sj; — s; < 1.

Proof Consider an optimal southwest corner of a GDS that does not obey
sj; —s; < 1 for j a column of the southwest part of the Latin square containing
at least one element of the GDS and for j/ any column of the southwest corner of
the Latin square. Then there are two columns from the southwest part of the non-
optimal GDS where s;, — s; > 2 with j a column containing at least one element
of the GDS. But then if the entry in column j of the southwest part of the GDS
corresponding to s; is replaced by an entry in column j/ of the southwest corner of
the optimal GDS. According to Lemma 3.3, the largest number of distinct descents
that the new entry in column j/ could intersect is sj, — 1. So the total number of
descents that the southwest corner of the GDS intersects (after the switch) is greater
than or equal to sj; —s; —1 > 1. This is a contradiction. |

So we know what an optimal southwest corner of a GDS looks like. But what
about the northeast corner. If we consider only the northeast corner (forgetting for
the moment the southwest corner) then this is an easy question.

Lemma 3.5 Let a GDS have a fivzed number, t of elements in the northeast corner
of the Latin square, CL. Then the number of distinct descents intersected by elements
in the northeast corner of the GDS can be maximized by choosing the entries that
correspond to the t largest numbers in the northeast part of the counting matrix for

CL.

Proof Since we know that the descents intersected by elements in the northeast
corner of the GDS are distinct then we can maximize the number of distinct descents
intersected by a fixed number, say t, of elements of the northeast corner by choosing
elements which correspond to the t largest elements from the northeast corner of the
counting matrix. |

Let 7, be the t'* largest number in the northeast corner of the counting matrix
for CL.

Although we know what the optimal GDS (assuming no descent intersects both
a northeast and southwest element of the GDS) looks like in the southwest and
northeast corners assuming that the numbers in each corner are fixed, we do not
know how many elements in the GDS should be in the southwest corner and how
many should be in the northeast corner to maximize the number of distinct descents
intersected by a GDS of fixed size. If the number of elements in the GDS is fixed,
then some elements of the GDS from one corner can be moved to the other corner
in order to get more distinct descent intersected by the GDS. Let us examine the
following particular situation.
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Assume all the s; associated with the southwest corner are equal to z and r; is
equal to x or x — 1. Then if m elements of the GDS are moved from the northeast
corner to the southwest corner, we lose at least m(xz — 1) descents that intersect
elements of the GDS from the northeast corner and gain at most m(z — 1) descents
intersecting elements from the southeast corner. Hence the number of distinct in-
tersected descents is the same or decreases. If m elements of the GDS are moved
from the southwest corner to the northeast corner, we lose at least mz descents that
intersect elements of the GDS from the southwest corner and gain at most mz de-
scents intersecting elements from the northeast corner. Again the number of distinct
descents is the same or decreases. Clearly, the original configuration maximizes the
number of distinct descents intersected by a GDS of a certain size if we ignore that
some descents may be intersected by elements of the GDS from both the northeast
and southwest corners. So if we have a GDS which meets the criterion in the begin-
ning of the paragraph and the descents intersected by the elements of the GDS in
the northeast corner are distinct from the descents intersected by the elements from
the southwest corner then that GDS is optimal for its size.

If we examine the GDS constructed in Theorem 3.1, each column in the southwest
corner is optimized. Further the whole southwest corner is optimized as the s;
associated from columns in the southwest corner are equal. It is also true that
s; =1 or s; = 1y + 1 so that the whole GDS is optimized (ignoring that fact that
some descent may be intersected by an element from each corner). Further, in this
instance, the descents intersected by the elements of the GDS in the northeast are
distinct from the descents intersected by the elements from the southwest. So the
number of distinct intersected descents are truly maximized. The number of distinct
descents that are intersected by the elements of this GDS is L%j If we consider
a smaller GDS, then its elements would intersect fewer distinct descents and hence
would not be a GDS. Since the GDS constructed in Theorem 3.1 has size L@J,

then L@j is optimal. Let us state this in the next theorem.

Theorem 3.6 The minimum size for a GDS in the Latin square CL of order n is

Now the proof of this theorem could be done as a typical proof of the optimality
of a typical greedy algorithm. The algorithm would always choose the next element
to go in the greedy GDS as the one that intersects the most descents that are not
already intersected by an element from the same corner, i.e.: southwest corner.
There are many ties usually which lead to many optimal GDS’s including the one
from Theorem 3.1. The GDS from Theorem 3.1 does not have any descents that
intersect elements from the two corners of the GDS so it really is optimal and some
of the other GDS’s do and are not really optimal.

4 Conclusion

We now produce a table of upper bounds for g(n) for n < 30. We list the order,
the best known upper bound of g(n), a reference to a construction or program, the
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specialized input GDSs needed in the constructions and the specialized output GDSs
produced by the constructions. In column 4, the first number is the order of the GDS.
tg means that the GDS contains i triples that are in the last column of the Latin
square defined by the GDS, a or a* means that the GDS of order n contains a tuple
(1,1,n) or (4,1,n), d means that the GDS defines a Latin square with a constant
main diagonal and 74 (or ¢i) means that that GDS defines a Latin square which has
the i row (or column) in natural order. This means that the GDS has a conjugate
GDS which defines a Latin square with a constant main diagonal. A number in
brackets denotes a GDS’s size if it is not the known minimal size. If column 5, the
entry in brackets following a GDS is a conjugate of that GDS. If the entry in the
second column has a * beside it, it is the value of g(n).

We now give the GDS’s of small order that the above table requires. In order to
save space we will give them as a set of triples.
GDS: 5-1grlel :{(2,2,5),(3,5,1)}
GDS: 5-1gar2 :{(1,1,5),(3,5,3)}
GDS: 6-2grlcl :{(2,6,1),(4,6,4)}
GDS: 6-ar2c2 :{(1,1,6),(4,4,6)}
GDS: 6-2gc1(3):{(1,6,2),(4,4,2),(5,6,4)}
GDS: 7-a*rl :{(2,1,6),(3,1,7),(5,5,4)}
GDS: 9-1gdel :{(1,9,3),(3,7,4),(4,8,4),(6,5,6) }
GDS: 10-3ga :{(1,1,10),(2,10,3),(3,10,1),(6,6,7),(6,10,6) }

(Table on next page.)
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n | |GDS| | Authority input output
4 0* Prop.1.1 drlcl
5 2% program lgrlcl, 1gar2
6 2% program 2grlcl(2gd), ar2
6 3 program 2gcl
7 3* program a*rl(lgd)
8 0* Prop.1.1 drlcl
9 4* program lgdel(a*rl)
10 5 program 3ga
10| 6 Th.2.3 5-1gar2 2gar2(2gd)
1n| 9 Th.2.7 5-a, 6-2g, 6-2gd 2ga
11 11 Th.2.7 | 5cl-, 6-2gc1(3), 6-2gd 2gcl(2gd)
12 6 Th.2.3 6-ar2 ar2(4gd)
13 15 Th.2.7 6-a, 7-1g, 7-1gd 1ga
13| 17 Th.2.7 6-rl, 7-r1,7-d r1(d)
14 11 Th.2.4 7-a*rl a*rl(2gd)
15 10 Th.2.7 7-a*r1,8-r1,8-d a*rl(lgd)
16 0* Prop.1.1
17| 18 Th.2.7 8, 9-1g, 9-1d
18 15 Th.2.4 9-a*
19 23 Th.2.7 9-, 10-3g, 10-d(6)
20 18 TH.2.3 10-a
21 40 Th. 2.7 10-, 11-2g, 11-d(11)
22 34 TH.2.3 11-a
23| 30 Th.2.7 11-, 12-4g, 12-d
24 22 Th.2.3 12-a
95| 63 | Th27 | 12- 13-1g 13-d(17)
26 58 Th.2.3 13-a
27 | 57 Th.2.7 13-, 14-2¢, 14-d
28 43 Th.2.4 14a*
2| 53 Th.2.7 14-, 15-1g, 15-d
30 39 Th.2.4 15-a*
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