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Abstract

A trellis is a pseudo ordered set any two of whose elements have a least
upper bound and a greatest lower bound. In this paper a formula for the
number of n-element trellises having exactly one pair of noncomparable
elements is given.

1 Introduction

1.1 Trellis

The concept of a pseudo ordered set was introduced by Fried (see [4]). A reflexive
and antisymmetric relation ⊳ on a set A is a pseudo order and the pair 〈A, ⊳ 〉 is
a pseudo ordered set or a psoset. Two elements a and b are non comparable in A,
written a||b, if neither a ⊳ b nor b ⊳ a holds in A. A psoset any two of whose elements
are comparable is a tournament. If B is a subset of a psoset A, an element c in A is
an upper bound of B if b ⊳ c for all b in B; c is the least upper bound of B if c is an
upper bound of B and c ⊳ d for any upper bound d of B. The lower bound and the
greatest lower bound of B are defined dually.

A trellis is a psoset 〈T, ⊳ 〉 any two of whose elements a and b have a least upper
bound c denoted c = a ∨ b and a greatest lower bound d denoted d = a ∧ b in T .
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The following properties hold immediately (see [9]):

1. a ∧ b = b ∧ a and a ∨ b = b ∨ a — Commutativity

2. a ∧ (b ∨ a) = a = a ∨ (b ∧ a) — Absorption

3. a ∨ b = a and a ∨ c = a implies a ∨ (b ∨ c) = a and
a ∧ b = a and a ∧ c = a implies a ∧ (b ∧ c) = a — Part preservation.

Thus 〈T,∧,∨〉 is an algebra.

Conversely, a set T with two commutative, absorptive and part preserving relations
∧ and ∨ is a trellis with the pseudo order ⊳ defined by a ⊳ b if a∧ b = a and a∨ b = b.
All definitions in this section are based on [9] and [10].

Shashirekha counts n-element trellises by an empirical method for n < 7 (see [8]).

1.2 Isomorphism in trellises

Two trellises T1 and T2 are isomorphic and the bijection f : T1 → T2 is an isomor-
phism if and only if a ⊳ b ⇔ f(a) ⊳ f(b), or equivalently,

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b) (see [8]).

A psoset A can be represented by an oriented graph GA with vertex set A such
that a directed segment from a vertex i to a vertex j exists in GA if and only if
i ⊳ j holds in A (see [8]). Hence two trellises T1 and T2 are isomorphic if and only
if their corresponding oriented graphs GT1 and GT2 are isomorphic, or equivalently,
the adjacency matrices A (GT1) and A (GT2) of the oriented graphs GT1 and GT2

respectively, differ only by a permutation of the rows accompanied by the same
permutation of the columns provided the rows and the columns are arranged in the
same order (see [3]). For more details regarding trellises see [9], [10] and [8].

All the definitions in the remaining part of this section are based on [5].

1.3 Reduced Ordered Pair Group

Let X = {1, 2, 3, . . . , p} and X [2] = {(x, y) : x, y ∈ X, x 6= y}. If A is a permutation
group acting on X, then X is the object set of A and the reduced ordered pair group
of A, denoted A[2], acts on X [2] and is induced by A such that for each permutation
α in A, there is a permutation α′ in A[2] induced by α such that for every pair (i, j)
in X [2] the image under α′ is given by α′ (i, j) = (αi, αj).

If α is a permutation in the symmetric group Sp on p objects, and α′ is the permu-

tation in S
[2]
p induced by α, then the converse of any cycle z′ in the disjoint cycle

decomposition of α′ is that cycle of α′ which permutes all ordered pairs (i, j) such
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that (j, i) is permuted by z′. The cycle z′ of α′ is self converse if (i, j) is permuted
whenever (j, i) is.

If zr and zt are two cycles of lengths r and t respectively, then there are 2rt pairs
(i, j) in X [2] with i permuted by zr and j permuted by zt. These pairs are permuted
in 2(r, t) cycles of length [r, t] (where (r, t) and [r, t] are the g.c.d. and l.c.m. of r and
t respectively). For more details on reduced ordered pair groups, see [5].

1.4 Power Group

If A is a finite permutation group with object set X = {1, 2, 3, . . . , p} and B a finite
permutation group with a countable object set Y of at least 2 elements, then the
power group denoted BA has the collection Y X of functions from X into Y as its
object set. The permutations of BA consist of all ordered pairs, written (α; β), of
permutations α in A and β in B. The image of any function f in Y X under (α; β)
is given by ((α; β)f)(x) = βf(αx) for each x in X (see [5]).

If X = {1, 2, 3, . . . , p}, Y = {0, 1} and E2 is the identity group on n objects, then

the power group E
S

[2]
p

2 has the collection Y X[2]
of functions from X [2] into Y as its

object set. The permutations of E
S

[2]
p

2 consist of all ordered pairs, written (α; β), of

permutations α in S
[2]
p and β, the identity permutation on Y . The image of any

function f in Y X[2]
under (α; β) is given by ((α; β)f)(x) = βf(α(i, j)) = f(αi, αj)

for each x = (i, j), i 6= j (see [5]).

2 Preliminaries

If a permutation α in Sp splits into jk cycles of length k for each k from 1 to p, then
α is of the type (j) = (j1, j2, j3, . . . , jp) and the cycle structure of α is 1j12j2 . . . pjp .
Note that

∑p

k=i kjk = p (see [6]).

Lemma 2.1 The number of permutations in Sp of the type (j) is p!
Q

k
jk jk !

.

(See [6].)

Lemma 2.2 (Burnside’s Lemma) Let G be a finite permutation group with object
set X. Define x1 ≈ x2 in X if and only if there exists an α ∈ G such that α(x1) = x2.
Then ‘≈’ is an equivalence relation on X and the number of ‘≈’ equivalence classes
(or G orbits) thus defined is

1

|G|

∑

α∈G

Ψ(α),

where Ψ(α) is the number of elements x in X such that α(x) = x.

(See [1] and [6].)
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Lemma 2.3 (Restricted form of Burnside’s Lemma) Let G be a finite permutation
group with object set X. Let Y be a subset of X such that Y is a union of orbits of
G. If G |Y denotes the set of permutations obtained by restricting those of G to Y ,
then the number of G |Y -orbits is

1

|G|

∑

α∈G

Ψ(α),

where Ψ(α) is the number of elements x in X such that α|Y (x) = x.

(See [5].)

Counting tournaments of order p is due to Davis (see [2], [7] and [5]).

Lemma 2.4 The number T (p) of tournaments of order p is

T (p) =
1

p!

∑

(j)

∗ p!
∏

kjkjk!
2t(j),

where the asterisk on
∑

calls attention to the unconventional summing only over
those partitions (j) of p with jk = 0 whenever k is even, and where

t(j) =
1

2

(

p
∑

m,n=1

jmjn(m, n) −

p
∑

k=1

jk

)

.

(See [5].)

3 n-Element trellises having exactly one pair of noncompa-

rable elements

Note that if C is the collection of all n-element trellises having exactly one pair
of noncomparable elements and T is a trellis in C, then up to isomorphism 1||2,
1 ∨ 2 = 3, 1 ∧ 2 = 4 hold in T and the subtrellis Z = {5, 6, . . . , n} is a tournament.

Lemma 3.1 Let X = {1, 2, 3, . . . , n}, Y = {0, 1}, Z = {5, 6, . . . , n}, E2 the identity
group on Y and G = {βα :either β ∈ En or β = (1 2) and α is a permutation on Z}.
Then the power group EG

2 has as its object set the collection C, and its orbits are
precisely the isomorphic classes of C.

Proof: If a permutation α in Sn induces a permutation of trellises in C, then
α(1)||α(2), α(1∨2) = α(1)∨α(2) and α(1∧2) = α(1)∧α(2). Therefore ((α(1) = 1
and α(2) = 2) or (α(1) = 2 and α(2) = 1)), α(3) = 3 and α(4) = 4. Hence the
proof follows.
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Theorem 1 If Tr1(n) is the number of non isomorphic n-element trellises having
exactly one pair of noncomparable elements, then

Tr1(n) =
1

p!

∑

(j)

∗ p!
∏

kjkjk!
2t(j)

(

(12)
Pp

k=1
jk

+ (4)
Pp

k=1
jk

)

,

where p = n − 4, the asterisk on
∑

calls attention to the unconventional summing
only over those partitions (j) of p with jk = 0 whenever k is even, and where

t(j) =
1

2

(

p
∑

m,n=1

jmjn(m, n) −

p
∑

k=1

jk

)

.

Proof: The following justification for the expression for t(j) is based on [5]:

For the sake of convenience, consider X = {1, 2, 3, . . . , p} instead of Z = {5, 6, 7, . . . ,

n}. The orbits of the power group E
S

[2]
p

2 correspond to digraphs of order p. On
restricting this group to the set F of all functions f which represent p-element tour-
naments, namely those f for which f(i, j) 6= f(j, i), the restricted form of Burnside’s
Lemma can be applied. As a result the number of nonisomorphic p-element tour-
naments can be expressed in terms of the number of functions in F fixed by the

permutations in the power group E
S

[2]
p

2 . Thus, for each permutation α in Sp of the
type (j) = (j1, j2, j3, . . . , jp), we need to find the number of functions f in F such
that f(i, j) = f(αi, αj) for all (i, j) in X [2], or those functions fixed by the permu-
tations α′ in the power group induced by α; for the sake of convenience, let us say
that they are fixed by α instead of α′. Therefore, if the cycles of α determine the
partitions (j) of p, then we need to show that the number of functions in F fixed by
α is 2t(j).

If f is a tournament fixed by α, then f is constant on the cycles of the induced
permutation α′. If zk = (1, 2, . . . , k) is any cycle of even length, then α′ has the cycle

z′ =

((

1,
k

2
+ 1

)(

2,
k

2
+ 2

)

. . .

(

k

2
,
k

2
+

k

2

)(

k

2
+ 1, 1

)(

k

2
+ 2, 2

)

. . .

(

k

2
+

k

2
,
k

2

))

which is self converse. If f is constant on this self converse cycle, then f(1, k
2

+ 1) =
f(k

2
+ 1, 1) which contradicts the fact that f is a tournament. Thus α does not fix

any tournament Z and hence it fixes no trellises in C also. Hence the asterisk on the
summation sign is justified.

If zk = (1, 2, . . . , k) is any cycle of odd length, then the induced permutation α′ has,
in its cycle representation, k− 1 cycles each of length k, namely, ((1, 2)(2, 3)(3, 4) . . .

(k, 1)), ((1, 3)(2, 4)(3, 5) . . . (k, 2)), ((1, 4)(2, 5)(3, 6) . . . (k, 3)), . . . , ((1, k)(2, 1)(3, 2)
. . . (k, k − 1)). Note that the ith cycle is the converse of the (k − i)th cycle for each
i from 1 to k−1

2
.

If a tournament f is fixed by a permutation containing a cycle of odd length, then
f(1, 2) = f(2, 3) = · · · = f(k, 1) = 1 or 0, f(1, 3) = f(2, 4) = · · · = f(k, 2) = 1
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or 0, f(1, 4) = f(2, 5) = · · · = f(k, 3) = 1 or 0, . . . , f(1, k+1
2

) = f(2, k+3
2

) = · · · =

f(k, k−1
2

) = 1 or 0. Therefore zk fixes exactly 2
k−1
2 tournaments and the contribution

to t(j) due to all the odd cycles of α is
∑

jk
k−1
2

summed over odd k.

Now we consider two cycles zm and zn of α and the pairs in X [2] which have one
point in each. Two such cycles induce 2(m, n) cycles of ordered pairs in X [2]. These
latter cycles consist of (m, n) pairs of converse cycles.

Therefore the number of tournaments fixed by the product zmzn is 2(m,n) and the
contribution to t(j) of all such pairs zm and zn with m 6= n is

∑

m<n jmjn(m, n).

The contribution to t(j) of a pair of cycles of the same length k is
∑

(

jk

2

)

k. Thus

t(j) =
∑

jk

k − 1

2
+
∑

m<n
jmjn(m, n) +

∑

k
jk(jk − 1)

2

=
1

2

[

∑

jk(k − 1) + 2
∑

m<n
jmjn(m, n) −

∑

kjk +
∑

jkjk(k.k)
]

=
1

2

[

p
∑

m,n=1

jmjn(m, n) −
∑

jk

]

.

To find Tr1(n), from the note above it suffices to count the number of isomorphic
classes of trellises in C. From the lemma above and by Burnside’s Lemma, it suffices
to find the number of trellises T in C fixed by each permutation in G, where G =
{βα : either β ∈ En or β = (1 2) and α is a permutation on Z}.

If T is a trellis in C, then 1||2, 1 ∨ 2 = 3, 1 ∧ 2 = 4 hold in T and hence for each
i from 5 to n, the submatrix (ai1, ai2, ai3, ai4) of its adjacency matrix A(GT ) can be
defined by precisely one of the following 12 ordered 4-tuples (ai1, ai2, ai3, ai4) given
in the table on the next page.

Further, if any cycle zk = (i1, i2, . . . , ik) fixes the trellis T, then ai1,l = ai2,l = ai3,l =
· · · = aik,l for each l from 1 to 4. Hence for a trellis fixed by a permutation α on Z, the
number of choices for defining the p × 4 submatrix (aij)56i6n, 16j64 of its adjacency

matrix A (GT ) is (12)
Pp

k=1
jk

.
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ai1 ai2 ai3 ai4

0 0 0 0
0 0 0 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 1
1 1 1 1

Now, if the pemutation (1 2) fixes a trellis T in C, then for each i from 5 to n,
the submatrix (ai1, ai2, ai3, ai4) of the adjacency matrix A(GT ) can be defined by
precisely one of the following four ordered 4-tuples given in the table below.

ai1 ai2 ai3 ai4

0 0 0 0
0 0 0 1
1 1 0 1
1 1 1 1

Hence for a trellis fixed by the permutation (1 2)α in G, where α is a permutation
on Z, the total number of choices for defining the submatrix (aij)p×4, where i = 5 to

n and j = 1 to 4 is (4)
Pp

k=1
jk

. Moreover a34 = 0 or 1. Thus

Tr1(n) =
2

2p!

∑

(j)

∗ p!
∏

kjkjk!
2t(j)

(

(12)
Pp

k=1
jk

+ (4)
Pp

k=1
jk
)

.

Hence the theorem holds.
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