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Abstract

On the basis of the joint tree model introduced by Liu in 2003, the genus
distributions of the orientable embeddings for further types of graphs
can be obtained. These are apparently not easily obtained using overlap
matrices, the formula of Jackson, etc. In this paper, however, by classi-
fying the associated surfaces, we calculate the genus distributions of the
orientable embeddings for two new types of graphs, namely, generalized
necklaces and circulant necklaces. These are different from the graphs
whose embedding distributions by genus have been obtained to date.

1 Introduction

The derivation of the embedding distribution of a graph is a newly thriving aspect of
topological theory. Until now, many authors have computed the genus polynomials
of several types of graphs with different methods. Gross et al. [5] did it for bouquets
of circles using the formula of Jackson [6]; Gross et al. [4] for necklaces; Furst et al.
[2] for closed-end ladders and cobblestone paths using combinatorial methods. Later,
Chen et al. [1] did this for necklaces, closed-end ladders and cobblestone paths using
overlap matrices. In 2003, Liu set up the joint tree model [8], such that the genus
polynomials of more types of graphs can be obtained, such as [7, 12–13].

In this paper, on the basis of the joint tree model, by classifying the associated
surfaces of a graph, we obtain the genus distributions of the orientable embeddings
for two new types of graphs, which are generalized necklaces and circulant necklaces.

Suppose that the “beads”of a necklace were placed along a path instead of along
a cycle. Then the genus distribution formula would follow easily from the bar-
amalgamation formula [3]. The difficulty in deriving a formula for necklaces is the
extra edge that changes a path of beads into a necklace.
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An important advance of this paper is coping with the extra edge by basing the
calculation on the explicit choice of a spanning tree. Although one might derive
some of its formulas by direct consideration of a recursion, the focus on spanning
tree selection indicates a direction for further generalization, beyond application in
necklaces.

Another advance of this paper is generalizing the class of beads, beyond those
appearing in [4], for which genus distribution calculations are tractable. This permits
one to obtain formulas for infinite families of regular graphs with degree greater than
3 and 4 and with arbitrarily many vertices.

In what follows, we will introduce some definitions and results.

A graph is always considered to be connected. A linear order X is a sequence of
letters such that if X = ab . . . z, then it is indicated that a ≺ b · · · ≺ z. A reverse
order X̂ of X is the linear order such that X̂ = z . . . ba. A linear order Y is called a
suborder of X if and only if each letter on Y is also on X and if a ≺ b in X, then
a ≺ b in Y . Let Y ⊆ A mean that Y is a suborder of some linear order in the set
A. A supplementary order Ȳ of Y corresponding to X is a suborder of X such that
a ∈ Ȳ for each a /∈ Y and that a /∈ Ȳ for each a ∈ Y .

A surface is a compact 2-dimensional manifold without boundary. It can be
represented by a regular polygon with even number of sides on the plane, where each
pair of sides can be pasted according to a given direction. Further, an orientable
surface can be represented by a cyclic order P of letters satisfying the following
conditions [10]:

Con1. If a ∈ P , then a− ∈ P .
Con2. For each letter a on P , both a and a− occur once on P .

Let γ(S) be the genus of surface S and S be the set of surfaces. On S , an
elementary transformation [10] is defined by the following three operations:

Op.1 ∀S ∈ S , S = Aaa−B, A 6= 0, or B 6= 0 ⇐⇒ S = AB.
Op.2 ∀S ∈ S , S = AabBb−a−C ⇐⇒ S = AaBa−C.
Op.3 ∀S ∈ S , S = AaBCa−D ⇐⇒ S = BaADa−C.

If two surfaces S1 and S2 can be converted from one to another by finite sequences
of elementary transformations, then they are said to be convertible. It is easily seen
that the convertibility between two surfaces is an equivalence, denoted by S1 ∼ S2.
Note that S1 and S2 have the same orientability and genus.

According to the operations, the following lemma is obtained.

Lemma 1.1 [10] AaBbCa−Db−E ∼ ADCBEaba−b−, where a, b, a−, b− /∈ ABCDE.

Then by applying these operations above, each orientable surface is equivalent to
only one of the following canonical forms:

Si =







a0a
−

0 , if the surface is sphere;

Πi
k=1akbka

−

k b−k , if the genus of a surface is i.
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Suppose that there are n sets of linear orders, say A1, A2, . . . , An. Let aXn
1 a−Xn

2 Sk

and Xn
1 Xn

2 Sl be surfaces, where Xn
1 = Z1Z2 . . . Zn, Xn

2 = ˆ̄Zn . . . ˆ̄Z2
ˆ̄Z1 and Zl ⊆ Al for

1 ≤ l ≤ n. By A(n, k), we mean a set constituted by such elements as aXn
1 a−Xn

2 Sk,
taken over all Zl ⊆ Al for 1 ≤ l ≤ n. Use B(n, l) to denote a set as {Xn

1 Xn
2 Sl}. And

the letters on Sk or Sl do not appear on Xn
1 and Xn

2 . Note that A(n, k) as a form is
meant the different set when Al varies for 1 ≤ l ≤ n. So is B(n, l).

Lemma 1.2 [8] Let S1 and S2 be surfaces, a, b, a−, b− /∈ S2. If S1 ∼ S2aba−b−, then
γ(S1) = γ(S2) + 1.

Lemma 1.3 Let S ∈ A(n, 0) and S0 be the surface obtained by deleting a and a−

from S. Then

γ(S) =







γ(S0), if S ∈ A(n−1,k);

γ(S0) − 1, if S ∈ B(n−1,l).

where k and l are positive integers or zero.

An embedding (or cellular embedding in early references) of a graph G into a
surface S is a homeomorphism τ : G → S, such that each component of S − τ (G) is
homeomorphic to an open disc. Two embeddings τ1: G → S and τ2: G → S are the
same if there is a homeomorphism h: S → S such that hτ2 = τ1. The embedding
is called orientable if S is orientable. Throughout this article, whenever we use the
term embedding, we are referring to an orientable embedding. By the maximum
(minimum) genus of a graph G, we mean the maximum (minimum) genus of the
surface into which G has an embedding.

A rotation σv at a vertex v is a cyclic permutation of edges incident with v.
Let σ = Πv∈V (G)σv be a rotation system of G. Let T be a spanning tree of G. A

joint tree[8] T̃σ can be got by splitting every cotree edge into two semiedges denoted
by a same letter with a choice of indices: +(always omitted) or −. Based on T̃σ,
write down the letters with indices according to a fixed orientation(clockwise or
counterclockwise) to obtain a cyclic order of 2β(G) letters. It represents a surface,
called an associated surface. If two associated surfaces of G have the same cyclic
order with the same indices, then they are said to be the same. Otherwise, distinct.
So an embedding of a graph into a surface can be represented by a joint tree of it,
further by an associated surface of it, where β(G) is the number of the cotree edges.

From [9], for a fixed spanning tree T of the graph G, there is a 1–to–1 correspon-
dence between the associated surfaces and the embeddings of G.

It is soon seen that the problem of determining the genus distribution of all
embeddings for a graph is transformed into that of finding the number of all distinct
associated surfaces in each equivalent class.

An example should serve to clarify the definitions above. For a necklace of 3
beads N3, the spanning tree is presented with thick lines as shown in Fig. 1.1 and a
joint tree of N3 in Fig.1.2. Denote cotree edge v1v2 by a1, v3v4 by a2, v5v6 by a3.
Let joint trees of N3 have a clockwise rotation at each vertex. Then an associated
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surface can be shown as S = aa1a2a
−

2 a−

3 a−a3a
−

1 . According to the rotation at each
vertex of a joint tree, all associated surfaces can be found.

av1

v2

v3 v4

v5

v6

a1

a2

a3

Fig.1.1 N3

a a−

v1

v2
v3 v4

v5
v6

a1

a−

1

a2 a−

2

a3

a−

3

Fig.1.2 A joint tree of N3

For a graph G, let gi(G) be the number of distinct embeddings for G into the
orientable surface of genus i for i ≥ 0. The embedding genus distribution of G is:

g0(G), g1(G), g2(G), . . . .

Then the genus polynomial of G is:

fG(x) =
∞

∑

i=0

gi(G)xi.

For convenience, throughout this article, we write gi(n) instead of gi(G), where
n is variant of G. To understand some definitions mentioned above, also see [11].

2 Generalized necklaces

Given an n-cycle C, for any number k, replace every other edge with a multi-edge
of the same multiplicity j ≥ 1 and then add (k − j − 1)/2 loops at each vertex of C
to obtain a new graph G called a generalized necklace, so that the resulting degree
is k. When j = 1, G denoted by Gk

n has no multi-edge. When j ≥ 2, n must be
even and G is denoted by G̃k

n/2. For G̃k
n/2, depending on j, there may be more than

one such graph. Note that G4
n and G̃3

n are n-vertex necklaces of type (0, n) and
(n, 0), respectively, as defined in [4]. The following figures illustrate four generalized
necklaces.
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a1

a2

a3 a4

a5

a6
a

Fig.2.1 G4
6

a1

b1

a2

b2

a3

b3

a

Fig.2.2 G̃4
3

Fig.2.4 G6
5

Fig.2.3 G̃5
3

a
a−

a1 a−

1

a2 a−

2

a3 a−

3

a4 a−

4

a5 a−

5

a6 a−

6

Fig.2.5 A joint tree of G4
6

a
a−

a1 b1

a−

1 b−1

a2 b2

a−

2 b−2

a3 b3

a−

3 b−3

Fig.2.6 A joint tree of G̃4
3

Theorem 2.1 fG4
n
(x) =

1
∑

i=0

(i6n + (1 − 2i)4n)xi,

fG̃4
n
(x) =

n
∑

i=0

n!3i−1

i!(n + 1 − i)!
(i3n−i+1 + 3n − 4i + 3)6nxi.

Proof. Firstly, choose a spanning tree of G4
n by deleting a random edge, denoted by

a, from C as indicated with thick lines in Figs. 2.1 and 2.5, and use distinct letters
a1, a2, . . . , an to denote other cotree edges, which are loops. Let joint trees of G4

n

have a clockwise rotation at each vertex. Then

Xn
1 = C1C2 . . . Cn, Xn

2 = ˆ̄Cn . . . ˆ̄C2
ˆ̄C1,

where Cl ⊆ {ala
−

l , a−

l al} for 1 ≤ l ≤ n.

Xn−1
1 = C1C2 . . . Cn−1, Xn−1

2 = ˆ̄Cn−1 . . . ˆ̄C2
ˆ̄C1.

So the set of associated surfaces of G4
n is A(n, 0). The set can be classified into the

following six sets according to the nth vertex of the joint tree.

{aXn−1
1 ana

−

n a−Xn−1
2 } {aXn−1

1 a−

n ana−Xn−1
2 }
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{aXn−1
1 ana

−a−

n Xn−1
2 } {aXn−1

1 a−

n a−anXn−1
2 }

{aXn−1
1 a−ana

−

n Xn−1
2 } {aXn−1

1 a−a−

n anXn−1
2 }

By deleting a and a− from these sets, we get classifying sets of B(n, 0).

According to Op.1 and Lemmas 1.1–1.3,

γ(aXn−1
1 ana−

n a−Xn−1
2 ) = γ(aXn−1

1 a−Xn−1
2 ),

γ(aXn−1
1 ana−a−

n Xn−1
2 ) = γ(Xn−1

1 Xn−1
2 aana

−a−

n )

= γ(Xn−1
1 Xn−1

2 ) + 1.

Of course, gi(n) is equal to the number of associated surfaces of genus i in A(n, 0).
And we use g0

i (n) to denote the number of surfaces of genus i in B(n, 0). So the
following equations hold.























































gi(n) = 4gi(n − 1) + 2g0
i−1(n − 1) (2.1)

g0
i (n) = 6g0

i (n − 1) (2.2)

g0(0) = 1 (2.3)

g0
0(0) = 1 (2.4)

g0
i (0) = 0, i > 0 (2.5)

From (2.2–2.5), g0
i (n) = 6n,

then gi(n) = 4gi(n − 1) + 2 · 6n−1.
So gi(n) = i · 6n + (1 − 2i) · 4n,

thus fG4
n
(x) =

1
∑

i=0

(i6n + (1 − 2i)4n)xi.

For G̃4
n, choose all edges of cycle C except one, which is not multi-edge and

denoted by a, to obtain a spanning tree. Then label other cotree edges by distinct
letters a1, b1, . . . , an, bn (see Figs. 2.2 and 2.6). Let joint trees of G̃4

n also have a
clockwise rotation at each vertex. Let

Xn
1 = F1F2 . . . Fn, Xn

2 = ˆ̄Fn . . . ˆ̄F2
ˆ̄F1,

where Fl ⊆ {albla
−

l b−l , blala
−

l b−l , alblb
−

l a−

l , blalb
−

l a−

l } for 1 ≤ l ≤ n. So the set of
associated surfaces of G̃4

n is A(n, 0). The set can be classified into 36 sets according
to the rotation of the (2n − 1)th and 2nth vertex of the joint tree, which can be
represented as follows:

{aXn−1
1 Y1Y2a

−Ȳ2Ȳ1X
n−1
2 } {aXn−1

1
ˆ̄Y1

ˆ̄Y2a
−Ŷ2Ŷ1X

n−1
2 }

where Y2 ⊆ {a−

n b−n , b−n a−

n }, Y1 ⊆ {anbn, bnan} and the number of the letters on Y1 is
1 or 2. By deleting a and a− from 36 sets, we get the classifying sets of B(n, 0).
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By reducing these sets and applying Lemmas 1.1–1.3, we obtain the following
equations:























































gi(n) = 6gi(n − 1) + 18gi−1(n − 1) + 12g0
i−1(n − 1) (2.6)

g0
i (n) = 18g0

i (n − 1) + 18g0
i−1(n − 1) (2.7)

g0(0) = 1 (2.8)

g0
0(0) = 1 (2.9)

g0
i (0) = 0, i > 0 (2.10)

From (2.7–2.10), g0
i (n) =

(

n
i

)

18n;

then gi(n) = 6gi(n − 1) + 18gi−1(n − 1) + 12
(n − 1)!

(i − 1)!(n − i)!
18n−1.

So gi(n) =
n!3i−1

i!(n + 1 − i)!
(i3n−i+1 + 3n − 4i + 3)6n.

Thus fG̃4
n
(x) =

n
∑

i=0

n!3i−1

i!(n + 1 − i)!
(i3n−i+1 + 3n − 4i + 3)6nxi. �

Note that the first formula of Theorem 2.1 is consistent with a special case of
Theorem 4 in [4]. Using the same method as Theorem 2.1, we also can get the
following theorem.

Theorem 2.2. fG6
n
(x) =

n
∑

i=0

(n−1)!
i!(n−i+1)!

(n2 − 2ni + n + ni2n−i+1)40nxi,

fG̃5
n
(x) =

n+1
∑

i=0

n!32i−18n−i+1

i!(n − i + 1)!
[i10i−132n−i+1 + 7i−19n−i(28n − 37i + 28)]xi.

Proof. For G6
n, gi(n) satisfies the following equations:























































gi(n) = 40(gi(n − 1) + gi−1(n − 1) + g0
i−1(n − 1))

g0
i (n) = 80g0

i (n − 1) + 40g0
i−1(n − 1)

g0(0) = 1

g0
0(0) = 1

g0
i (0) = 0, i > 0.
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For G̃5
n, gi(n) satisfies the following equations:























































gi(n) = 72gi(n − 1) + 224gi−1(n − 1) + 184g0
i−1(n − 1) + 96g0

i−2(n − 1)

g0
i (n) = 256g0

i (n − 1) + 320g0
i−1(n − 1)

g0(0) = 1

g0
0(0) = 1

g0
i (0) = 0, i > 0.

�

Generally, for G2k+2
n , every vertex has k loops. Using the same method as

above, we get the set of associated surfaces A(n, 0), where Xn
1 = G1G2 . . . Gn, Xn

2 =
ˆ̄Gn . . . ˆ̄G2

ˆ̄G1, Gl ⊆ Al for 1 ≤ l ≤ n and Al is a set of cyclic permutations on
{an1

a−

n1
. . . ank

a−

nk
}.

So by reducing these sets and applying Lemmas 1.1–1.3, A(n, 0) can be classified
into such sets as A(n−1, k) and B(n−1, l) of different genus, B(n, 0) into such sets as

B(n−1, l) of different genus. The same discussion can be done on G̃k
n. So it is obvious

that we obtain the following result.

Theorem 2.3 Let gi(n) be the number of embeddings for Gk
n(G̃k

n) into an ori-
entable surface of genus i. Then gi(n) is the linear combination with integral coeffi-
cients of gj(n − 1) and g0

k(n − 1), and g0
i (n) is that of g0

k(n − 1), for i, j, k ≥ 0 and
0 ≤ j, k ≤ i.

3 Circulant necklaces

Suppose that uv is an edge. Add vertices u1
1, u

1
2, . . . , u

1
m, v1

1, v
1
2, . . . , v

1
m, u2

1, u
2
2, . . . , u

2
m,

v2
1, v

2
2, . . . , v

2
m, . . . , un

1 , un
2 , . . . , un

m, vn
1 , vn

2 , . . . , vn
m between u and v in such a sequence

and connect uj
l v

j
l (1 ≤ l ≤ m, 1 ≤ j ≤ n) to obtain a graph, denoted by Lm

n . By
amalgamating u and v, we obtain a new graph called a circulant necklace, denoted
by Sm

n (see Figs. 3.1 and 3.2).

u u1 u2 u3 v1 v2 v3 v

a1
a2

a3

Fig.3.1 L3
1 Fig.3.2 S2

2

u

For Lm
1 , let the path uu1

1u
1
2 . . . u1

mv1
1v

1
2 . . . v1

mv be a spanning tree. Label the cotree
edge u1

l v
1
l by a1

l for 1 ≤ l ≤ m, where a1
1, a

1
2, . . . , a

1
m are distinct letters. Let joint
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trees of Lm
1 have a clockwise rotation at each vertex. Let

Y m
1 = EmEm−1 . . . E1, Y m

2 = ˆ̄E1
ˆ̄E2 . . . ˆ̄Em,

Y m
3 = D1D2 . . . Dm, Y m

4 = ˆ̄Dm
ˆ̄Dm−1 . . . ˆ̄D1,

where El ⊆ {al}, Dl ⊆ {a−

l } for 1 ≤ l ≤ m.

Then the set of associated surfaces of Lm
1 is {Y m

1 Y m
2 Y m

3 Y m
4 }, and the set can be clas-

sified into two {amY m−1
2 a−

mY m−1
3 Y m−1

4 Y m−1
1 } and two {amY m−1

3 a−

mY m−1
4 Y m−1

1 Y m−1
2 }.

Let hi(m) be the number of the surfaces of genus i in {Y m
1 Y m

2 Y m
3 Y m

4 }.

Then hi(m) =
8hi8(m − 1) + 8h(i−1)1(m − 1) + 8h(i−1)2(m − 1) + 8h(i−1)4(m − 1) + 32h(i−1)(m − 1),
where

hi8(m) = 4h(i−1)8(m − 1) + 4h(i−1)(m − 1) + 4h(i−2)1(m − 1) + 4h(i−2)1(m − 1),

hi1(m) = 4h(i−1)8(m − 1) + 4h(i−1)(m − 1) + 4h(i−1)1(m − 1) + 4h(i−1)2(m − 1),

hi2(m) = 2hi2(m − 1) + 6hi4(m − 1) + 8h(i−1)2(m − 1),

hi4(m) = 8h(i−1)2(m − 1) + 8h(i−1)4(m − 1). [12].

Lemma 3.1 The maximum and minimum genus of Lm
1 is equal to [m

2
] and 0, respec-

tively.

Proof. When El = al, Dl = a−

l for 1 ≤ l ≤ m, γ(Y m
1 Y m

2 Y m
3 Y m

4 ) = γ(amam−1 . . .

a1a
−

1 a−

2 . . . a−

m) = 0. When ˆ̄E1 = al, Dl = a−

l for 1 ≤ l ≤ m, γ(Y m
1 Y m

2 Y m
3 Y m

4 ) =
γ(a1a2 . . . ama−

1 a−

2 . . . a−

m) = [m
2
]. Then this lemma is true. �

For Sm
n , choose the path uu1

1u
1
2 . . . u1

mv1
1v

1
2 . . . v1

mu2
1u

2
2 . . . u2

mv2
1v

2
2 . . . v2

m . . . un
1un

2 . . .
un

mvn
1 vn

2 . . . vn
m as a spanning tree. Denote cotree edge vn

mu by a, uj
l v

j
l by aj

l (1 ≤ l ≤
m, 1 ≤ j ≤ n), where the letters are distinct. Let joint trees of Sm

n have a clockwise
rotation at each vertex. Let

Xn
1 = B1B2 . . . Bn, Xn

2 = ˆ̄Bn . . . ˆ̄B2
ˆ̄B1,

where Bl ⊆ {al
1a

l
2 . . . al

mal−
1 al−

2 . . . al−
m } for 1 ≤ l ≤ n.

So the set of associated surfaces of Sm
n is A(n, 0). The set can also be classified

into such sets as A(n−1, k) and B(n−1, l) of different genus. By deleting a and a− from
these sets, we get classifying sets of B(n, 0).

Lemma 3.2 The maximum and minimum genus of Sm
1 (m ≥ 3) is equal to [m+1

2
]

and 1, respectively.

Proof. This lemma follows from Lemma 3.1. �

Lemma 3.3 g0
i (n) = h0(m)g0

i (n − 1)+h1(m)g0
i−1(n − 1)+· · ·+h[ m

2
](m)g0

i−[ m

2
](n−1),

g0(0) = 1, g0(i) = 0, gi(n) = g0
i−1(n), for n > i ≥ 1, when m ≥ 3.
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Proof. According to Lemma 1.3, this lemma holds. �

Firstly, let k = (k1, k2, . . . , k[ m

2
]−1), h = (h2(m), h3(m), . . . , h[ m

2
](m)),

k! =
[ m

2
−1]

∑

i=1

ki!, hk =
[ m

2
−1]

∑

i=1

h
ki(m)
i+1 , a = (a1, a2, . . . , a[ m

2
]−1),

where a1 = [1
2
(i − 1 − 3k2 − 4k3 − · · · − [m

2
]k[ m

2
]−1)],

a2 = [ i−1
3

], . . . . . . , a[ m

2
]−1 = [ i−1

[ m

2
]
].

Lemma 3.4 g0
i (n) =

∑

0≤k≤a

n!hb1
0 hb2

1 hk

k!b1!b2!
,

where b1 = n − i + 1 + k1 + 2k2 + · · · + ([m
2
] − 1)k[ m

2
]−1,

b2 = i − 1 − 2k1 − 3k2 − · · · − [m
2
]k[ m

2
]−1.

Theorem 3.5 fS2
n
(x) =

∞
∑

i=0

n!2n−i+18i−1a(n, i)

i!(n − i + 1)!
xi,

where a(n, i) = i4n−i+1 + 4n − 5i + 4.

Proof. Firstly, by choosing a spanning tree of S2
n with the same method as above, we

get the set of associated surfaces A(n, 0) and its classifying set A(n−1, k) and B(n−1, l).
From Lemmas 1.1–1.3 and 3.1–3.2, the following equations can be obtained:























































gi(n) = 2gi(n − 1) + 8gi−1(n − 1) + 6g0
i−1(n − 1) (3.1)

g0
i (n) = 8g0

i (n − 1) + 8g0
i−1(n − 1) (3.2)

g0(0) = 1 (3.3)

g0
0(0) = 1 (3.4)

g0
i (0) = 0, i > 0 (3.5)

From (3.2–3.5),

g0
i (n) =

n!

i!(n − i)!
8n.

Then gi(n) =
n!2n−i+18i−1

i!(n − i + 1)!
a(n, i), where a(n, i) = i4n−i+1 + 4n− 5i + 4.

Thus

fS2
n
(x) =

∞
∑

i=0

n!2n−i+18i−1a(n, i)

i!(n− i + 1)!
xi. �

Through the discussion above, we can get the following theorem.

Theorem 3.6 fSm
n

(x) =
∞

∑

i=0

gi(n)xi, (m ≥ 3)
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where g0(n) =

{

1, n = 0;
0, n > 0.

,

gi(n) =

{

fi(n) + g0
i−1(n), n ≤ i;

g0
i−1(n), n > i.

for i ≥ 1,

fi(n) =

i−n
∑

k=0

α
(n−3)
i+1−n−k(ak+1 − ak),

α
(i)
k =

k
∑

j=1

ajα
(i−1)
k+1−j, α−2

j = 1, α−1
j = aj, a0 = 0.

In the following, choose a spanning tree and obtain the set of associated surfaces
and its classifying set of Si

n (3 ≤ i ≤ 5) in the same way as Theorem 3.5. For brevity,
in the course of proofs of Corollaries 3.7–3.9, we only give some equations that gi(n)
satisfies.

Corollary 3.7 fS3
n
(x) =

∞
∑

i=0

gi(n)xi, where

gi(n) =























0, 0 ≤ n ≤ i − 2;
56i−1 − 32i−1, n = i − 1;
32i + 85̇6i−1i, n = i;

n!56i−18n−i+1

(i − 1)!(n − i + 1)!
, n > i.

Proof. The embedding genus distribution gi(n) of S3
n satisfies the following equa-

tions:






















































gi(n) = 32gi(n − 1) + 8g0
i−1(n − 1) + 24g0

i−2(n − 1)

g0
i (n) = 8g0

i (n − 1) + 56g0
i−1(n − 1)

g0(0) = 1

g0
0(0) = 1

g0
i (0) = 0, i > 0

�

Corollary 3.8 fS4
n
(x) =

∞
∑

i=0

gi(n)xi, where

gi(n) =























0, n < i − [ i
2
];

(240n − 145i + 95)n!

(i − n)!(2n − i + 1)!
502n−i95i−n−1 + g0

i−1(n), i − [ i
2
] ≤ n < i;

50i + g0
i−1(i), n = i;

g0
i−1(n), n > i.
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g0
i (n) =

[ i

2
]

∑

k=0

n!95k153i−2k8n−i+k

k!(n− i + k)!(i − 2k)!
.

Proof. The embedding genus distribution gi(n) of S4
n satisfies the following equa-

tions:






















































gi(n) = 50gi−1(n − 1) + 95gi−2(n − 1) + 8g0
i−1(n − 1) + 103g0

i−2(n − 1)

g0
i (n) = 8g0

i (n − 1) + 153g0
i−1(n − 1) + 95g0

i−2(n − 1)

g0(0) = 1

g0
0(0) = 1

g0
i (0) = 0, i > 0.

�

Corollary 3.9 fS5
n
(x) =

∞
∑

i=0

gi(n)xi, where

gi(n) =















































0, n < i − [ i+1
2

];

(876n − 470i + 406)n!

(i − n)!(2n − i + 1)!
502n−i95i−n−1 + g0

i−1(n), i − [ i+1
2

] ≤ n < i;

64i + g0
i−1(i), n = i;

g0
i−1(n), n > i.

g0
i (n) =

[ i

2
]

∑

k=0

n!728k288i−2k8n−i+k

k!(n− i + k)!(i − 2k)!
.

Proof. The embedding genus distribution gi(n) of S5
n satisfies the following equa-

tions:






































































gi(n) = 64gi−1(n − 1) + 406gi−2(n − 1) + 8g0
i−1(n − 1)

+ 224g0
i−2(n − 1) + 322g0

i−3(n − 1)

g0
i (n) = 8g0

i (n − 1) + 288g0
i−1(n − 1) + 728g0

i−2(n − 1)

g0(0) = 1

g0
0(0) = 1

g0
i (0) = 0, i > 0.

�
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