A series of Siamese twin designs intersecting in a BIBD and a PBD

Dean Crnković

Department of Mathematics
Faculty of Philosophy, University of Rijeka
Omladinska 14, 51000 Rijeka
Croatia

deanc@mapef.ffri.hr

Abstract

Let p and 2p-1 be prime powers and $p \equiv 3 \pmod 4$. We describe a construction of a series of Siamese twin designs with Menon parameters $(4p^2, 2p^2-p, p^2-p)$ intersecting in a derived design with parameters $(2p^2-p, p^2-p, p^2-p-1)$, and a pairwise balanced design PBD $(2p^2-p, \{p^2, p^2-p\}, p^2-p-1)$. When p and 2p-1 are primes, the derived design and the pairwise balanced design are cyclic. Further, these two Menon designs with parameters $(4p^2, 2p^2-p, p^2-p)$ lead to amicable regular Hadamard matrices of order $4p^2$.

1 Introduction

Let K be a subset of positive integers. A pairwise balanced design $PBD(v, K, \lambda)$ is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- 1. $|\mathcal{P}| = v$:
- **2.** if an element of \mathcal{B} is incident with k elements of \mathcal{P} , then $k \in K$;
- 3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B} .

The elements of the set \mathcal{P} are called points and the elements of the set \mathcal{B} are called blocks. A mandatory representation design $MRD(v, K, \lambda)$ is a $PBD(v, K, \lambda)$ in which for each $k \in K$ there is a block incident with exactly k points.

A 2- (v, k, λ) design is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

- 1. $|\mathcal{P}| = v$;
- **2.** every element of \mathcal{B} is incident with exactly k elements of \mathcal{P} ;
- 3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B} .

A 2- (v, k, λ) design is a PBD (v, K, λ) with $K = \{k\}$. 2-designs are often called balanced incomplete block designs (BIBDs), or just block designs. If $|\mathcal{P}| = |\mathcal{B}| = v$ and $2 \le k \le v - 2$, then a 2- (v, k, λ) design is called a symmetric design.

Let \mathcal{D} be a symmetric (v, k, λ) design and let x be a block of \mathcal{D} . Remove x and all points that do not belong to x from other blocks. The result is a 2- $(k, \lambda, \lambda - 1)$ design, a derived design of \mathcal{D} with respect to the block x.

A 2- (v, k, λ) design, or a pairwise balanced design PBD (v, K, λ) , with an automorphism group G is called cyclic if G contains a cycle of length v.

A Hadamard matrix of order m is an $(m \times m)$ matrix $H = (h_{i,j}), h_{i,j} \in \{-1,1\}$, satisfying $HH^T = H^TH = mI_m$, where I_m is an $(m \times m)$ identity matrix. A Hadamard matrix is regular if the row and column sums are constant. It is well known that the existence of a symmetric $(4u^2, 2u^2 - u, u^2 - u)$ design is equivalent to the existence of a regular Hadamard matrix of order $4u^2$ (see [7, Theorem 1.4, pp. 280]). Such symmetric designs are called Menon designs.

A $\{0,\pm 1\}$ -matrix S is called a Siamese twin design sharing the entries of I, if S=I+K-L, where I,K,L are non-zero $\{0,1\}$ -matrices and both I+K and I+L are incidence matrices of symmetric designs with the same parameters. If I+K and I+L are incidence matrices of Menon designs, then S is called a Siamese twin Menon design.

In this article we describe a construction of a series of Siamese twin Menon designs sharing the entries of a BIBD and a PBD, using a modification of the construction introduced in [2], and further developed in [3] and [4]. To make this article self-contained, in the next section we repeat some facts about developments of Paley difference sets and Paley partial difference sets stated in [2], [3] and [4].

2 Nonzero squares in finite fields

Let p be a prime power, $p \equiv 3 \pmod{4}$ and F_p be a field with p elements. Then a $(p \times p)$ matrix $D = (d_{ij})$, such that

$$d_{ij} = \begin{cases} 1, & \text{if } (i-j) \text{ is a nonzero square in } F_p, \\ 0, & \text{otherwise.} \end{cases}$$

is an incidence matrix of a symmetric $(p, \frac{p-1}{2}, \frac{p-3}{4})$ design. Such a symmetric design is called a Paley design (see [5]). Let \overline{D} be an incidence matrix of a complementary symmetric design with parameters $(p, \frac{p+1}{2}, \frac{p+1}{4})$. The proof of the following lemma can be found in [3].

Lemma 1 Let p be a prime power, $p \equiv 3 \pmod{4}$. Then the matrices D and \overline{D} defined as above have the following properties:

$$D \cdot \overline{D}^{T} = (\overline{D} - I_{p})(D + I_{p})^{T} = \frac{p+1}{4}J_{p} - \frac{p+1}{4}I_{p},$$

$$[D \mid \overline{D} - I_{p}] \cdot [\overline{D} - I_{p} \mid D]^{T} = \frac{p-1}{2}J_{p} - \frac{p-1}{2}I_{p},$$

$$[D \mid D] \cdot [D + I_{p} \mid \overline{D} - I_{p}]^{T} = \frac{p-1}{2}J_{p},$$

$$[\overline{D} \mid D] \cdot [\overline{D} - I_{p} \mid \overline{D} - I_{p}]^{T} = \frac{p-1}{2}J_{p},$$

where J_p is the all-one matrix of dimension $(p \times p)$.

Let $\Sigma(p)$ denote the group of all permutations of F_p given by

$$x \mapsto a\sigma(x) + b$$

where a is a nonzero square in F_p , b is any element of F_p , and σ is an automorphism of the field F_p . $\Sigma(p)$ is an automorphism group of symmetric designs with incidence matrices D, $D+I_p$, \overline{D} and $\overline{D}-I_p$ (see [5, pp. 9]). If p is a prime, $\Sigma(p)$ is isomorphic to a semidirect product $Z_p:Z_{p-1}$.

Let q be a prime power, $q \equiv 1 \pmod{4}$, and $C = (c_{ij})$ be a $(q \times q)$ matrix defined as follows:

$$c_{ij} = \begin{cases} 1, & \text{if } (i-j) \text{ is a nonzero square in } F_q, \\ 0, & \text{otherwise.} \end{cases}$$

C is a symmetric matrix, since -1 is a square in F_q . There are as many nonzero squares as nonsquares in F_q , so each row of C has $\frac{q-1}{2}$ elements equal 1 and $\frac{q+1}{2}$ zeros. The set of nonzero squares in F_q is a partial difference set, called a Paley partial difference set (see [1, 10.15 Example, pp. 231]). For the proof of the properties of the matrix C listed in the following lemma we refere the reader to [3].

Lemma 2 Let q be a prime power, $q \equiv 1 \pmod{4}$, and let the matrices C and \overline{C} be defined as above. Then the following properties hold:

$$C \cdot (C + I_q)^T = \overline{C} \cdot (\overline{C} - I_q)^T = \frac{q-1}{4} J_q + \frac{q-1}{4} I_q,$$

$$C \cdot (\overline{C} - I_q)^T = \frac{q-1}{4} J_q - \frac{q-1}{4} I_q,$$

$$(C + I_q) \cdot \overline{C}^T = \frac{q+3}{4} J_q - \frac{q-1}{4} I_q,$$

$$[C \mid C + I_q] \cdot [C \mid C + I_q]^T = \frac{q-1}{2} J_q + \frac{q+1}{2} I_q,$$

$$[\overline{C} \mid \overline{C} - I_q] \cdot [\overline{C} \mid \overline{C} - I_q]^T = \frac{q-1}{2} J_q + \frac{q+1}{2} I_q,$$

$$[C \mid C + I_q] \cdot [\overline{C} \mid \overline{C} - I_q]^T = \frac{q+1}{2} J_q - \frac{q+1}{2} I_q.$$

 $\Sigma(q)$ acts as an automorphism group of incidence structures with incidence matrices $C, C + I_q, \overline{C}$ and $\overline{C} - I_q$. If q is a prime, $\Sigma(p)$ is isomorphic to $Z_q : Z_{\frac{q-1}{2}}$.

3 Construction of Menon Designs

For $v \in N$ we denote by j_v the all-one vector of dimension v, by 0_v the zero-vector of dimension v, and by $0_{m \times n}$ the zero-matrix of dimension $(m \times n)$.

Let p and q=2p-1 be prime powers and $p\equiv 3\pmod 4$. Further, let D,\overline{D},C , and \overline{C} be defined as above. Define $(4p^2\times 4p^2)$ matrices M_1 and M_2 in the following way:

$$M_1 = \begin{bmatrix} 0 & j_{p\cdot q}^T & 0_q^T & 0_{p\cdot q}^T \\ & D\otimes (C+I_q) & & D\otimes C \\ j_{p\cdot q} & + & j_p\otimes C & + \\ & (\overline{D}-I_p)\otimes \overline{C} & & \overline{D}\otimes (\overline{C}-I_q) \\ \hline 0_q & j_p^T\otimes (\overline{C}-I_q) & 0_{q\times q} & j_p^T\otimes \overline{C} \\ \hline 0_{p\cdot q} & + & j_p\otimes (C+I_q) & + \\ & (\overline{D}-I_p)\otimes (\overline{C}-I_q) & j_p\otimes (C+I_q) \end{bmatrix}$$

$$M_2 = \begin{bmatrix} 0 & j_{p\cdot q}^T & 0_q^T & 0_{p\cdot q}^T \\ & D\otimes (C+I_q) & & D\otimes C \\ 0_{p\cdot q} & + & j_p\otimes \overline{C} & + \\ & (\overline{D}-I_p)\otimes \overline{C} & & \overline{D}\otimes (\overline{C}-I_q) \\ \hline 0_q & j_p^T\otimes (\overline{C}-I_q) & 0_{q\times q} & j_p^T\otimes \overline{C} \\ & (D+I_p)\otimes C & & (\overline{D}-I_p)\otimes (C+I_q) \\ j_{p\cdot q} & + & & & & & & & \\ & (\overline{D}-I_p)\otimes (\overline{C}-I_q) & & & & & & + \\ & (\overline{D}-I_p)\otimes (\overline{C}-I_q) & & & & & & + \\ \hline \end{pmatrix}$$

Let us show that M_1 and M_2 are incidence matrices of Menon designs with parameters $(4p^2, 2p^2 - p, p^2 - p)$. It is easy to see that $M_1J_{4p^2} = M_2J_{4p^2} = (2p^2 - p)J_{4p^2}$. We have to prove that $M_1M_1^T = M_2M_2^T = (p^2 - p)J_{4p^2} + p^2I_{4p^2}$. Using properties of the matrices D, \overline{D} , C and \overline{C} listed in Lemma 1 and Lemma 2, one computes that the product of block matrices M_1 and M_1^T , as well as the product $M_2M_2^T$, equals:

$2p^2-p$	$(p^2 - p)j_{pq}^T$	$(p^2 - p)j_q^T$	$(p^2 - p)j_{pq}^T$
$(p^2 - p)j_{pq}$	$(p^2 - p)J_{pq} + p^2I_{pq}$	$(p^2 - p)J_{pq \times q}$	$(p^2 - p)J_{pq \times pq}$
$(p^2 - p)j_q$	$(p^2 - p)J_{q \times pq}$	$(p^2 - p)J_q + p^2I_q$	$(p^2 - p)J_{q \times pq}$
$(p^2 - p)j_{pq}$	$(p^2 - p)J_{pq \times pq}$	$(p^2 - p)J_{pq \times q}$	$(p^2 - p)J_{pq} + p^2I_{pq}$

where $J_{m \times n}$ is the all-one matrix of dimension $m \times n$. Thus,

$$M_1 M_1^T = M_2 M_2^T = (p^2 - p) J_{4p^2} + p^2 I_{4p^2}$$

which means that M_1 and M_2 are incidence matrices of symmetric designs with parameters $(4p^2, 2p^2 - p, p^2 - p)$. The incidence matrices M_1 and M_2 lead us to conclusion that the group $\Sigma(p) \times \Sigma(2p-1)$ acts as an automorphism group of the Menon designs, semistandardly with one fixed point (and block), one orbit of length 2p-1, and two orbits of length $2p^2-p$. If p and 2p-1 are primes, then $\Sigma(p) \times \Sigma(2p-1) \cong (Z_p : Z_{\frac{p-1}{2}}) \times (Z_{2p-1} : Z_{p-1})$, and the derived designs of the Menon designs with respect to the first block, i.e., the fixed block for an automorphism group $(Z_p : Z_{\frac{p-1}{2}}) \times (Z_{2p-1} : Z_{p-1})$, are cyclic.

Incidence matrices M_1 and M_2 share the entries of

	0	$j_{p \cdot q}^T$	0_q^T	$0_{p \cdot q}^T$
		$D\otimes (C+I_q)$		$D \otimes C$
	$0_{p \cdot q}$	+	$0_{p \cdot q \times q}$	+
I =		$(\overline{D} - I_p) \otimes \overline{C}$		$\overline{D} \otimes (\overline{C} - I_q)$
	0_q	$j_p^T \otimes (\overline{C} - I_q)$	$0_{q \times q}$	$j_p^T \otimes \overline{C}$
	$0_{p \cdot q}$	$(D+I_p)\otimes C$	$0_{p \cdot q \times q}$	$(\overline{D}-I_p)\otimes (C+I_q)$
		_ + _		+_
		$(\overline{D}-I_p)\otimes(\overline{C}-I_q)$		$D \otimes \overline{C}$

Thus, the following theorem holds

Theorem 1 Let p and q = 2p - 1 be prime powers and $p \equiv 3 \pmod{4}$. Further, let the matrices D, \overline{D} , C, \overline{C} and I be defined as above. Then the matrix

	[0	$j_{p\cdot q}^T$	0_q^T	$0_{p \cdot q}^T$
	$j_{p\cdot q}$	$D\otimes (C+I_q)$	$j_p \otimes (C - \overline{C})$	$D \otimes C$
		+ (D +) = G		$\frac{+}{\overline{D}} \circ (\overline{\overline{G}}, I)$
S =		$(\overline{D} - I_p) \otimes \overline{C}$	0	$\overline{D} \otimes (\overline{C} - I_q)$
	$ 0_q$	$\frac{J_p \otimes (C - I_q)}{(D + I_p) \otimes C}$	$0_{q imes q}$	$\frac{j_p^1 \otimes C}{(\overline{D} - I) \otimes (C + I)}$
	$-j_{p\cdot q}$	+	$j_p \otimes (C + 2I_q - \overline{C})$	$(D-I_p)\otimes (C+I_q)$
	L	$(\overline{D}-I_p)\otimes(\overline{C}-I_q)$		$D \otimes \overline{C}$

is a Siamese twin design with parameters $(4p^2, 2p^2 - p, p^2 - p)$ sharing the entries of I.

The matrix I can be written as

$$I = \begin{bmatrix} 0 & j_{p \cdot q}^T & 0_q^T & 0_{p \cdot q}^T \\ 0_{4p^2 - 1} & X & 0_{(4p^2 - 1) \times q} & Y \end{bmatrix}.$$

The matrix X is the incidence matrix of a 2- $(2p^2-p,p^2-p,p^2-p-1)$ design, and Y is the incidence matrix of a pairwise balanced design PBD $(2p^2-p,\{p^2,p^2-p\},p^2-p-1)$, both having an automorphism group isomorphic to $\Sigma(p)\times\Sigma(2p-1)$. Note that X is the incidence matrix of the derived design of the Menon designs with incidence matrices M_1 and M_2 , with respect to the first block. The pairwise balanced design PBD $(2p^2-p,\{p^2,p^2-p\},p^2-p-1)$ with the incidence matrix Y is a mandatory representation design MRD $(2p^2-p,\{p^2,p^2-p\},p^2-p-1)$. When p and p and p are primes, the derived design and the pairwise balanced design are cyclic.

4 Amicable Hadamard Matrices

Two square matrices M and N of order n are said to be amicable if $MN^t = NM^t$. Using the amicability property, the following theorem follows directly (see [6]):

Theorem 2 If matrices A and B are amicable Hadamard matrices of order n, then a matrix X = A + iB, $i^2 = -1$, is a complex orthogonal matrix, i.e. $XX^H = 2nI_n$, where $(\cdot)^H$ is the Hermitian conjugate.

Note that every Hadamard matrix is a micable with itself, but this is a trivial case which is certainly not interesting. In this article we construct two Menon $(4p^2,2p^2-p,p^2-p)$ designs, when p and 2p-1 are prime powers and $p\equiv 3\pmod 4$, leading to a micable Hadamard matrices. In all examples that we examine, these two designs were mutually non-isomorphic.

The matrices M_1 and M_2 give rise to regular Hadamard matrices. Let us denote the Hadamard matrices corresponding to M_1 and M_2 by H_1 and H_2 , respectively. For matrices M_1 and M_2 products $M_1M_2^T$ and $M_2M_1^T$ both equal:

$2p^2-p$	$(p^2-p)j_{p\cdot q}^T$	$(p^2 - p)j_q^T$	$(p^2 - p)j_{p \cdot q}^T$
(2)	$(p^2-p+1)J_p\otimes C$	(2) 7	$(p^2 - p + 1)J_p \otimes J_q$
$(p^2 - p)j_{p \cdot q}$	$-(p-1)J_p \otimes I_q + p^2 I_{pq} + (p^2 - p - 1)J_p \otimes \overline{C}$	$(p^2 - p)J_{p \cdot q \times q}$	$ (n-1)I \otimes I$
$(p^2-p)j_q$		$(p^2 - p)J_q + p^2I_q$	$\frac{(p-1)J_p \otimes I_q}{(p^2-p)J_{q \times p \cdot q}}$
(F F)5q	$(p^2 - p + 1)J_p \otimes J_q$	(F F) - q - F q	$\frac{(p^2-p-1)J_p\otimes C}{(p^2-p-1)J_p\otimes C}$
$(p^2-p)j_{p\cdot q}$		$(p^2-p)J_{p\cdot q\times q}$	$-(p+1)J_p\otimes I_q+p^2\underline{I_{pq}}$
-	$(p-1)J_p\otimes I_q$		$+(p^2-p+1)J_p\otimes \overline{C}$

Therefore $H_1H_2^T = H_2H_1^T$, so H_1 and H_2 are amicable Hadamard matrices. That proves the following theorem:

Theorem 3 Let p and 2p-1 be prime powers and $p \equiv 3 \pmod{4}$. The matrices H_1 and H_2 are amicable Hadamard matrices of order $4p^2$. Further, the matrix $X = H_1 + iH_2$, $i^2 = -1$, is a complex orthogonal matrix, i.e. $XX^H = 8p^2I_{4p^2}$, where $(\cdot)^H$ is the Hermitian conjugate.

References

- [1] T. Beth, D. Jungnickel and H. Lenz, *Design Theory*, Cambridge University Press, Cambridge, England, 1999.
- [2] D. Crnković, A series of regular Hadamard matrices, Des. Codes Cryptogr. 39, no. 2 (2006), 247–251.
- [3] D. Crnković, A series of Siamese twin designs, *Discrete Math.* (2008) (in press); doi:10.1016/j.disc.2007.12.012.
- [4] D. Crnković, A series of Menon designs and 1-rotational designs, Finite Fields Appl. 13, no. 4 (2007), 1001–1005.
- [5] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, England, 1983.
- [6] J. Seberry, B. J. Wysocki and T. A. Wysocki, On some applications of Hadamard matrices, *Metrika* 62, no. 2–3 (2005), 221–239.
- [7] W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard matrices, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

(Received 18 May 2007)