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Abstract

An n× n× p proper array is a three-dimensional array of directed cubes
that obeys certain constraints. These constraints allow n× n× p proper
arrays to be enumerated via a transition matrix, Mn×n. The main goal
of this paper is to compute a lower bound for the basis size of Mn×n. A
lower bound is obtained from the exponential generating function which
counts the symmetrically inequivalent partitions of a n × n array, i.e.
the exponential generating function counts the symmetrically inequiva-
lent n × n letter representations. The symmetry in question is that of
a square, namely D4 = C4 × C2. The aforementioned exponential gen-
erating function is a linear combination of six exponential generating
functions, each of which is associated with a particular symmetry of the
n × n array.

1 Introduction

This paper is a continuation of the author’s previous work on three-dimensional
proper arrays [2]. In [2], the objects studied were m × n × p proper arrays (m 6=
n), where m × n × p proper arrays are three-dimensional configurations of directed
cubes which are enumerated by the transition matrix Mm×n. The main theorem of
[2] involved the construction of an exponential generating function for the number
of symmetrically inequivalent partitions of an m × n rectangle. This exponential
generating function provided a lower bound for the basis size of Mm×n. The m ×
n partitions of the rectangle were defined to be the m × n letter representations
associated with the m × n × p proper array. Two m × n letter representations were
said to be symmetrically equivalent if they mapped to one another via a symmetry
operation of the m × n rectangle. For more details about proper arrays and the
transition matrix, the reader is referred to [2].
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We now let m = n. Thus, our object of study is an n × n × p proper array. The
main theorem of this paper, Theorem 2.1, provides an exponential generating func-
tion for the number of symmetrically inequivalent partition of an n×n square. This
exponential generating function, itself a linear combination of six exponential gen-
erating functions, provides a lower bound for the basis size of Mn×n. We define
the n × n partitions of a square to be the n × n letter representations associated
with the n × n × p proper array. Furthermore, we say two n × n letter representa-
tions are symmetrically equivalent if and only if the symmetry group of the square,
D4 = C4 × C2, maps one into the other. Figure 1.1 provides an illustration of eight
symmetrically equivalent 3 × 3 × 3 proper arrays, along with their eight equivalent
3 × 3 letter representations. An auxillary result, given in Appendix B, provides a
generating function for the n × n letter representations fixed by the two diagonal
reflection maps of D4.
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IV. Diagonal Reflection
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V. Diagonal Reflection
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 VI. 90 degree counterclockwise rotation
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VII. 180 degree rotation
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DD

D E

VIII. 90 degree clockwise rotation

Figure 1.1: An example of 3 × 3 × 3 proper array and its eight symmetrically equivalent

versions. Beside each 3 × 3 × 3 proper array is its associated 3 × 3 letter representation.
The 3 × 3 letter representation uses letter to describe the partition structure of the

outward pointing face of the 3 × 3 × 3 proper array. Note, these eight images are only

counted once in the enumeration procedure.

Remark 1.1 We use the letters in the letter representations as computational de-
vice. In other words, the letters are just labels for the components and the labels are
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unimportant. For example, take the letter representations provided in Figure 1.1. If
we replace the A with an X, the resulting letter representations are considered the
same as the illustrated letter representations since the partition of the n × n array
has not changed.

2 Enumerating Letter Representations

With the preliminary information in place, we are ready to develop a formula that
counts, modulo D4 symmetry, the number of n× n letter representations associated
with n × n × p proper arrays. Fortunately, it is an easy exercise to show that the
entire set of n × n letter representations has cardinality given by the Bell number
B(n2), denoted Bn [1, 4, 5]. In general, if n 6= m, we will need double subscripts.
For example, we denote B(nm) as Bn,m. However, in our context, a single subscript
suffices.

Define Ln to be the number of n × n letter representations modulo D4 symmetry.
Then, Ln is the lower bound for the basis size of Mn×n. We calculate Ln as follows.

1. Let SSn count n×n letter representations that are fixed by all eight symmetry
transformations of D4.

2. Let Sn count the n×n letter representations that fixed by both horizontal and
vertical reflections. The quantity Sn − SSn counts the n× n letter representa-
tions that have horizontal and vertical reflective symmetry without having 90◦

rotational symmetry.

3. Let Hn count the n × n letter representations fixed via horizontal reflection.
The quantity Hn − Sn counts the n × n letter representations that are fixed
only by horizontal reflection.

4. Let Vn count the n × n letter representations fixed via vertical reflection. The
quantity Vn − Sn counts the n× n letter representations that are fixed only by
vertical reflection.

5. Let Dn count the n × n letter representations that are fixed by both diagonal
reflections. The quantity Dn−SSn counts the n×n letter representations that
are fixed by both diagonal reflections but do not have 90◦ rotational symmetry.

6. Let In count the n×n letter representations that are fixed by a single diagonal
reflection. The quantity In − Dn counts the n × n letter representations that
are fixed only by one diagonal reflection.

7. Let Rn count the n × n letter representations fixed via 180◦ rotation. The
quantity Rn −Sn −Dn −Nn +2SSn counts the n×n letter representation that
are fixed only by 180◦ rotation.
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8. Let Nn count the n×n letter representations that are symmetrical with respect
to 90◦ rotational symmetry. The quantity Nn − SSn counts the n × n letter
representations that are fixed only by 90◦ rotation.

9. Let Cn = Bn−Hn−Vn−Rn−2In+2Dn+2Sn count the n×n letter representations
that have eight distinct symmetry images. In otherwords, Cn is the number of
n×n letter representations that are not fixed by any symmetry tranformation.

Theorem 2.1 Let Ln, Cn, Bn, Vn, Hn, Rn, In, Dn, Sn, Nn and SSn be as previously
defined. Then

Ln =
Bn + Hn + Vn + Rn + 2In + 2Nn

8

Proof of Theorem 2.1: To calculate the number of n × n letter representations
modulo D4 symmetry, we first determine whether a given n×n letter representation,
called A, is fixed via any of the eight symmetry transformations. If A is not fixed
by any symmetry, it has eight equivalent images. However, if A is fixed under a
symmetry transformation, it has at most four symmetry images. It follows that

Ln =
Cn + 8SSn

8
+

Nn + Dn + Sn − 3SSn

2

+
Hn + Vn + Rn + 2In + 2SSn − 3Sn − 3Dn − Nn

4

=
Bn + Hn + Vn + Rn + 2In + 2Nn

8
2

Remark 2.1 Theorem 2.1 can be considered to be an immediate consequence of
Burnside’s Lemma.

2.1 A Numerical Example

In order to understand how Theorem 2.1 provides a lower bound for the basis size
of the transition matrix Mn×n, look at the following example. Let n = 2. It can
be shown that M2×2 is a 28 × 28 matrix [2]. Theorem 2.1 counts the number of
symmetrically distinct n × n letter representations. Recall that B2 = 15. Next, we
calculate H2 = 7, V2 = 7, R2 = 7, I2 = 7, and N2 = 3. Theorem 2.1 implies that
modulo D4 symmetry, the number of 2×2 letter representations is 15+7+7+7+14+6

8
= 7.

Thus, the transition matrix associated with the 2×2×p proper arrays must be at least
as large as a 7×7 matrix. The goal of the author’s research is to obtain a formula that
calculates the actual basis size of Mn×n. As this example demonstrates, Theorem
2.1 provides not the actual basis size, but a lower bound on the basis size.

3 Generating Function for Diagonal Symmetry

In order to use Theorem 2.1, we need to find generating functions for Hn, Vn, Rn,
In, and Nn. Since previous papers [2],[3] have discussed the generating functions for
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Hm,n, Vm,n, and Rm,n, we will use the remainder of this paper to determine generating
functions for In, Nn, and SSn. The main technique for determining these generating
functions involves the subdivision of the n × n array into either two halves or four
quadrants. In either case, we can arbitrarily fill one of the halves/quadrants with any
arrangement of letters, and then use symmetry to fill the remaining half/quadrants.
The trick to this technique is to carefully subdivide around any row and column that
will be fixed under the symmetry transformations. Thus, we must take into account
whether n is an even or odd integer.

Remark 3.1 Recall that

{

p

q

}

is a Stirling number of the second kind which counts

the partitions of a set of size p with q blocks. Thus, the arbitrary arrangement of

letters describe in the preceding paragraph is

{

p

q

}

, where p is the number of squares

in the half/quarter and q is the number of letters used to fill those squares.

We begin by calculating the generating functions associated with In. Assume that
the center of the n × n array is the origin and that the reflection in question is over
the line y = −x. In this case, we subdivide the n × n array into two halves, one
above and one below the line y = −x. In particular, define a diagonal square to
be a square whose center lies on y = −x; i.e. a square fixed by the reflection. Define
an off-diagonal layer to be two squares, each of which is the image of the other
via reflection. Define the bottom half of an off-diagonal layer to be the square
whose upper right vertex lies on the line y = −x. The other square is said to be the
upper half of the off-diagonal layer. The bottom half of the n × n array is
the union of all the squares which occur in the bottom half of an off diagonal layer.
The upper half of the n × n array is the union of all the squares which occur in
the top half of an off diagonal layer. The geometric strategy for constructing In is
as follows.

I: Fill the diagonal squares with an arbitrary arrangement of letters.

II: Determine the number of off diagonal layers that are completely filled by a
letter that occurs along the diagonal.

III: Fill the bottom halves of the remaining off diagonal layers with an arbitrary
arrangement of letters and use reflective symmetry to determine the top halves
of these off diagonal layers.

There are three types of letters that can fill the bottom half of an off-diagonal layer.
The three possiblities consist of those letters that go to themselves under reflection,
letters that reflect to a letter that does not appear in the bottom half of the array,
and letters that reflect to another letter that has appeared in the bottom half of the
array. In later this case, we say an interchange has occured. These possiblities are
illustrated in Figure 3.1.
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Figure 3.1: An example of a 4× 4 letter representation that is fixed by diagonal reflection

over y = −x. Note that A and B occur along the diagonal. One off-diagonal layer is filled
with A. The remaining off-diagonal layers illustrate the three cases described in previous

paragraph. The dark gray off-diagonal layer is filled by F , where F goes to itself via

reflection. The medium gray layers demonstrate how D and E interchange positions
when reflected over y = −x. The light gray layer demonstrates how C reflects to G,

where G does not appear in the bottom half of the array.

Then

In =

∞
∑

d,w,p,m
q,T,r=0

(n2
−n
2

)!

{

n

d

}{

p

2w

}{

q

m

}{

r

T

}

(2w)!d
n2

−n
2

−p−q−r

2wp!q!r!w!(n2
−n
2

− p − q − r)!

where,

1. d counts the letters that fill the diagonal squares.

2. 2w is the number of letters in the bottom half of the array that interchange
among themselves when reflected to the top half of the array.

3. p counts the squares in the bottom half of the array that are occupied by these
2w letters.

4. m is the number of letters in the bottom half of the array that reflect to a letter
that does not occur in either the bottom half or the diagonal.

5. q counts the squares in the bottom half of the array that are occupied by these
m letters.

6. T is the number of letters in the bottom half of the array that reflect to them-
selves.

7. r counts the squares in the bottom half of the array that are occupied by these
T letters.

Remark 3.2 In the previous sum, we sum only over a range of values than ensure
nonnegative factorials. Instead of explicitly writing the range of summation for each
index, we use the shorthand notation of summing each variable from zero to infinity.
This convention will be used throughout the paper.
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Before going further, we should recall the following representation of the Second
Stirling numbers which will be useful in proving the theorems in Sections 3 through 5
[1, 4, 5].

Remark 3.3

∞
∑

r=0

{

r

t

}

yr

r!
=

(ey − 1)t

t!
,

Theorem 3.1 Let In be as previously defined. Then, In is n!
(

n2
−n
2

)

! times the

coefficient of t
n2

−n
2 vn in the expansion of exp(et(ev − 1) + 1

2
(et − 1)(et + 3)).

Proof of Theorem 3.1: Define In(t, v) =

∞
∑

n,d,w,p, n2
−n
2

m,q,T,r=0

{

n

d

}{

p

2w

} {

q

m

}{

r

T

}

(2w)!d
n2

−n
2

−p−q−rvntptqtrt
n2

−n
2

−p−q−r

2w(n2
−n
2

− p − q − r)!n!p!q!r!w!
.

Sum over n2
−n
2

. Then, use Remark 3.3 to sum over n, p, q, and r. Finally, sum over
d, w, m, and T to obtain the desired result. For a more detailed calculation, see the
proof of Theorem 5.1. 2

In Section 5, we need Ii
n, where Ii

n calculates the n × n letter representations which
are fixed by diagonal reflection and have exactly i letters. In particular,

Ii
n =

∞
∑

d,w,p
m,q,r=0

(n2
−n
2

)!

{

n

d

}{

p

2w

}{

q

m

}{

r

i − d − 2w − 2m

}

(2w)!d
n2

−n
2

−p−q−r

2wp!q!r!w!(n2
−n
2

− p − q − r)!

(3.1)
Using the same techniques we used to prove Theorem 3.1, we can easily prove the
following corollary.

Corollary 3.1 Let Ii
n be as defined previously. Then, Ii

n is i!n!
(

n2
−n
2

)

! times the

coefficient of xit
n2

−n
2 vn in the expansion of exp(x(x+1)(et−1)+xet(ev−1)+x2

2
(et−1)).

Remark 3.4 We should note that Theorem 3.1 could be proven using the context of
involutions acting on a finite set. In particular, suppose the involution is acting on
a finite set in manner which provides t matching pairs and u fixed points. Then, by
the argument used to derive H2m+1,n in [2], the number of partitions of the set that
are inequivalent under the involution is exp(ey+x + 1

2
e2y − 3

2
), where the powers of x

correspond to u and the powers of y correspond to t. The following table provides the
substitutions which allow us to transform exp(ey+x + 1

2
e2y − 3

2
) into the generating

functions for Hn, Vn, Rn, and In.
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u t y x

H2n 0 2n2 y 0
V2n+1 n 2n2 + n y x

R2n+1 1 2n2 + n + [2n+1
2

] y ln(1 + te−t)

In n n2
−n
2

y x

Table 3.1: The substitutions used to transform e(ey+x+ 1
2
e2y

−
3
2
) into the associated

generating functions. The u enumerates the fixed points while the t enumerates the

matching pairs.

4 Generating Function for 90◦ Rotational Symmetry

Our next step is to find a generating function associated with Nn. When analyzing
rotational symmetry, it is necessary to consider the case of n even as separate from
the case of n odd. When n is even, we partition the n×n array into four quadrants, fill
the upper left quadrant with any arbitrary letter configuration and use 90◦ clockwise
rotation symmetry to complete the remaining three quadrants. Let A be a letter in
the upper left quadrant. Define the four-letter cycle of A to be A, the letter in
the upper right quadrant that is the 90◦ clockwise rotational image of A, the letter
in the lower right quadrant that is the 180◦ image of A, and the letter in the lower
left quadrant that is the 90◦ counterclockwise rotational image of A. There are four
types of four-letter cycles.

Type 1: The four-letter cycle contains only one letter that appears in the upper left
quadrant. In this case, the letter from the upper left quadrant is called a
singleton.

A
A A

AA

AA

A A A A A AA B

B
B

B

B

C

CB

D

D

Figure 4.1: The three ways a singleton letter A can be transformed under 90◦

rotation.

Type 2: The four-letter cycle is composed of three letters from the upper left quadrant
and one letter that does not occur in the upper left quadrant.
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A

A
A

A
B

B B

B

C

X

C

X

CX

XC
has no X's

A

A

A

A

B

B

B

B

C

X

C

X

C X
XC

has no X's

Figure 4.2: The six types of four-letter cycles where A, B, and C are the three
letters that appear in the upper left quadrant, and X is a letter that is new relative

to the upper left quadrant.

Type 3: The four-letter cycle is composed of two letters that appear in the upper left
quadrant and two letters that are new relative to the upper left quadrant.

A

A

A
B

B

B

A BX

Y

Y

X

has no X's or Y's

has no X's or Y's

X Y

B

B B

A

A

A A AB B

A

A

A
B

B

B

X

Y

Y

X

has no X's or Y's

has no X's or Y's

X Y A

A

A

BB

B
XY Y

X

has no X's or Y's

has no X's or Y's

X Y

has no X's or Y's

has no X's or Y's

Figure 4.3: The four types of four-letter cycles where A and B are from the upper

left quadrant, and X and Y are new with respect to the upper left quadrant.

Type 4: The four-letter cycle is composed of four letters from the upper left quadrant.
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B

B

B

C

C

C

D
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C

A B
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1. 2.

Figure 4.4: The six types of four-letter cycles composed of four letters that appear
in the upper left quadrant.

Let n = 2m. The previous discussion implies that

N2m =
∞

∑

j,q,s
t,w=0

{

m2

j

}

j!3q2t−2w

q!s!t!w!(j − 3s − 2t − q − 4w)!

where,

1. j counts the letters that appear in the upper left quadrant. Note that j ≡
q + 3s + 2t + 4w.

2. q counts how many of these j letters are singletons.
3. 3s counts how many of these j letters are used in four-letter cycles of Type 2.
4. 2t counts how many of these j letters are used in four-letter cycles of Type 3.
5. 4w counts how many of these j letters are used in four-letter cycles of Type 4.

Using the techniques of Theorem 3.1, we easily prove Theorem 4.1

Theorem 4.1 Let N2m be as previously defined. Then, N2m is (m2)! times the
coefficient of xm2

in the expansion of exp(1
4
(e4x + 2e2x + 4ex − 7)).

Our next step is to compute N2m+1. The only difference between this situation and
N2m is the occurrence of a fixed middle square. Otherwise, the (2m + 1)× (2m + 1)
array is divided into four (m+1)×m rectangular quadrants. Using a strategy similiar
to that of N2m, we obtain

N2m+1 =
∞

∑

j,k,q
s,t,w=0

{

m2 + m

j

}

j!3q2t−2w

k!q!s!t!w!(j − 3s − 2t − 4w − q − k)!

where,
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1. j, q, t, s, and w are as defined for N2m.
2. k counts how many of these j letters that could occur the fixed middle square.

By using a strategy similiar to the one that proved Theorem 4.1, we can prove
Theorem 4.2. The difference between Theorem 4.1 and Theorem 4.2 is a factor of
ex. This factor corresponds to the number of ways to fill the fixed middle square.

Theorem 4.2 Let N2m+1 be as previously defined. Then, N2m+1 is (m2 + m)! times
the coefficient of xm2+m in the expansion of exp(x + 1

4
(e4x + 2e2x + 4ex − 7)).

5 Fully Symmetrical Letter Representations

We say an n × n letter representation is fully symmetric if and only if it is fixed
via horizontal reflection and 90◦ rotation; i.e. the letter representation is counted by
SSn. Once again, it is necessary to consider the case of n even separate from the
case of n odd. We begin our discussion with SS2n. In this case, we implement a two
step process.

I: We partition the n × n array into four quadrants and fill the upper left hand
quadrant with any letter configuration that is symmetrical with respect to
reflection over the line y = −x.

II: We take letters from the upper left hand quadrant and using the horizontal
reflection, along with the 90◦ clockwise rotational symmetry, complete the other
three quadrants.

Step 2 is complex, since we first must classify the upper left quadrant letter via
diagonal symmetry. In other words, given any letter in the upper left quadrant, it
is either a diagonal letter, that is, a letter that appears along the diagonal, or an
off-diagonal letter, that is, a letter that does not appear in the diagonal. Then,
based on the type of letter that has been choosen, we use 90◦ clockwise rotation to
determine its four-letter cycle. The number of four-letter cycles is restricted by the
condition that the completed array must obey horizontal reflection. Hence, Step 2
must combine the techniques used to compute In and N2n.

In particular,

SS2n =

n2
∑

i=1

Ii
nT2T3T4S

where,
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1. Ii
n counts the n × n letter representations which are fixed via reflection over

y = −x and have exactly i letters. These are the letters representations that
may fill the upper left quadrant.

2. T4 counts how many of the i letters form fully symmetrical four-letter cycles
of Type 4.

3. T3 counts how many of the i letters form fully symmetrical four-letter cycles
of Type 3.

4. T2 counts how many of the i letters form fully symmetrical four-letter cycles
of Type 2.

5. S counts how many of the i letters are singletons.

We will now describe how to calculate T4. We should note that T4 consists of subcases,
each of which is determined by the number of diagonal letters and the number of
off-diagonal letters that occur in the given four cycle. In particular, we have T4 =
T41T42T43T44, where,

1. T41 counts the fully symmetrical four-letter cycles of consisting of four letters
from the upper left quadrant distributed as follows: two of the letters are
located in one off-diagonal layer while the other two letters occur along the
diagonal. Examples of these four cycles are illustrated by Diagrams 1 and 2 of
Figure 4.4.

2. T42 counts the fully symmetrical four-letter cycles consisting of four letters from
the upper left quadrant distributed as follows: one letter occurs in the diagonal
while the other three occur in off-diagonal layers. One of the off-diagonal layers
must contain two letters while the other off-diagonal layer has only one letter.

B

A B

A

A
A

A

A
B

B

B

B

B
C D

D

DC

D

C

C

C

D

CD

A B

A

A
AA

AB

B
B

B

B

C D
D

D C

D

C
C

C

D

C D

Example 1 of Figure 4.4 Example 2 of Figure 4.4

Figure 5.1: The two forms of a four-letter cycle enumerated by T42. The dark gray

(peach) squares do not contain D, B, or C. Note that B and C fill an off-diagonal
layer, the D fills an entire off-diagonal layer, and the A is on the diagonal.
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3. T43 counts the fully symmetrical four-letter cycles consisting of four letters from
the upper left quadrant which fill three off-diagonal layers. Two of these off-
diagonal layers have exactly one letter, while the third off-diagonal layer has
two letters.

A B

A
A

A
A

A
B

B

B
B

B

C D
D

DC

D
C

C

C

D

C

D

A B

A
A
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AB

B B

B

B
C D

D

D C

D
C

C C

D

C

D

A

B

D

C

A
C

D

B

Example 1 of Figure 4.4 Example 2 of Figure 4.4

Figure 5.2: The two forms of a four-letter cycle enumerated by T43. The dark gray

(peach) squares do not contain A, B, C or D. Note that B and C fill one
off-diagonal layer while A and D each fill an entire off-diagonal layer.

4. T44 counts the fully symmetrical four-letter cycles consisting of four letters
from the upper left quadrant which fill two off-diagonal layers. Each of these
off-diagonal layers has two letters.
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has no A's, B's, C's or D's

Figure 5.3: The four forms of a four-letter cycle enumerated by T44. Note that A

and D fill one off-diagonal layer while B and C fill the second off-diagonal layer.

By using similar arguments, we can show that T3 = T31T32T33T34 and T2 = T21T32,
where,
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1. T31 enumerates the fully symmetrical four-letter cycles which have the property
that exactly two of the four letters occur along the diagonal of the upper left
quadrant.

2. T32 enumerates the fully symmetrical four-letter cycles which have the property
that exactly two of the letters occur in the upper left quadrant. Futhermore,
each such letter completely fills an off-diagonal layer.

3. T33 enumerates the fully symmetrical four-letter cycles which have the property
that exactly two of the letters occur in the upper left quadrant. One of these
letters is along the diagonal while the other letter completely fills an off-diagonal
layer.

4. T34 enumerates the fully symmetrical four-letter cycles which have the property
that exactly two of the letters occur the upper left quadrant. Both of these
letters occur in a single off-diagonal layer.

5. T21 enumerates the fully symmetrical four-letter cycles which have the property
that exactly three of the letters come from the upper left quadrant. One of
these letters occurs along the diagonal while the other two occur in a single
off-diagonal layer.

6. T22 enumerates the fully symmetrical four-letter cycles which have the property
that exactly three of the letters come from the upper left quadrant. These three
letters occur in off-diagonal layers. One of the off-diagonal layers has one letter
while the other off-diagonal layer has two letters.

By combining the expression for Ii
n in (3.1), along with algebraic expressions for

S, T41, T42, T43, T44, T31, T32, T33, T34, T21, and T22, we obtain the following sum.

SS2n =
∞

∑

i,d,w,m,P,Q,R,k,j
l,a,q,r,u,g,h,p=0

(

n2
−n
2

)

!2a+j+2g+h+p+u3i−w−m−3(j+k+l)−2(a+h+p+r+u+q)−g

(i − d − 2w − 2m − j − 2l − 2r − u − p)!k!j!l!a!g!q!r!u!h!p!

∗

{

n

d

} {

P

2w

}{

Q

m

}{

R

i − d − 2w − 2m

}

w!2wP !Q!R!(n2
−n
2

− P − Q − R)!(d − 2k − j − 2q − h − u)!

∗
d

n2
−n
2

−P−Q−R(2w)!(w + m)!d!(i − d − 2w − 2m)!

(w + m − k − j − l − 2a − g − h − p)!

where,

1. i is the number of letters in the upper left quadrant.

2. d is the number of letters along the upper left quadrant diagonal.

3. 2w is the number of letters in the bottom half of the upper left quadrant that
interchange among themselves when reflected over the line y = −x.
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4. P is the number of spaces in the bottom half of the upper left quadrant that
are filled by 2w letters.

5. m is the number of letters in the bottom half of the upper left quadrant that,
when reflected over y = −x, go to a letter that does not appear in the bottom
half.

6. Q is the number of spaces in the bottom half of the upper left quadrant occupied
by the m letters.

7. t = i − d − 2w − 2m is the number of letters in the bottom half of the upper
left quadrant that reflect to themselves over the line y = −x.

8. R counts the spaces in the bottom half of the upper left quadrant occupied by
the t letters.

9. k is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T41.

10. j is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T42.

11. l is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T43.

12. a is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T44.

13. q is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T31.

14. r is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T32.

15. u is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T33.

16. g is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T34.

17. h is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T21.

18. p is the number of letters from the upper left quadrant that occur in the four-
letter cycles enumerated by T22.
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Theorem 5.1 Let SS2n be as previously defined. Then, SS2n is n!(n2
−n
2

)! times the

coefficient of xnT
n2

−n
2 in the expansion of exp(−9

2
+ 1

2
e2T+2x + eT+x + 1

2
e4T + 2e2T +

1
2
e4T+2x).

Before we prove Theorem 5.1, we should recall the following version of Taylor’s
Theorem.

Remark 5.1

ea dn

dwn ebw = eabn

ebw

Proof of Theorem 5.1: Define SS2n(x, T ) as the following two variable generating
function.

∞
∑

i,d,w,m,P,Q,R,k,j
l,a,q,r,u,g,h,p=0

2a+j+2g+h+p+u3i−w−m−3(j+k+l)−2(a+h+p+r+u+q)−g(i − d − 2w − 2m)!

(i − d − 2w − 2m − j − 2l − 2r − u − p)!k!j!l!a!g!q!r!u!h!p!P !Q!R!

∗

(2w)!(w + m)!d!

{

n

d

}{

R

i − d − 2w − 2m

}

d
n2

−n
2

−P−Q−RxnT
n2

−n
2

(w + m − k − j − l − 2a − g − h − p)!

∗

{

P

2w

}{

Q

m

}

w!2wn!(n2
−2
2

− P − Q − R)!(d − 2k − j − 2q − h − u)!
.

Summing over n2
−n
2

gives us

∞
∑

i,d,w,m,P,Q,R,k,j
l,a,q,r,u,g,h,p=0

2a+j+2g+h+p+u3i−w−m−3(j+k+l)−2(a+h+p+r+u+q)−g(i − d − 2w − 2m)!edT

(i − d − 2w − 2m − j − 2l − 2r − u − p)!k!j!l!a!g!q!r!u!h!p!P !Q!R!

∗

(2w)!(w + m)!d!

{

n

d

}{

R

i − d − 2w − 2m

} {

P

2w

}{

Q

m

}

xnT P+Q+R

w!2wn!(d − 2k − j − 2q − h − u)!(w + m − k − j − l − 2a − g − h − p)!
.
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We now simplfy SS2n(x, T ) in the following manner.

∞
∑

i,d,w,m,k,j,l
a,q,r,u,g,h,p=0

2a+j+2g+h+p+u3i−w−m−3(j+k+l)−2(a+h+p+r+u+q)−gedT

k!j!l!a!g!q!r!u!h!p!(i− d − 2w − 2m − j − 2l − 2r − u − p)!

∗
(ex − 1)d(eT − 1)i−d−m(w + m)!

w!2w!m!(w + m − k − j − l − 2a − g − h − p)!(d − 2k − j − 2q − h − u)!

=
∞

∑

w,m,k,j,l
a,q,r,u,g,h,p=0

e3(eT
−1)+3eT (ex

−1)2a+j+2g+h+p+u3w+m−j−k−l−2a−h−p−g

w!2wk!j!a!g!q!r!u!h!p!

∗
(eT (ex − 1))2k+j+2q+h+u(eT − 1)2w+m+j+2r+u+p+2l(w + m)!

w!2w!m!(w + m − k − j − l − 2a − g − h − p)!

=

∞
∑

w,m,k,j,l
a,g,h,p=0

e−2+e2T+2x+ex+T

2a+j+2g+h+p3w+m−j−k−l−h−p−j−2a−g

k!j!l!a!g!h!p!

∗
(eT (ex − 1))2k+j+h(eT − 1)2w+m+j+2l+p(w + m)!

w!2wm!(w + m − k − j − l − 2a − h − g − p)!

=

∞
∑

w,m,a=0

e−2+e2T+2x+ex+T

2a(eT − 1)2w+m(e2T+2x + 6)w+m−2a(w + m)!

a!m!w!2w(w + m − 2a)!

=

∞
∑

w,m,a=0

e−2+e2T+2x+ex+T

2a(eT − 1)2w+m(e2T+2x + 6)w+m−2a
[

d
dα

]2a

α=1
αw+m

m!a!w!2w!

= e−2+e2T+2x+ex+T

e
2

(6+e2T+2x )2
d2

d2α e
α
2
(6+e2T+2x)(eT

−1)(eT +1)|α=1

By applying Remark 5.1 to the previous line (with a = 2
(6+e2T+2x)2

and

b = 1
2
(6 + e2T+2x)(eT − 1)(eT + 1)), we obtain the desired result. 2.

We end this paper by calculating the generating function for SS2q+1. We begin by
subdiving the (2q + 1) × (2q + 1) array into four quadrants, each a q × q array that
avoids the central row and central column. The union of central row and central
column is called the central cross. We can then implement the following five step
process to arrive at the geometric sum associated with SS2q+1.
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I: We fill in the top q spots of the central column with an arbitrary arrangement
of letters.

II: We use 90◦ clockwise rotation and vertical reflection to fill in all the spaces of
the central cross except for the fixed middle position, where the fixed middle

position is the square that occurs both in the central column and the central
row. There are five ways to fill the central cross minus the fixed middle position.
These possiblities are illustrated in Figure 5.4.

AA A A

A
A

A
A

A
A

A
A

A

A
A

A

AA

A

A

B

B BBB B B

B
B

B
B

B

B

C

C
C

CC

D

DD

DD

ABA

B C DA

Singletons

Double Pairs

BA

BABAAA A A

Figure 5.4: The five ways to complete the central cross minus the fixed middle
position in a fully symmetrical manner. Below each diagram, we record the four

letter cycle. In the first row, only A occurs in the top part of the central cross and

is considered to be a singleton. In the second row, the image of A under the
rotation and reflections contains B, where B also occurs in the top part of the

central cross. Hence, A and B form a double pair.

III: We take letters that occur in the central cross and place them either in the
diagonal spaces of the upper left quadrant or in the bottom half of the upper left
quadrant. The only letters that occur in diagonal spaces are those singletons
that go to themselves under rotation. The 90◦ clockwise rotation and vertical
reflection uniquely determine how the letters appear in the remaining three
quadrants.
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vertical reflection 90 degree rotation90 degree rotation
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Figure 5.5: An illustration of how a letter that appears in the cross may uniquely
occur in the quadrants. We begin by transfering D into the bottom half of the

upper left quadrant. Then, using 90◦ rotation and vertical reflection, we determine

the image of D in the other three quadrants.

IV: We now complete the free spaces of the quadrants with letters that do not
occur in the central cross. This is done by determining T4, T3, T2, and S, where
T4, T3, T3, and S are as defined previously for SS2n.

V: We fill the fixed middle position of the central cross. There are four ways to fill
this position: by a singleton from the cross that goes to itself under rotation
and reflection, by a singleton in the diagonal of the upper left quadrant that
goes to itself under rotation and reflection, by a letter in the upper left quadrant
that completely fills an off diagonal layer and goes to itself under the symmetry
mappings, or a letter that does not previously occur.

Following the steps outlined above, we arrive at a summation of 38 variables. The
derivation of the exponential generating function utilizes the techniques of Theorem
5.1. Details are available, upon request, from the author.

Theorem 5.2 Let SS2q+1 be as previously defined. Let C = 3
2
e2y+ 1

2
e2y+2z+ 1

2
e4y+2z−

9
2

+ 1
2
e2x+4y + ex+y+z + 1

2
e2y+2x. Then, SS2q+1 is (q!)2

(

q2
−q

2

)

! times y
q2−q

2 zqxq in the

expansion of exp(C) exp(x + y + z).

6 Open Questions

By using a particular decomposition of the Bell numbers [1, 4, 5], and applying various
symmetry transformations to n×n arrays, we discovered a formula which calculates
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the number of letter representations modulo D4 symmetry. The number only provides
a lower bound for the basis size of the transition matrix Mn×n. It is an open question
to find a formula, similiar in nature to Theorem 2.1, that exactly calculates the basis
size of Mn×n. The author is attempting to find such a formula by extrapolating the
results of this paper to n × n arrays of circled letters.

Another promising area of research involves exploring the connections between n ×
n× p proper arrays and percolation theory. At the present time, the author has not
explored the connection in any depth but realizes that the stochastic and probablisitic
techniques of percolation theory could, when applied to the representation of an
n×n×p proper array as a bond percolation on Z3 with an open cluster at the origin
(see [2]), give rise to a whole new catagory of results.

Appendix A: Numerical Data

The following table provides, for small integer values of n, numerical values of In, Nn,

and SSn. All the values came from the generating functions given by either Sections
3 through 5 or Sections 3 and 4 of [2]. The results were verified by a short Maple
program.

n × n Hn Vn Rn In Nn SSn

2 × 2 7 7 7 7 3 3
3 × 3 549 549 339 549 23 17
4 × 4 428131 428131 428131 874571 931 195
5 × 5 43537978637 43537978637 12126858113 43537978637 170765 8999

Table 1: Numerical Data for certain n × n letter representations

Appendix B: Generating Function for Dn

In this appendix, we will enumerate those n × n letter representations which are
symmetrical with respect to both diagonal reflections, i.e. those letter representations
enumerated by Dn. The technique used to calculate Dn is similar to the technique
used in the computation of Sm,n [2], namely, subdividing the n × n array into an X

and four quadrants. The X is the union of the squares whose centers lie on the line
y = −x and the line y = x. We must analyze the case of n even as separate from
n odd since, if n is odd, the X contains a central square which is fixed by the two
diagonal reflections.

First, we will work with a 2n × 2n array. Assume the center of this array is at the
origin. In order to calculate those 2n × 2n letter representations fixed by the two
diagonal mapping, we employ the following four part strategy.

I. Fill in the top half of the y = −x diagonal with an arbitrary arrangement of
letters, where by top half of the y = −x diagonal, we mean those squares,
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occuring in the first n rows, whose centers lie on y = −x. Then, by reflecting
over y = x, we can fill in the remainder of the y = −x diagonal, which we will
call the bottom half of the diagonal. There are three possible ways a letter
in the top half of the diagonal is transformed, via reflection, into the bottom
half. It can reflect to itself; it can reflect to a letter which does not appear
in the top half; it can reflect to another letter which appears in the top half.
These are the same three possiblities that occured in the computation of In.

II. Fill in the top half of the y = x diagonal. There are two possiblities. The first
possiblity involves letters occuring in the y = −x diagonal; these letters must
be fixed by reflection over the y = x diagonal. The second possiblity involves
letters which do not occur in y = −x diagonal. For these letters, we use the
argument of Step I to complete the bottom half of the y = x diagonal. The
only difference is that reflect occurs over y = −x.

III. Transfer the letters that occur along the diagonal into the left quadrant, where
the left quadrant consists of those n2 − n squares lying in the region deter-
mined by squares whose upper right corners lie on y = −x and squares lower
left corners lie on y = x. Then, by using the two diagonal reflections, we are
able to uniquely determine the images which occur in the other three quadrants.

IV. Fill in the remaining squares of the left quadrant with an arbitrary arrangement
of letters, none of which occur along the diagonals. Such a letter is either a
singleton or part of a double pair. A singleton letter is a letter whose image,
in the remaining three quadrants, is never another letter that appears in the
left quadrant. There are five possible ways a letter can be a singleton. These
five ways are illustrated in Figure 1.
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Figure 1: The five ways a singleton letter can be transformed under symmetry.
None of the letters occur in the dark gray (pink) diagonal (y = −x) or the light

gray (orange) diagonal (y = x).

The second type of letter present in the left quadrant can be considered to
be part of a double pair. A letter is part of double pair when its image in
one of the other three quadrants is another letter orginally present in the left
quadrant. Figure 2 illustrates the six ways double pairs transform in a manner
fixed by the two diagonal reflections.
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Figure 2: The six ways two letters, each appearing in the left quadrant, form
double pairs. Once again, these letters do not appear in the shaded squares.

By utilizing this four step process, we obtain

D2n = n!(n2 − n)!

∞
∑

q,s,w,t,p
S,W,v,r,u=0

q!p!r!

{

n

q

}{

n − t

p

}{

n2 − n − v

r

}

(q − 2s − w)!(n − t)!(p − 2S − 2W )!(r − 2u)!

∗
wt6u5r−2u(2q + 2p − 2s − w − 2S − W )v

2s+S+u(n2 − n − v)!s!w!t!S!W !v!u!

where,

1. q counts the letters in the top half of the y = −x diagonal.
2. s counts the interchanges which occur among the q letters. For definition of

interchange, see page 6.
3. w counts those q letters that are fixed by reflection over the y = x diagonal.
4. t counts the squares in the top half of the y = x diagonal filled by the w letters.
5. p counts the letters which occur in the top half of the y = x diagonal, but not

in the y = −x diagonal.
6. S counts the interchanges which occur among the p letters.
7. W counts those p letters that are fixed by reflection over the y = −x diagonal.
8. v counts the squares in the left quadrant filled by letters which occur along the

diagonal.
9. r counts the letters which occur in the left quadrant, but not in the two diag-

onals.
10. u counts the double pairs which occur among the r letters.

If we multiply the previous sum by xn

n!
, zn

n!
, yn2

−n

(n2
−n)!

, apply Remark 3.2 to sum over

n− t, n, n2 − n− v, and then note that the remaining indicies are exponential sums,
we can prove Theorem 6.1. For more detail, see the proof of Theorem 5.1 or [2, p. 17].

Theorem 6.1 Let D2n be as previously defined. Then, D2n is (n!)2(n2 − n)! times
the coefficient of xnznyn2

−n in the expansion of exp(2e2y−2ey−2+ex+y+z + 1
2
e2y+2z +

1
2
e2y+2x).
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The strategy for calculating D2n+1 is akin to that of calculating D2n. The only
difference is that we must contend with a fixed middle square. This middle square
can be filled with a letter that maps to itself under both diagonal reflections or a
letter that appears only in that square. In either case, a slight adjustment to the
previous sum allows us to prove the following theorem. Upon request, details are
available from the author.

Theorem 6.2 Let D2n+1 be as previously defined. Then, D2n+1 is (n!)2(n2)! times
the coefficient of xnznyn2

in the expansion of exp(2e2y − 2ey − 2+ ex+y+z + 1
2
e2y+2z +

1
2
e2y+2x − 2) exp(x + y + z).

n 2 3 4 5
Dn 5 79 7567 3301667

Table 2: Numerical Data for Dn

Acknowledgments

The author would like to thank Dr. Bruce Sagan and Dr. Robert Sulanke for their
suggestions regarding the Introduction. The author thanks Dr. Harris Kwong for his
time and help in editing the previous drafts of this paper. The author also thanks
Dr. George Sparling for his suggestions regarding the proof of Theorem 5.1.

References

[1] D. Branson, Stirling Numbers and Bell Numbers: Their Role in Combinatorics
and Probability, Math. Scientist 25 (2000), 1–31.

[2] J. Quaintance, Letter representations of m × n × p proper arrays, Australas. J.
Combin. 37 (2007), 289–308.

[3] J. Quaintance, Word Representations of m×n×p Proper Arrays, Discrete Math.
(to appear).

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/∼njas/sequences/

[5] K. Yoshinaga and M. Mori, Note on an Exponential Generating Function of Bell
Num bers, Bull. Kyushu Inst. Tech. 24 (1977), 23–27.

(Received 31 Mar 2007; revised 8 Jan 2008)


