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Abstract

Let r ≥ 2 be an integer. A real number α ∈ [0, 1) is a jump for r if
there exists c > 0 such that for any ǫ > 0 and any integer m, m ≥ r,
there exists an integer n0 such that any r-uniform graph with n > n0

vertices and density ≥ α + ǫ contains a subgraph with m vertices and
density ≥ α+ c. It follows from a theorem of Erdős and Stone that every
α ∈ [0, 1) is a jump for r = 2. Erdős asked whether the same is true
for r ≥ 3. In the paper ‘Hypergraphs do not jump’ (Combinatorica 4
(1984), 149–159), Frankl and Rödl gave a negative answer by showing
that 1 − 1/lr−1 is not a jump for r if r ≥ 3 and l > 2r. Following a
similar approach, we give some other non-jumping numbers for r ≥ 3.

1 Introduction

For a finite set V and a positive integer r we denote by
(

V

r

)
the family of all r-

subsets of V . The graph G = (V, E) is called an r-uniform graph if E ⊆
(

V

r

)
. The

density of G is defined by d(G) = |E| /
∣
∣
(

V

r

)∣
∣. Note that for an r-uniform graph G,

the average on densities of all its induced subgraphs with m ≥ r vertices is d(G)
(c.f. [5]). Therefore, there exists a subgraph with m vertices and density ≥ d(G).
A natural question is whether there exists a subgraph of given size with density
≥ d(G) + c, where c is a constant? To be precise, the concept of ‘jump’ is given
below.

Definition 1.1 A real number α ∈ [0, 1) is a jump for r if there exists a constant
c > 0 such that for any ǫ > 0 and any integer m, m ≥ r, there exists an integer
n0(ǫ, m) such that any r-uniform graph with n > n0(ǫ, m) vertices and density ≥ α+ǫ
contains a subgraph with m vertices and density ≥ α + c.

The study of jump is closely related to the study of Turán density. Finding good
estimates for Turán densities in hypergraphs (r ≥ 3) is believed to be one of the most
challenging problems in extremal set theory. For a family F of r-uniform graphs,
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the Turán density of F , denoted by tr(F) is the limit of the maximum density of an
r-uniform graph of order n not containing any member of F as n → ∞, i.e.,

tr(F) = lim
n→∞

max{|E| : G = (V, E) is an F − free r−uniform graph of order n}
(

n

r

) .

Let
Γr = {tr(F) : F is a family of r − uniform graphs}.

Note that α is a jump for r if and only if there exists c > 0 such that Γr ∩ (α, α +
c) = ∅ (c.f. [4]). Consequently, every α ∈ [0, 1) is a jump for r if and only if Γr is a
well-ordered set.

For r = 2, Erdős and Stone [2] proved that every α ∈ [0, 1) is a jump for r = 2.
For r ≥ 3, Erdős [1] proved that every α ∈ [0, r!/rr) is a jump. Furthermore, Erdős
proposed the following jumping constant conjecture: Every α ∈ [0, 1) is a jump for
every integer r ≥ 2. He also offered $1000 for a proof or disproof. In [4], Frankl and
Rödl disproved the conjecture by showing that

Theorem 1.1 For r ≥ 3, 1 −
1

lr−1
is not a jump if l > 2r.

Using a similar approach, more non-jumping numbers were found in [3], [6], [7],
[8], [9] and [10]. However, there are still a lot of unknowns in determining whether
or not a number is a jump. Following the approach in [4], we prove the following
result.

Theorem 1.2 Let r ≥ p ≥ 3 be integers. Then (1−
1

pp−1
)
pp

p!

r!

rr
is not a jump for r.

The proof of Theorem 1.2 is given in Section 3. In the next section, we introduce
Lagrange functions and some other tools used in the proof.

2 Lagrange functions and other tools

We first give the definition of the Lagrange function for an r-uniform graph, proved
to be a helpful tool in our approach.

Definition 2.1 For an r-uniform graph G with vertex set {1, 2, . . . , m}, edge set
E(G) and a vector ~x = (x1, . . . , xm) ∈ Rm, define

λ(G, ~x) =
∑

{i1,...,ir}∈E(G)

xi1xi2 . . . xir .

The number xi is called the weight of vertex i.

Definition 2.2 Let S = {~x = (x1, x2, . . . , xm) :
∑m

i=1 xi = 1, xi ≥ 0 for i =
1, 2, . . . , m}. The Lagrange function of G, denoted by λ(G), is defined as

λ(G) = max{λ(G, ~x) : ~x ∈ S}.
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A vector ~y ∈ S is called an optimal vector of λ(G) if λ(G, ~y) = λ(G).
The following fact is easily implied by the definition of the Lagrange function.

Fact 2.1 Let G1, G2 be r-uniform graphs and G1 ⊂ G2. Then λ(G1) ≤ λ(G2).

We also give a simple lemma which is useful in calculating the Lagrange function
for certain graphs.

We call two vertices i, j of an r-uniform graph G equivalent if for all f ∈
(

V (G)−{i,j}
r−1

)
,

f ∪ {j} ∈ E(G) if and only if f ∪ {i} ∈ E(G).

Lemma 2.2 (c.f. [4]) Let G be an r-uniform graph and v1, . . . , vt ∈ V (G) be all
pairwise equivalent. Suppose ~y ∈ S is an optimal vector of λ(G), i.e., λ(G) = λ(G, ~y).
If ~z ∈ S is obtained from ~y by setting the weights of the vertices v1, . . . , vt to be equal
while leaving the other weights unchanged then λ(G) = λ(G, ~z).

We also introduce the blow-up of an r-uniform graph which will allow us to
construct r-uniform graphs with arbitrary large number of vertices and density close
to r!λ(G) based on an r-uniform graph G.

Definition 2.3 Let G be an r-uniform graph with V (G) = {1, 2, . . . , m} and ~n =
(n1, . . . , nm) be a positive integer vector. Define the ~n blow-up of G, ~n⊗G as an m-
partite r-uniform graph with vertex set V1∪. . .∪Vm, |Vi| = ni, 1 ≤ i ≤ m, and edge set
E(~n ⊗ G) = {{vi1 , vi2, . . . , vir}, where {i1, i2, . . . , ir} ∈ E(G) and vik ∈ Vik for 1 ≤
k ≤ r}.

We make the following easy remark.

Remark 2.3 Let G be an r-uniform graph with m vertices and ~y = (y1, y2, . . . , ym)
be an optimal vector of λ(G). Then for any ǫ > 0, there exists integer n0(ǫ), such
that for any integer n ≥ n0,

d((⌈ny1⌉, ⌈ny2⌉, . . . , ⌈nym⌉) ⊗ G) ≥ r!(λ(G) − ǫ). (1)

Proof.

d((⌈ny1⌉, ⌈ny2⌉, . . . , ⌈nym⌉) ⊗ G) =

∑

{i1,i2,...,ir}∈E(G)⌈nyi1⌉ · ⌈nyi2⌉ · · · ⌈nyir⌉
(
⌈ny1⌉+⌈ny2⌉+···+⌈nym⌉

r

)

≥
∑

{i1,i2,...,ir}∈E(G)

nryi1yi2 · · · yir
(

n

r

) − ǫ

> r!(
∑

{i1,i2,...,ir}∈E(G)

yi1yi2 · · · yir − ǫ)

= r!(λ(G) − ǫ)

for n ≥ n0(ǫ).

Let us also state a fact which follows directly from the definition of Lagrange
function.
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Fact 2.4 (c.f. [4]) Let ~n = (n, n, . . . , n), n ≥ 1. Then for every r-uniform graph G
and every integer n, λ(~n ⊗ G) = λ(G) holds.

The following lemma proved in [4] gives a necessary and sufficient condition for
a number α to be a jump.

Lemma 2.5 (c.f. [4]) The following two properties are equivalent.

1. α is a jump for r.

2. There exists a finite family F of r-uniform graphs satisfying λ(F ) >
α

r!
for all

F ∈ F and tr(F) ≤ α.

We also need the following lemma from [4].

Lemma 2.6 [4] For any σ ≥ 0 and any integer k ≥ r, there exists t0(k, σ) such that
for every t > t0(k, σ), there exists an r-uniform graph A satisfying:

1. |V (A)| = t,

2. |E(A)| ≥ σtr−1,

3. For all V0 ⊂ V (A), r ≤ |V0| ≤ k, we have |E(A) ∩
(

V0

r

)
| ≤ |V0| − r + 1.

The approach in proving Theorem 1.2 is sketched as follows: Let α be the non-
jumping number stated in the Theorem. We construct an r-uniform graph with
Lagrange function slightly smaller than α/r!, then use Lemma 2.6 to add an r-
uniform graph with enough number of edges but sparse enough (see properties 2
and 3 in this Lemma) and obtain an r-uniform hypergraph with Lagrange function
slightly over α/r!. Then we ‘blow up’ this hypergraph to a hypergraph, say H with
large enough number of vertices and density > α+ ǫ for some positive ǫ (see Remark
2.3). If α is a jump, then by Lemma 2.5, tr(F) ≤ α for a finite family F of r-uniform
graphs satisfying λ(F ) > α/r! for all F ∈ F . So the hypergraph H must contain
some member of F as a subgraph. On the other hand, we will show that any subgraph
of hypergraph H with the number of vertices not greater than max{|V (F )|, F ∈ F}
has Lagrange function ≤ α/r! and derive a contradiction.

We give the proof of the main result in next section.

3 Proof of Theorem 1.2

In fact, we will prove the following extension of Theorem 1.2.

Theorem 3.1 Let r ≥ p ≥ 3, l ≥ 2 be integers. Then (1−
1

lp−1
)
r!

p!

lp

(l + r − p)r
is not

a jump for r provided pp

rr ≤ lp

(l+r−p)r .



A NOTE ON NON-JUMPING NUMBERS 7

Note that when l = p, the above result is Theorem 1.2. Taking r = p in this
theorem, we obtain that 1− 1

lr−1 is not a jump for r if l ≥ 2 and this implies Theorem
1.1 (there was the condition l > 2r in Theorem 1.1. We note that this condition can
be relaxed to l ≥ 2 due to the proof given later).

We have to note that the only solutions to pp

rr ≤ lp

(l+r−p)r and r ≥ p ≥ 3, l ≥ 2

are l = p ≥ 3 (Theorem 1.2) or r = p ≥ 3 (Theorem 1.1 with the condition l > 2r
replaced by l ≥ 2). If r > p, let

f(l) =
lp

(l + r − p)r
.

Then

f ′(l) =
lp−1(r − p)(p − l)

(l + r − p)r+1
,

and f ′(l) > 0 when l < p and f ′(l) < 0 when l > p. Therefore, f(l) has the maximum

value only if l = p. In other words,
pp

rr
≥

lp

(l + r − p)r
and the equality holds only if

l = p.

Now we are going to prove Theorem 3.1.

Proof of Theorem 3.1. Let l, p, r be any fixed integers satisfying the conditions in
Theorem 3.1. Based on a p-uniform hypegraph given in [4], we construct an r-uniform
graph. Details are given below.

In [4], it was proved that 1 −
1

lp−1
is not a jump for p ≥ 3 (with the condition

l > 2p there), i.e., the case r = p in Theorem 3.1. This number is related to the
following p-uniform hypegraph G(p) defined on l pairwise disjoint sets V1, V2, . . . , Vl,
each of them of size t, where t is a fixed integer determined later. The edge set of

G(p) is

(
∪l

i=1Vi

p

)

−∪l
i=1

(
Vi

p

)

.

We assume that (1 −
1

lp−1
)
r!

p!

lp

(l + r − p)r
is a jump for r. In view of Lemma 2.5,

there exists a finite collection F of r-uniform graphs satisfying the following:

i) λ(F ) > (1 −
1

lp−1
)
1

p!

lp

(l + r − p)r
for all F ∈ F , and

ii) tr(F) ≤ (1 − 1
lp−1 )

r!
p!

lp

(l+r−p)r .

Set k = maxF∈F{|V (F )|, p} and σ =
2lp +

(
p

2

)
(lp−1 − l)

p!
. Let t0(k, σ) be given as

in Lemma 2.6. Fix an integer t > max(t0, t1), where t1 is determined later (in (2)).

Now take a p-uniform graph A satisfying the conditions in Lemma 2.6 with
V (A) = V1 and the p-uniform graph G

(p)
∗ is obtained by adding A to G(p). Note
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that the edge number in G
(p)
∗ is

|E(G(p)
∗ )| =

(
lt

p

)

− l

(
t

p

)

+ σtp−1

=
(lt)p

p!
−

(
p

2

)
lp−1tp−1

p!
−

ltp

p!
+

(
p

2

)
ltp−1

p!
+ σtp−1 + o(tp−1)

=
(lt)p

p!
(1 −

1

lp−1
−

(
p

2

)
(lp−1 − l)

tlp
+

σp!

tlp
+ o(

1

t
))

=
(lt)p

p!
(1 −

1

lp−1
+

2

t
+ o(

1

t
))

≥
(lt)p

p!
(1 −

1

lp−1
+

1

t
) (2)

for t ≥ t1.
Based on the p-uniform graph G

(p)
∗ , we construct an r-uniform graph G

(r)
∗ on

l + r − p pairwise disjoint sets V1, V2, . . . , Vl, Vl+1, . . . , Vl+r−p, each of them of size

t. An r-element set {u1, u2, . . . , up, up+1, . . . , ur} is an edge of G
(r)
∗ if and only if

{u1, u2, . . . , up} is an edge of G
(p)
∗ and for each j, p + 1 ≤ j ≤ r, uj ∈ Vl+j−p. Notice

that
|E(G(r)

∗ )| = tr−p|E(G(p)
∗ )|. (3)

Now we give a lower bound of λ(G
(r)
∗ ). Corresponding to the (l + r − p)t vertices of

this r-uniform graph, let us take the vector ~x = (x1, . . . , x(l+r−p)t), where xi = 1
(l+r−p)t

for each i, 1 ≤ i ≤ (l + r − p)t. Then

r!λ(G(r)
∗ ) ≥ r!λ(G(r)

∗ , ~x) = r!
|E(G

(r)
∗ )|

((l + r − p)t)r

(2),(3)
≥

(1 −
1

lp−1
+

1

t
)
r!

p!

lp

(l + r − p)r
.

Now suppose ~y = (y1, y2, ..., y(l+r−p)t) is an optimal vector of λ(G
(r)
∗ ). Take

ǫ = 1
2tp!

lp

(l+r−p)r . Then by Remark 2.3, the r-uniform graph Sn = (⌈ny1⌉, . . . ,

⌈ny(l+r−p)t⌉) ⊗ G
(r)
∗ has density larger than (1 − 1

lp−1 )
r!
p!

lp

(l+r−p)r + ǫ for n ≥ n0(ǫ).
On the other hand, in view of Lemma 2.5, some member F of F is a subgraph

of Sn for n > n0(ǫ). For such F ∈ F , there exists a subgraph M (r) of G
(r)
∗ with

|V (M (r))| ≤ k so that F ⊂ ~n ⊗ M (r).
By Fact 2.1 and Fact 2.4, we have

λ(F ) ≤ λ(~n ⊗ M (r)) = λ(M (r)).

Theorem 3.1 will follow from the following Lemma. The proof of this Lemma will
be given in Section 3.1.

Lemma 3.2 Let M (r) be a subgraph of G
(r)
∗ with |V (M (r))| ≤ k. Then

λ(M (r)) ≤ (1 −
1

lp−1
)
1

p!

lp

(l + r − p)r
. (4)
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Assuming the validity of this Lemma, we have

λ(F ) ≤ (1 −
1

lp−1
)
1

p!

lp

(l + r − p)r

which contradicts to our choice of F , i.e., contradicts to the fact that λ(F ) > (1 −
1

lp−1
)
1

p!

lp

(l + r − p)r
for all F ∈ F . This proves Theorem 3.1.

The only thing we owe to the proof of Theorem 3.1 is to show Lemma 3.2. Now
let us turn to it.

3.1 Proof of Lemma 3.2

By Fact 2.1, we may assume that M (r) is an induced subgraph of G
(r)
∗ . Define

Ui = V (M) ∩ Vi for 1 ≤ i ≤ l + r − p. Let M (p) be the p-uniform graph defined on
∪l

i=1Ui. The edge set of M (p) consists of all edges in the form of e∩ (∪l
i=1Ui), where e

is an edge of the r-uniform graph M (r). Let ~ξ = (x1, x2, ..., xk′) be an optimal vector

of λ(M). Let ~ξ(p) = (x1, x2, . . . , xk′

1
) be the restriction of ~ξ in ∪l

i=1Ui. Let ai be the
sum of the weights in Ui, 1 ≤ i ≤ l + r − p respectively. In view of the relationship
between M (r) and M (p), we have

λ(M (r)) = λ(M (p), ~ξ(p)) ×

l+r−p
∏

i=l+1

ai. (5)

The following lemma will imply Lemma 3.2. The proof of it will be given later.

Lemma 3.3

λ(M (p), ~ξ(p)) ≤
1

p!
(1 −

1

lp−1
)(1 −

l+r−p
∑

i=l+1

ai)
p.

Assuming the validity of Lemma 3.3, we have

λ(M) ≤
1

p!
(1−

1

lp−1
)(1 −

l+r−p
∑

i=l+1

ai)
p

l+r−p
∏

i=l+1

ai =
1

p!
(1−

1

lp−1
)pp(

1 −
∑l+r−p

i=l+1 ai

p
)p

l+r−p
∏

i=l+1

ai.

Since geometric mean is no more than arithmetic mean, we obtain that

λ(M) ≤
1

p!
(1 −

1

lp−1
)pp(

1

r
)r

≤
1

p!
(1 −

1

lp−1
)

lp

(l + r − p)r

since
pp

rr
≤

lp

(l + r − p)r
(see Theorem 3.1).

What remains is to prove Lemma 3.3.
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Proof of Lemma 3.3. Define M
(p)
1 = (U1, E(M (p)) ∩

(
U1

r

)
) i.e., the subgraph of M (p),

induced on U1. Again, by Fact 2.1, it is enough to show Lemma 3.2 for the case
E(M

(p)
1 ) 6= ∅ since otherwise we can add p vertices to M

(p)
1 . Let us assume that

|V (M
(p)
1 )| = p − 1 + d with d a positive integer. Since |V (M

(p)
1 )| ≤ |V (M (r))| ≤ k,

in view of Lemma 2.6, M
(p)
1 has at most d edges. Let V (M

(p)
1 ) = {v1, v2, · · · , vp−1+d}

and we assume that x1, x2, · · · , xp−1+d are the components of ~ξ corresponding to
v1, v2, · · · , vp−1+d. We may assume that x1 ≥ x2 ≥ · · · ≥ xp−1+d. The following claim
was proved in [4] (See Claim 4.4 there).

Claim 3.4
∑

{xi1xi2 · · · xip , {vi1 , vi2 , . . . , vip} ∈ E(M
(p)
1 )} ≤

∑

1≤j≤d

x1x2 · · · xp−1xp−1+j.

By Claim 3.4, we may assume that

E(M
(p)
1 ) = {{v1, . . . , vp−1, vj}, p ≤ j ≤ p − 1 + d}.

Since v1, v2 . . . , vp−1 are pairwise equivalent, in view of Lemma 2.2, we may assume

that x1 = x2 = · · · = xp−1
def

= ρ0. Notice that







∑l+r−p

i=1 ai = 1
ai ≥ 0, 1 ≤ i ≤ l + r − p
0 ≤ ρ0 ≤

a1

p−1
.

(6)

Now we give an upper bound for λ(M (p), ~ξ(p)). Observing that each term in λ(M (p),
~ξ(p)) appears p! times in the expansion

(x1 + x2 + · · · + xk′

1
)p = (

ρ0 + ρ0 + · · · + ρ0
︸ ︷︷ ︸

p − 1 times
+ a1 − (p − 1)ρ0 + a2 + · · · + al)

p,

but this expansion contains lots of terms not appearing in λ(M (p), ~ξ(p)) as well. Since
the only edges of M (p) in ∪l

i=1

(
Ui

p

)
are the edges in the form of {v1, . . . , vp−1, vj} where

vj ∈ U1−{v1, v2, . . . , vp−1}, ap
1+...+ap

l should be subtracted and p!ρp−1
0 (a1−(p−1)ρ0)

will be added in this expansion. Also note that {vi, vi, vi3 , vi4 , ..., vip−1
, v} is not an

edge in M (p), where 1 ≤ i ≤ p − 1, and {i3, i4, ..., ip−1} is an (p − 3)-subset of
{1, 2, ..., p− 1} − {i} and v is any vertex in ∪l

j=2Uj. Since each of the corresponding

terms appears p!/2 times in the expansion, then (p − 1)p!
2
ρp−1

0 (a2 + a3 + · · · al) ≥

p!ρp−1
0 (a2+a3+· · · al) = p!ρp−1

0 (
∑l

i=1 ai−a1) should be subtracted from the expansion.
Therefore,

λ(M (p), ~ξ(p)) ≤
1

p!
{(

l∑

i=1

ai)
p −

l∑

i=1

ap
i + p!ρp−1

0 [a1 − (p − 1)ρ0 − (

l∑

i=1

ai − a1)]}. (7)

Lemma 3.3 follows directly from the following claim.
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Claim 3.5 Let

f(a1, a2, . . . , al, ρ0) = (
l∑

i=1

ai)
p −

l∑

i=1

ap
i + p!ρp−1

0 [2a1 − (p − 1)ρ0 −
l∑

i=1

ai]

and c be a positive constant. Then

f(a1, a2, . . . , al, ρ0) ≤ f(c/l, c/l, ..., c/l, 0) = (1 −
1

lp−1
)cp (8)

holds under the constraints






∑l

i=1 ai = c,
ai ≥ 0, 1 ≤ i ≤ l,
0 ≤ ρ0 ≤

a1

p−1
.

(9)

Proof of Claim 3.5. Since every term in f(a1, a2, . . . , al, ρ0) has degree p, it is suf-
ficient to show that this claim holds for the case c = 1. So we assume that

c = 1 throughout the proof of this claim, i.e.
∑l

i=1 ai = 1. Now function
f(a1, a2, . . . , al, ρ0) can be simplified as

f(a1, a2, . . . , al, ρ0) = 1 −
l∑

i=1

ap
i + p!ρp−1

0 [2a1 − 1 − (p − 1)ρ0],

and we prove that

f(a1, a2, . . . , al, ρ0) ≤ 1 −
1

lp−1
(10)

under the constraints 





∑l

i=1 ai = 1,
ai ≥ 0, 1 ≤ i ≤ l,
0 ≤ ρ0 ≤

a1

p−1
.

(11)

We consider two cases.

Case 1. If a1 ≤ 1
2
, then f(a1, a2, . . . , al, ρ0) ≤ 1 −

∑l

i=1 ap
i and the right hand side

reaches maximum 1 −
1

lp−1
when a1 = a2 = · · · = al = 1

l
. Therefore (10) holds.

Case 2. If a1 ≥ 1
2
, since geometric mean is no more than arithmetic mean, then

ρp−1
0 [2a1 − 1 − (p − 1)ρ0] ≤ (2a1−1

p
)p. So it is sufficient to show that

h(a1, a2, ..., al)
def

= 1 −
l∑

i=1

ap
i + p!(

2a1 − 1

p
)p

≤ 1 −
1

lp−1
. (12)

Since
l∑

i=2

ap
i ≥ (l − 1)(

∑l

i=2 ai

l − 1
)p =

(1 − a1)
p

(l − 1)p−1
, we have

h(a1, a2, ..., al) ≤ 1 − ap
1 −

(1 − a1)
p

(l − 1)p−1
+ p!(

2a1 − 1

p
)p def

= h(a1). (13)
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So it is sufficient to show that h(a1) ≤ 1 −
1

lp−1
if 1

2
≤ a1 ≤ 1. Notice that

h′(a1) = −pap−1
1 +

p(1 − a1)
p−1

(l − 1)p−1
+

2(p − 1)!

pp−2
(2a1 − 1)p−1 (14)

and

h′′(a1) = −p(p − 1)ap−2
1 −

p(p − 1)(1 − a1)
p−2

(l − 1)p−1
+

4(p − 1)(p − 1)!

pp−2
(2a1 − 1)p−2. (15)

Note that (2a1 − 1)p−2 ≤ ap−2
1 when 1

2
≤ a1 ≤ 1. Also note that

4(p − 1)!

pp−1
< 1 when

p ≥ 3 since the expression in the left hand side decreases as p increases and it is 8
9

when p = 3. Therefore,

4(p − 1)(p − 1)!

pp−2
(2a1 − 1)p−2 ≤ p(p − 1)ap−2

1 . (16)

By (15) and (16), h′′(a1) < 0 when 1
2
≤ a1 ≤ 1. So

h′(a1) ≤ h′(1/2)
(14)

=

−p

2p−1
+

p

2p−1(l − 1)p−1
≤ 0

since l ≥ 2. Hence h(a1) decreases when 1
2
≤ a1 ≤ 1. So

h(a1) ≤ h(1/2) = 1 −
1

2p
−

1

2p(l − 1)p−1

≤ 1 −
1

lp−1

when l ≥ 2 and p ≥ 3. The last inequality is true because of the following: when

l = 2,
1

2p
+

1

2p(l − 1)p−1
=

1

lp−1
. If l ≥ 3 and p ≥ 3, then

1

2p
≥

1

3p−1
≥

1

lp−1
.

The proof of Claim 3.5 is completed.
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