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Abstract

Magic rectangles are well-known for their very interesting and entertain-
ing combinatorics. In a magic rectangle, the numbers 1 to mn are ar-
ranged in an array of m rows and n columns so that each row adds to the
same total M and each column to the same total N . In the present paper
we provide a new systematic method for constructing any even by even
magic rectangle. The method proposed is extremely simple as it allows
one to arrive at the magic rectangles by simply carrying out some matrix
operations. It is also seen that the magic rectangles of lower orders are
embedded in a magic rectangle of higher order.

1 Introduction

Magic rectangles are well-known for their very interesting and entertaining combina-
torics. A magic rectangle is an arrangement of the numbers 1 to mn in an array of
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m rows and n columns so that each row adds to the same total M and each column
to the same total N . The totals M and N are termed the magic constants. Since
the average value of the numbers is A = (mn + 1)/2, we must have M = nA and
N = mA. The total of all the numbers in the array is mnA = mM = nN . If mn is
even mn + 1 is odd and so for M = n(mn + 1)/2 and N = m(mn + 1)/2 to be whole
numbers n and m must both be even. On the other hand if mn is odd then m and n
must both be odd, by simple arithmetic. Therefore, an odd by even magic rectangle
is impossible. Also, it is easy to see that a 2 × 2 magic rectangle is impossible. [2]
re-established that, for m > 1, n > 1, an m by n magic rectangle exists only if one
of the following conditions is hold: (a) Both m and n are even and at least one of
them is greater than 2; (b) Both m and n are odd.

For an update on available literature on magic rectangles we refer to [1] and
[3]. Such magic rectangles have been used in designing experiments. For example,
[4], [5] and [6] illustrated the use of these magic figures for the elimination of trend
effects in certain classes of one-way, factorial, latin-square, and graeco-latin-square
designs. As highly balanced structures, magic rectangles can be potential tools for
use in situations yet unexplored.

In the present paper we provide a method for constructing any even by even
magic rectangle. The construction involves some simple matrix operations. The
method has been shaped in form of an algorithm that is very convenient for writing a
computer program for constructing such rectangles. Furthermore, it is also presented
in a ready-to-write form since the magic rectangles of lower orders are embedded in a
magic rectangle of higher order. Algorithm to construct odd by odd magic rectangle
is more involved and would be discussed in a separate communication.

In Section 2 we construct magic rectangle of sides m and n with 2p = m ≤ n = 2q.
The proofs related to the construction are given in the appendix. In Section 3 we
illustrate our construction method through some examples of magic rectangles.

2 The construction

For any given positive integers p and q with p ≤ q, we first define the following
matrices:

Qe =

(

0 2
3 1

)

, Qa =

(

2 3
1 0

)

, Qb =

(

0 1
3 2

)

and Q =

(

0 3 1 2
3 0 2 1

)

.

We also define A to be a p×q matrix with elements being the sequence of numbers
from 0 to pq − 1 as given by

A =











0 1 2 · · · q − 1
q q + 1 q + 2 · · · 2q − 1
· · · · · · · · · · · · · · ·

(p − 1)q (p − 1)q + 1 (p − 1)q + 2 · · · pq − 1











.

The matrix A can also be expressed as A = 1p ⊗ s′q + 1′q ⊗ qsp where ⊗ denotes
the Kronecker product symbol, 1t represents a t × 1 column vector of all ones and
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s′t = (0 1 2 · · · t − 1) is a row vector of order t with elements being the sequence of
numbers from 0 to t − 1.

Let It be an identity matrix of order t and Kt a square matrix of order t given
by, Kt = ((kij)) with kij = 1 if i + j = t + 1, otherwise kij = 0. Then, let X =

A ⊗

(

1
0

)

+ (AKq) ⊗

(

0
1

)

.

We define next, two matrices B and C such that their sum is the required magic
rectangle.

Let B be a 2p × 2q matrix given by

B =







1p ⊗
(

Qe Qa 1′q−3

2

⊗ (Qb | Qa) Qe

)

for q odd,

(1p1
′
q

2

) ⊗ Q for q even.

Note that, when q = 3, B reduces to 1p ⊗
(

Qe Qa Qe

)

. It is easy to verify that

B12q = 3q12p and 1′2pB = 3p1′2q, i.e., the row sums of B are 3q and the column sums
are equal to 3p.

Finally, let C be a 2p × 2q matrix given by

C =
(

Y1 (Kp ⊗ I2)Y2

)

,

where Y = 4(X ⊗ 1′2) + 12p1
′

2q =
(

Y1 Y2

)

and for j = 1, 2, the matrix Yj is of
order 2p × q.

Again, it is easy to verify that the row sums of C are 2q(2pq − 1) and column sums
are equal to 2p(2pq − 1).

To conclude, since R = B + C consists of the 4pq distinct numbers from 1
through 4pq, it is a 2p × 2q magic rectangle with magic constants M = q(4pq + 1)
and N = p(4pq + 1).

The proofs related to the construction is given in the appendix.

3 Remarks and some illustrative examples

In this section we first indicate some of our observations. This is followed by examples
of magic rectangles of orders 6 × 8, 8 × 8, 6 × 10, 8 × 10 and 10 × 10. We observe
the following points.

(i) Any magic rectangle of order 2p∗ × 2q is embedded in a magic rectangle of order
2p × 2q where p∗ < p. Let R = (R1 | R2) be a magic rectangle of order 2p × 2q
where for j = 1, 2, the matrix Rj is of order 2p × q. Then in order to get a magic
rectangle R∗ of order 2p∗ × 2q, one simply needs to take the first 2p∗ rows of R1

(call the resultant matrix of the rows, R∗

1) and take the last 2p∗ rows of R2 (call
the resultant matrix of the rows, R∗

2). Then R∗ = (R∗

1 | R∗

2). In other words,
R∗ = {(I2p∗ | 02p∗,2(p−p∗))R1 | (02p∗,2(p−p∗) | I2p∗)R2} where 0a,b denotes a a× b matrix
of all zeros.
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(ii) The method proposed here allows us to arrive at the magic rectangles by simply
carrying out some matrix operations. This makes it very convenient to write a
program for generating magic rectangles using standard packages like SAS, MATLAB
or MAPLE.

(iii) Though we have, without any loss of generality, taken 1 ≤ p ≤ q, the construction
method proposed here also holds for p > q > 1.

We now provide some examples.

Magic rectangle of order 6 × 8. Here p = 3, q = 4. Therefore,

A =







0 1 2 3
4 5 6 7
8 9 10 11





, X =





















0 1 2 3
3 2 1 0
4 5 6 7
7 6 5 4
8 9 10 11
11 10 9 8





















,

Y =

















1 1 5 5 9 9 13 13
13 13 9 9 5 5 1 1
17 17 21 21 25 25 29 29
29 29 25 25 21 21 17 17
33 33 37 37 41 41 45 45
45 45 41 41 37 37 33 33

















, C =

















1 1 5 5 41 41 45 45
13 13 9 9 37 37 33 33
17 17 21 21 25 25 29 29
29 29 25 25 21 21 17 17
33 33 37 37 9 9 13 13
45 45 41 41 5 5 1 1

















,

B =





















0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1





















, R =





















1 4 6 7 41 44 46 47
16 13 11 10 40 37 35 34
17 20 22 23 25 28 30 31
32 29 27 26 24 21 19 18
33 36 38 39 9 12 14 15
48 45 43 42 8 5 3 2





















.

Magic rectangle of order 8 × 8. Here p = 4, q = 4. Therefore,

A =











0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15











, X =































0 1 2 3
3 2 1 0
4 5 6 7
7 6 5 4
8 9 10 11
11 10 9 8
12 13 14 15
15 14 13 12































,
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Y =

























1 1 5 5 9 9 13 13
13 13 9 9 5 5 1 1
17 17 21 21 25 25 29 29
29 29 25 25 21 21 17 17
33 33 37 37 41 41 45 45
45 45 41 41 37 37 33 33
49 49 53 53 57 57 61 61
61 61 57 57 53 53 49 49

























, C =

























1 1 5 5 57 57 61 61
13 13 9 9 53 53 49 49
17 17 21 21 41 41 45 45
29 29 25 25 37 37 33 33
33 33 37 37 25 25 29 29
45 45 41 41 21 21 17 17
49 49 53 53 9 9 13 13
61 61 57 57 5 5 1 1

























,

B =































0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1
0 3 1 2 0 3 1 2
3 0 2 1 3 0 2 1































, R =































1 4 6 7 57 60 62 63
16 13 11 10 56 53 51 50
17 20 22 23 41 44 46 47
32 29 27 26 40 37 35 34
33 36 38 39 25 28 30 31
48 45 43 42 24 21 19 18
49 52 54 55 9 12 14 15
64 61 59 58 8 5 3 2































.

Magic rectangle of order 10 × 10. Here p = 5, q = 5. Therefore,

A =

















0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

















, X =









































0 1 2 3 4
4 3 2 1 0
5 6 7 8 9
9 8 7 6 5
10 11 12 13 14
14 13 12 11 10
15 16 17 18 19
19 18 17 16 15
20 21 22 23 24
24 23 22 21 20









































,

Y =









































1 1 5 5 9 9 13 13 17 17
17 17 13 13 9 9 5 5 1 1
21 21 25 25 29 29 33 33 37 37
37 37 33 33 29 29 25 25 21 21
41 41 45 45 49 49 53 53 57 57
57 57 53 53 49 49 45 45 41 41
61 61 65 65 69 69 73 73 77 77
77 77 73 73 69 69 65 65 61 61
81 81 85 85 89 89 93 93 97 97
97 97 93 93 89 89 85 85 81 81









































,
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C =









































1 1 5 5 9 89 93 93 97 97
17 17 13 13 9 89 85 85 81 81
21 21 25 25 29 69 73 73 77 77
37 37 33 33 29 69 65 65 61 61
41 41 45 45 49 49 53 53 57 57
57 57 53 53 49 49 45 45 41 41
61 61 65 65 69 29 33 33 37 37
77 77 73 73 69 29 25 25 21 21
81 81 85 85 89 9 13 13 17 17
97 97 93 93 89 9 5 5 1 1









































,

B =









































0 2 2 3 0 1 2 3 0 2
3 1 1 0 3 2 1 0 3 1
0 2 2 3 0 1 2 3 0 2
3 1 1 0 3 2 1 0 3 1
0 2 2 3 0 1 2 3 0 2
3 1 1 0 3 2 1 0 3 1
0 2 2 3 0 1 2 3 0 2
3 1 1 0 3 2 1 0 3 1
0 2 2 3 0 1 2 3 0 2
3 1 1 0 3 2 1 0 3 1









































,

R =









































1 3 7 8 9 90 95 96 97 99
20 18 14 13 12 91 86 85 84 82
21 23 27 28 29 70 75 76 77 79
40 38 34 33 32 71 66 65 64 62
41 43 47 48 49 50 55 56 57 59
60 58 54 53 52 51 46 45 44 42
61 63 67 68 69 30 35 36 37 39
80 78 74 73 72 31 26 25 24 22
81 83 87 88 89 10 15 16 17 19
100 98 94 93 92 11 6 5 4 2









































.

Magic rectangle of order 8 × 10. Here p = 4, q = 5. To illustrate the embedding
property of magic rectangles, we derive the 8× 10 magic rectangle from the 10× 10
magic rectangle constructed above. From point (i) of the remarks, we have

R =































1 3 7 8 9 70 75 76 77 79
20 18 14 13 12 71 66 65 64 62
21 23 27 28 29 50 55 56 57 59
40 38 34 33 32 51 46 45 44 42
41 43 47 48 49 30 35 36 37 39
60 58 54 53 52 31 26 25 24 22
61 63 67 68 69 10 15 16 17 19
80 78 74 73 72 11 6 5 4 2































.
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Finally, magic rectangle of order 6 × 10 (p = 3, q = 5) follows from the embedding
property of magic rectangles. To get the 6 × 10 magic rectangle we may use either
of the above constructed magic rectangles of orders 10 × 10 or 8 × 10.

R =





















1 3 7 8 9 50 55 56 57 59
20 18 14 13 12 51 46 45 44 42
21 23 27 28 29 30 35 36 37 39
40 38 34 33 32 31 26 25 24 22
41 43 47 48 49 10 15 16 17 19
60 58 54 53 52 11 6 5 4 2





















.

The 6 × 10 and 8 × 10 magic rectangles could also be constructed directly (without
using embedding property of a higher order magic rectangle) following our general
method of construction.

Appendix

Proof for row sums and column sums of B.

i) The row sums, B12q = 3q12p since for q odd, (Qe | Qa | Qe)16 = 912, {1
′
q−3

2

⊗

(Qb | Qa)}12(q−3) = 3(q − 3)12 and for q even, Q14 = 612.

ii) The column sums, 1′2pB = 3p1′2q since 1′2Qe = 1′2Qa = 1′2Qb = 31′2 and 1′2Q = 31′4.

Proof for row sums and column sums of C.

i) The row sums, C12q = 2q(2pq − 1)12p since for q odd,

Y11q = 4q2(sp ⊗ 12) + 1p ⊗

(

(q − 1)2 + q
q(3q − 1) − 1

)

,

Y21q = 4q2(sp ⊗ 12) + 1p ⊗

(

q(3q − 1) − 1
(q − 1)2 + q

)

and
(

Y1 (Kp ⊗ I2)Y2

)

12q = 4q2{(sp + Kpsp) ⊗ 12} + 2q(2q − 1)12p = {4q2(p − 1) +

2q(2q − 1)}12p.

Similarly, for q even, the row sums hold since

Y11q = 4q2(sp ⊗ 12) + 1p ⊗

(

q(q − 1)
q(3q − 1)

)

,

Y21q = 4q2(sp ⊗ 12) + 1p ⊗

(

q(3q − 1)
q(q − 1)

)

and
(

Y1 (Kp ⊗ I2)Y2

)

12q = 4q2{(sp + Kpsp) ⊗ 12} + 2q(2q − 1)12p = {4q2(p − 1) +

2q(2q − 1)}12p.
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ii) The column sums, 1′2pC = 2p(2pq − 1)1′2q since 1′pA = qp(p−1)
2

1′q + ps′q, 1′2pX =
p(pq − 1)1′q and 1′2pY = 2p(2pq − 1)1′2q.

Proof for distinct numbers in R from 1 through 4pq.

Note that every consecutive pair of rows in Y1 and Y2 lead to sets of four identical
numbers. From one set to another the numbers increase by 4. The full set of numbers
look like 1, 5, 9, . . . , 4pq − 3. It is now sufficient to observe that every consecutive
pair of rows in B has sub-matrices involving the numbers 0, 1, 2, 3 and each of these
numbers gets added to each of the sets comprising the four identical numbers.
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