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Abstract

If D is a strongly connected digraph, then an arc set S of D is called a
restricted arc-cut of D if D − S has a non-trivial strong component D1

such that D − V (D1) contains an arc. Recently, Volkmann [12] defined
the restricted arc-connectivity λ′(D) as the minimum cardinality over
all restricted arc-cuts S. A strongly connected digraph D is called λ′-
connected when λ′(D) exists. Let k ≥ 2 be an integer. An arc set S of
D is a k-restricted arc-cut of D if D − S contains at least k non-trivial
strong components. Volkmann [Inform. Process. Lett. 103 (2007), 234–
239] also defined the k-restricted arc-connectivity λ′

k(D) as the minimum
cardinality over all k-restricted arc-cuts S. A strongly connected digraph
D is called λ′

k-connected when λ′

k(D) exists.
In this paper we characterize all λ′-connected tournaments, multipar-

tite tournaments, local tournaments and in-tournaments. In addition, we
determine the λ′

2-connected tournaments and local tournaments.

1 Terminology and preliminary results

We consider finite digraphs without loops, multiple arcs and directed cycles of length
two. For any digraph D the vertex set is denoted by V (D) and the arc set by E(D).
We define the order of D by n = n(D) = |V (D)| and the size by m = m(D) = |E(D)|.

If uv is an arc of a digraph D, then v is a positive neighbor of u and u a negative

neighbor of v, and we also say that u dominates v. If A and B are two disjoint
subdigraphs of D such that every vertex of A dominates every vertex of B, then we
say A dominates B, denoted by A → B. The outset N+(u) = N+

D (u) and the inset

N−(u) = N−

D (u) of a vertex u is the set of positive neighbors and negative neighbors

∗
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of u, respectively. The numbers d+(u) = d+

D(u) = |N+(u)| and d−(u) = d−

D(u) =
|N−(u)| are the out-degree and the in-degree of the vertex u. By a cycle of a digraph
we mean a directed cycle. A cycle of length p is also called a p-cycle. A digraph D is
vertex pancyclic if every vertex of D is contained in a p-cycle for all p between 3 and
|V (D)|. If D is a digraph and X ⊆ V (D), then D[X] is the subdigraph induced by X.
Two vertices u and v of a digraph are adjacent if u → v or v → u. Two vertex-disjoint
subdigraphs A and B of a digraph D are complementary, if V (D) = V (A) ∪ V (B).
A digraph is called cycle complementary, if it has two complementary cycles. If
C = x1x2 . . . xnx1 is a cycle, then the second power of the cycle C consists of C and
the arcs xixi+2 for i = 1, 2, . . . , n where xn+j = xj for j = 1, 2. If we replace every
arc uv by vu in a digraph D, then we call the resulting digraph the converse of D.

A digraph D is strongly connected or simply strong if for every pair u, v of vertices
there exists a directed path from u to v in D. A digraph D with at least k+1 vertices
is k-connected if for every set A of at most k − 1 vertices, the subdigraph D − A is
strong. The connectivity of a digraph D, denoted by κ(D), is then defined to be the
largest value k such that D is k-connected. A digraph D is k-arc-connected if for any
set S of at most k−1 arcs the subdigraph D−S is strong. The arc-connectivity λ(D)
of a digraph D is defined as the largest value of k such that D is k-arc-connected.

A c-partite or multipartite tournament is an orientation of a complete c-partite graph.
A tournament is a c-partite tournament with exactly c vertices. A digraph D is a local

tournament, if for every vertex u the out-neighborhood as well as the in-neighborhood
of u induce tournaments. A digraph D is an in-tournament, if for every vertex u the
in-neighborhood of u induces a tournament. For other graph theory terminology we
follow Bang-Jensen and Gutin [2].

For strongly connected digraphs D, Volkmann [12] defined the following kinds of
restricted arc-connectivity.

An arc set S of D is a restricted arc-cut of D if D − S has a non-trivial strong
component D1 such that D−V (D1) contains an arc. The restricted arc-connectivity
λ′(D) is the minimum cardinality over all restricted arc-cuts S. A strongly connected
digraph D is called λ′-connected, if λ′(D) exists.

Let k ≥ 2 be an integer. An arc set S of D is a k-restricted arc-cut of D if D − S

contains at least k non-trivial strong components. The k-restricted arc-connectivity
λ′

k(D) is the minimum cardinality over all k-restricted arc-cuts S. A strongly con-
nected digraph D is called λ′

k-connected, if λ′

k(D) exists.

Proposition 1.1 (Volkmann [12] 2007). Let k ≥ 2 be an integer. A strongly

connected digraph D is λ′

k-connected, if and only if D contains at least k pairwise

vertex-disjoint cycles.

Observation 1.2. It is well-known (cf. Bang-Jensen and Gutin [2], p. 554) that the
problem of finding at least k ≥ 2 vertex-disjoint cycles in a digraph is NP-complete.
Applying Proposition 1.1, we observe that the recognition problem, whether λ′

k(D)
exists for a strongly connected digraph D, is NP-complete too.
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In this paper we will characterize the λ′

2-connected local tournaments and tourna-
ments. These characterizations (cf. Theorem 3.1 and Corollary 3.2) show that the
recognition problem, whether a strongly connected local tournament or tournament
of order n and size m is λ′

2-connected, is solvable in time O(n(n+m)) (cf. Remark 4.1).

In addition, we characterize all λ′-connected tournaments, multipartite tournaments,
local tournaments and in-tournaments.

The following results play an important role in our investigations.

Theorem 1.3 (Moon [9] 1966). Every strong tournament is vertex pancyclic.

Theorem 1.4 (Bondy [4] 1976). Each strong c-partite tournament contains an

m-cycle for each m ∈ {3, 4, . . . , c}.

Let TR be the 3-regular tournament of order seven consisting of the cycle x1 x2 x3 x4

x5 x6 x7 x1 such that

x1 → x3 → x5 →x1 → x6→ x2→ x7 → x3 → x6→ x4 → x2→ x5 → x7 → x4 → x1.

Notice that TR is the unique Hadamard tournament of order 7 which contains no
transitive subtournament of order 4.

Theorem 1.5 (Reid [10] 1985). Let T be a 2-connected tournament of order

n ≥ 6. If T 6= TR, then T contains two vertex-disjoint cycles of lengths 3 and n− 3.

Theorem 1.6 (Bang-Jensen [1] 1990). Let D be a strongly connected local tour-

nament, and let S be a minimal separating set of D. The strong components of D−S

are tournaments and they can be ordered in a unique way D1, D2, . . . , Dp such that

there are no arcs from Dj to Di for j > i, and Di → Di+1 for i = 1, 2, . . . , p − 1.

Theorem 1.7 (Bang-Jensen, Huang, Prisner [3] 1993). An in-tournament is

Hamiltonian if and only if it is strong.

Theorem 1.8 (Bang-Jensen, Huang, Prisner [3] 1993). Let D be a strong

in-tournament, and let S be a minimal separating set of D. The strong components

of D − S can be ordered in a unique way D1, D2, . . . , Dp such that there are no arcs

from Dj to Di for j > i, and there exists a vertex xi ∈ V (Di) such that xi → Di+1

for i = 1, 2, . . . , p − 1.

Theorem 1.9 (Guo, Volkmann [5] 1994). Every partite set of a strongly con-

nected c-partite tournament D contains at least one vertex that lies on cycles of each

length m for m ∈ {3, 4, . . . , c}.

Let D1
GV be the local tournament of order 6 consisting of the cycle u1u2u3u4u5u6u1

such that u1 → u3 → u6 → u2 → u4 → u6 and u2 → u5 → u3.
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Let D2
GV be the local tournament of order 7 consisting of the cycle v1v2v3v4v5v6v7v1

such that v3 → v5 → v7 → v2 → v5, v6 → v1 → v3 → v6 → v4 → v2 and
v1 → v4 → v7.

Theorem 1.10 (Guo, Volkmann [6], [7] 1994, 1996). Let D be a 2-connected

local tournament of order n ≥ 6. Then D is cycle complementary, if and only if

D 6= TR, D1
GV , D2

GV and D is not the second power of an odd cycle.

2 λ′-connectedness

In view of Theorem 1.3, every strongly connected tournament Tn of order n ≥ 5 is
λ′-connected. In our first result we will characterize all λ′-connected multipartite
tournaments.

Theorem 2.1. Let V1, V2, . . . Vc be the partite sets of a strongly connected c-partite

tournament D such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If c ≥ 2 and n(D) ≥ 5, then D is

λ′-connected, if and only if c ≥ 4 or c = 3 and |V2| ≥ 2 or c = 2 and |V1| ≥ 3.

Proof. If c ≥ 5, then, by Theorem 1.4, there exists a 3-cycle C through exactly 3
partite sets. Hence D − V (C) is at least 2-partite and contains thus an arc. Since
n(D) ≥ 5, we deduce in the case c = 4 that |V4| ≥ 2. Applying Theorem 1.9, we
observe that there is a 3-cycle through a vertex of V4. Therefore D − V (C) contains
an arc.

According to Theorem 1.4, there exists a 3-cycle C through all partite sets when
c = 3. The hypothesis 2 ≤ |V2| ≤ |V3| shows that there exists an arc in D − V (C).
Obviously, D is not λ′-connected when |V1| = |V2| = 1.

In the case c = 2 it is well-known and easy to see that |V1| ≥ 2, and that D contains
a 4-cycle C ′ such that |V (C ′)∩Vi| = 2 for i = 1, 2. If 3 ≤ |V1| ≤ |V2|, then D−V (C ′)
contains at least two adjacent vertices and so D is λ′-connected. However, if |V1| = 2,
then D − V (C) is the empty graph for each cycle C in D. �

It is easy to see that the following family H1 of in-tournaments is not λ′-connected.

Let C = x1x2 . . . xnx1 be a cycle with n ≥ 5. The family H1 consists of the cycle
C and the cycle C together with any of the arcs xixi+2 such that the following
conditions are fulfilled. If xi → xi+2 and xi+1 → xi+3, then the arc xi+2xi+4 is not
admissible, and if xi → xi+2 → xi+4, then the arc xi+1xi+3 is not admissible. All
subscripts are taken modulo n.

Theorem 2.2. Let D be a strongly connected in-tournament of order n ≥ 5. Then

D is λ′-connected with exception of the case that D is a member of the family H1.

Proof. Assume first that δ+(D) ≥ 2. According to Theorem 1.7, D has a Hamil-
tonian cycle C = x1x2 . . . xnx1. If xi → xi+t for any 3 ≤ t ≤ n − 2, then there
exists the cycle C ′ = xixi+txi+t+1 . . . xi and D−V (C ′) contains the arc xi+1xi+2, and
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thus D is λ′-connected. Otherwise, δ+(D) ≥ 2 implies that x1 → x3, x2 → x4 and
x3 → x5 and therefore D has the cycle C ′′ = x1x3x5x6 . . . x1 such that x2x4 is an arc
of D − V (C ′′).

Assume second that δ+(D) = 1. Then D has a cut-vertex x1. In view of Theorem
1.8, the strong components of D−x1 can be ordered in a unique way D1, D2, . . . , Dp

such that there are no arcs from Dj to Di for j > i, and there exits an arc with tail
in Di and head in Di+1 for i = 1, 2, . . . , p − 1. Since there is at least one arc from
Dp to x1 and one arc from x1 to D1, it is easy to see that D is λ′-connected when
one of the strong components D1, D2, . . . , Dp is non-trivial. Hence it remains the
case that p = n − 1. Now we define xi+1 = Di for 1 ≤ i ≤ n − 1. If xi → xi+t for
any 3 ≤ t ≤ n − 2, then we observe as above that D is λ′-connected. Finally, it is
straightforward to verify that D is λ′-connected or D is a member of the family H1.

�

Since local tournaments are also in-tournaments and all members of the family H1

are even local tournaments, Theorem 2.2 immediately yields the next result.

Corollary 2.3. Let D be a strongly connected local tournament of order n ≥ 5.
Then D is λ′-connected with exception of the case that D is a member of the family

H1.

3 All strong local tournaments that are λ′
2-connected

Firstly we will characterize all strongly connected local tournaments of order n ≥ 6
which are λ′

2-connected. It is a simple matter to verify that the following members
of the family F ∗ of strongly connected local tournaments are not λ′

2-connected.

The family F ∗ of local tournaments. Let D′ be a strong local tournament with
a cut-vertex x. Then Theorem 1.6 implies that the strong components of D′ − x

are tournaments and they can be ordered in a unique way D1, D2, . . . , Dp such that
there are no arcs from Dj to Di for j > i, and Di → Di+1 for 1 ≤ i ≤ p − 1.

(i) If D1, D2, . . . , Dp are all trivial such that x → D1, Dp → x and arbitrary arcs
between x and {D2, D3, . . . , Dp−1} as well as arbitrary arcs from Di to Dj for 1 ≤
i < j ≤ p such that the resulting digraph is a local tournament, then we arrive at
the first family F1.

Next assume that all strong components of D′ − x are trivial with exception of Dt.

(ii) In the case that 2 ≤ t ≤ p − 1, let Dt be a 3-cycle, x → D1 and Dp → x. If we
assume that there are no arcs from Di to Dj for 1 ≤ i ≤ t− 1 and t + 1 ≤ j ≤ p, no
arcs from Di to x for 2 ≤ i ≤ t − 1 and no arcs from x to Dj for t + 1 ≤ j ≤ p and
arbitrary further arcs such that the resulting digraph is a local tournament, then we
arrive at the second family F2.

If t = 1, then assume that D1 has a cut-vertex u such that x → u, Dp → x and that
there is no arc from x to {D2, D3, . . . , Dp−1}.
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(iii) If D1 is a 3-cycle uu1u2u, then we arrive at the third family F3, where x and
u2 are adjacent and the other arcs are arbitrary such that the resulting digraph is a
local tournament.

If D1 has at least four vertices, then assume that the strong components of D1 − u

consist of single vertices u1, u2, . . . , us such that ui → uj for 1 ≤ i < j ≤ s, u → u1,
us → u, Di → Dj for 1 ≤ i < j ≤ p and Di → x for 2 ≤ i ≤ p.

(iv) If us → x, x → u1, {u2, u3, . . . , us−1} → u and there are no arcs from the cut-
vertex x to {u2, u3, . . . , us−1} such that the resulting digraph is a local tournament,
then we conclude that {u2, u3, . . . , us−1} → x, and we arrive at the fourth family F4.

(v) Next assume that us → x and u1 → x or u1 and x are not adjacent. If there are no
arcs from x to {u2, u3, . . . , us−1} and arbitrary arcs between u and {u2, u3, . . . , us−1}
such that the resulting digraph is a local tournament, then we arrive at the fifth
family F5.

(vi) If x → us, then the sixth family F6 consists of tournaments with the propositions
{u1, u2, . . . , us−1} → x and u → {u2, u3, . . . , us−1}.

Finally, we define F ∗ as the union of F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 together with the
converse of these local tournaments.

Theorem 3.1. A strongly connected local tournament D of order n ≥ 6 is λ′

2-

connected if and only if D is not the second power of an odd cycle, D 6= D1
GV and D

is not a member of the family F ∗.

Proof. If D is 2-connected, then the desired result follows from Theorem 1.10,
since TR has the two vertex-disjoint 3-cycles x2x3x6x2 and x4x5x7x4, D2

GV has the
two vertex-disjoint 3-cycles v1v3v6v1 and v2v5v7v2 and since the shortest cycle of the
second power of an odd cycle of length 2m + 1 has length m + 1 for m ≥ 2.

In the case that D is not 2-connected, assume that x is a cut-vertex of D. According
to Theorem 1.6, the strong components of D − x are tournaments and they can be
ordered in a unique way D1, D2, . . . , Dp such that there are no arcs from Dj to Di

for j > i, and Di → Di+1 for i = 1, 2 . . . , p − 1. In addition, there is at least one
arc from Dp to x and one arc, say xu, from x to D1. If all components of D − x

are trivial, then we arrive at the family F1. If D − x has at least two non-trivial
strong component, then D is λ′

2-connected. Thus assume in the following that there
is exactly one non-trivial strong component Dt.

Assume that 2 ≤ t ≤ p − 1. If |V (Dt)| ≥ 4, then, in view of Theorem 1.3, the
tournament Dt contains a 3-cycle C3. If xt ∈ V (Dt) − V (C3), then C3 is vertex-
disjoint to the cycle xD1D2 . . . Dt−1xtDt+1 . . . Dpx and thus D is λ′

2-connected. Hence
assume now that Dt is a 3-cycle. If there is an arc from Di to Dj for 1 ≤ i ≤ t − 1
and t + 1 ≤ j ≤ p or an arc from Di to x for 2 ≤ i ≤ t − 1 or an arc from x to Dj

for t + 1 ≤ j ≤ p − 1, then it is easy to see that D is λ′

2-connected. Otherwise, we
obtain a member of the family F2 or its converse.

Next we assume, without loss of generality, that D1 is a non-trivial strong component.
If there is an arc xDi for 2 ≤ i ≤ p, then there are two vertex-disjoint cycles in D, one
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in D1 and the other one is xDiDi+1 . . . Dp−1Dpx, and consequently D is λ′

2-connected.
Hence we assume in the following that there is no arc from x to {D2, D3, . . . , Dp−1}.
If u is not a cut-vertex of D1, then D contains the cycle xuD2D3 . . . Dp−1Dpx and
each cycle in the strong tournament D1 − u is vertex-disjoint to this cycle, and so
D is λ′

2-connected. If D1 − u contains a non-trivial strong component H, then H

and the cycle xuD2D3 . . . Dp−1Dpx are vertex-disjoint, and thus D is λ′

2-connected.
Hence we now investigate the case that u is a cut-vertex of D1 such that the strong
components of D1 − u consist of single vertices u1, u2, . . . , us such that ui → ui+1 for
i = 1, 2 . . . , s − 1 and that there is no arc from uj to ui for 1 ≤ i < j ≤ s. Since D1

is a tournament, it follows that ui → uj for 1 ≤ i < j ≤ s.

If D1 is a 3-cycle, then it is a simple matter to verify that D belongs to F3 or its
converse, and thus D is not λ′

2-connected.

Assume now that |V (D1)| ≥ 4. Since D is a local tournament, we observe that x

and us are adjacent.

First assume that us → x. Since D is a local tournament, we conclude that Di → Dj

for 1 ≤ i < j ≤ p and Di → x for 2 ≤ i ≤ p. If there exists a vertex ur with
x → ur for 2 ≤ r ≤ s − 1, then there are the vertex-disjoint 3-cycles xurDpx and
uu1usu, and D is λ′

2-connected. Hence we assume next that there is no arc from x

to {u2, u3, . . . , us−1}.

If x → u1 and there exists a vertex ur such that u → ur for 2 ≤ r ≤ s−1, then there
are the vertex-disjoint 3-cycles xu1Dpx and uurusu, and D is λ′

2-connected. Using
the fact that D1 is a tournament, we arrive at the family F4 or its converse in the
remaining cases.

If u1 → x or u1 and x are not adjacent, then we arrive at the family F5 or its converse,
and D is not λ′

2-connected.

Finally, assume that x → us. Since D is a local tournament, we deduce that ui is
adjacent to x for 1 ≤ i ≤ s − 1. If there exists a vertex ur such that x → ur for any
2 ≤ r ≤ s − 1, then there exist the vertex-disjoint 3-cycles uu1usu and xurDpx, and
D is λ′

2-connected. Hence we assume now that {u2, u3, . . . us−1} → x. If there exists
a vertex ur such that ur → u for any 2 ≤ r ≤ s − 1, then there exist the vertex-
disjoint 3-cycles uu1uru and xusDpx, and D is λ′

2-connected. Hence we assume next
that u → {u2, u3, . . . us−1}. If x → u1, then there are the two vertex-disjoint 3-cycles
uu2usu and xu1Dpx, and D is λ′

2-connected. Consequently there remains the case
that D belongs to the family F6 of tournaments or its converse, and then D is not
λ′

2-connected. �

If we reduce the exceptional digraphs in Theorem 3.1 to tournaments, then we obtain
immediately the following result.

Corollary 3.2. A strongly connected tournament T of order n ≥ 6 is λ′

2-connected

if and only if T is not a member of the family T ∗, described below.

The family T ∗ of tournaments. Let T ′ be a strong tournament with a cut-vertex
x. Then it is well-known that the strong components of T ′ − x can be ordered in a
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unique way D1, D2, . . . , Dp such that Di → Dj for 1 ≤ i < j ≤ p.

(a) If D1, D2, . . . , Dp are all trivial such that x → D1, Dp → x and arbitrary arcs
between x and {D2, D3, . . . , Dp−1}, then we arrive at the first family T1 corresponding
to F1.

Next assume that D1 is a non-trivial strong component with a cut-vertex u such
that x → u and D2, D3, . . . , Dp are trivial strong components such that Di → x for
2 ≤ i ≤ p.

(b) If D1 is a 3-cycle uu1u2u, then we arrive at the second family T3 corresponding
to F3, where the arcs between u1 and x as well as between u2 and x are arbitrary.

If D1 has at least four vertices, then assume that the strong components of D1 − u

consists of single vertices u1, u2, . . . , us such that ui → uj for 1 ≤ i < j ≤ s, ui → x

for 2 ≤ i ≤ s − 1, u → u1 and us → u.

(c) If us → x → u1 and {u2, u3, . . . , us−1} → u, then we obtain the third family T4

corresponding to F4.

(d) If {u1, us} → x and there are arbitrary arcs between u and {u2, u3, . . . , us−1},
then we arrive at the fourth family T5 corresponding to F5.

(e) If u1 → x → us and u → {u2, u3, . . . , us−1}, then we obtain the fifth family T6

corresponding to F6.

As above, we define T ∗ as the union T1 ∪T3 ∪T4 ∪T5 ∪T6 together with the converse
of these tournaments.

4 Concluding remarks

In the following remark we determine the complexity of the recognition problem,
whether a strongly connected local tournament is λ′

2-connected.

Remark 4.1. To decide whether a strongly connected local tournament D with
vertex set {v1, v2, . . . , vn} is a member of F ∗ we can perform the following steps.

1. For j = 1, 2, . . . , n determine the strong components of D − vj;

a) if there is an index j such that D − vj is not strong, let i be the minimal
such index;

b) otherwise D−vj is strong for each j and thus D is 2-connected and therefore
not a member of F ∗.

2. Determine the strong decomposition D1, D2, . . . , Dp of D − vi, where p ≥ 2;

a) if |V (Dj)| ≥ 3 for at least two indices j, then D is λ′

2-connected;

b) if |V (Dj)| = 1 for each index j, then D is a member of F1;

c) otherwise |V (Dt)| ≥ 3 for a single index t.



ARC-CONNECTIVITY OF GENERALIZED TOURNAMENTS 277

3. Determine the single index t with |V (Dt)| ≥ 3;

a) if 2 ≤ t ≤ p − 1 check all arcs between vi and V (D) − V (Dt) to determine
whether D is a member of F2;

b) otherwise assume, without loss of generality, that t = 1.

4. Determine |V (D1)| and check the arcs between vi and Dp;

a) if Dp 6→ vi, then D is λ′

2-connected;

b) if Dp → vi and |V (D1)| = 3, then D is a member of F3;

c) otherwise Dp → vi and |V (D1)| ≥ 4.

5. Determine the strong components of D1 − u, where u is an out-neighbor of vi

in D1;

a) if D1 − u is strong, then D is λ′

2-connected;

b) otherwise D1 − u is not strong.

6. Determine the strong decomposition A1, A2, . . . , Aq of D1 − u, where q ≥ 2;

a) if |V (Aj)| ≥ 3 for an index j, then D is λ′

2-connected;

b) if |V (Aj)| = 1 for each index j, check all arcs of D[{vi}∪V (D1)] to determine
whether D is a member of F4 ∪ F5 ∪ F6.

Let m be the size of D. It is well-known that there exist algorithms to determine the
strong components of a digraph in time O(n + m) (see Tarjan [11]) and the acyclic
ordering of an acyclic connected digraph in time O(n + m) (see Bang-Jensen and
Gutin [2]). Therefore we can check whether a local tournament D is a member of
F ∗ in time O(n(n + m)).

The next result is a generalization of Theorem 1.10.

Theorem 4.2 (Meierling, Volkmann [8]). Let D be a 2-connected in-tournament

of order n ≥ 6. Then D is cycle complementary if and only if D 6= TR, D1
GV , D2

GV or

D is not the second power of an odd cycle.

Theorem 4.2 shows that all 2-connected in-tournaments D of order n ≥ 6 are λ′

2-
connected with exception of the case that D = D1

GV or D is the second power of an
odd cycle.

Remark 4.3. The same method used in the proof of Theorem 3.1 also leads to a
similar result for strongly connected in-tournaments. But the proof is a very clumsy
and boring case analysis and thus the result would not be very attractive and is
therefore not mentioned here in detail. Similar observations as in Remark 4.1 lead
to the conclusion that the recognition problem, whether a strongly connected in-
tournament is λ′

2-connected, is also solvable in polynomial time.

Two vertex disjoint cycles C and C ′ of a multipartite tournament are called weakly

complementary, if they contain vertices from all partite sets. The main theorem in
[13] says
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Theorem 4.4 (Volkmann, Winzen [13]). Let D be a c-partite tournament with

c ≥ 3, n(D) ≥ 6 and κ(D) ≥ 3. Then D is weakly cycle complementary unless D is

isomorphic to TR.

This theorem implies that all c-partite tournaments with c ≥ 3, n(D) ≥ 6 and
κ(D) ≥ 3 are λ′

2-connected.
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