
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 40 (2008), Pages 173–186

Primitive sets in a lattice

Spyros S. Magliveras

Department of Mathematical Sciences
Florida Atlantic University

Boca Raton, FL 33431
U.S.A.

spyros@fau.unl.edu

Tran van Trung

Institute for Experimental Mathematics
University of Duisburg-Essen

Essen
Germany

trung@iem.uni-due.de

Wandi Wei

Department of Mathematical Sciences
Florida Atlantic University

Boca Raton, FL 33431
U.S.A

wei@brain.math.fau.edu

Abstract

We study the problem of extending a primitive set of size k < n, in a
lattice of rank n, to a basis of the lattice. Our approach relies on solving
the matrix completion problem, and we show that the relevant computed
matrices have nicely bounded entries. We present formulas, for the cases
k = 1, n − 1 for an extended basis, and analyze the computational
complexity for each of these two cases. The formula for k = 1 was already
known [6], while the formula for k = n − 1 and the complexity analysis
for the two cases are new. For the general case, k < n, to the authors’
knowledge, there are no known formulas for computing an extended basis.
However, a polynomial time algorithm to compute an extended basis can
be constructed by combining some well known, efficient algorithms.

174 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

1 Introduction

Let Z denote the ring of integers, and R
m the m-dimensional vector space over the

reals. If b1,b2, . . . ,bn ∈ R
m are n linearly independent vectors (over R), the set

Λ = Λ(b1,b2, . . . ,bn) = {z1b1 + z2b2 + . . . + znbn : zi ∈ Z, 1 ≤ i ≤ n}

is called a lattice of rank n in R
m, and the set of vectors b1,b2, . . . ,bn a basis of

Λ.

A set C of k lattice vectors c1, c2, . . . , ck ∈ Λ is said to be primitive if these
vectors are linearly independent over R and

Λ ∩ span
R
(c1, c2, . . . , ck) = Λ(c1, c2, . . . , ck).

When k = 1, the single vector in C is called a primitive vector.

It has been proved (see, for example, [4, 7]) that a lattice vector

a = a1b1 + a2b2 + . . . + anbn

is primitive if and only if
gcd(a1, a2, . . . , an) = 1.

It has also been shown that any primitive set of vectors can be extended to a basis
for the lattice. The proof in [4] depends on the result that if y1,y2, . . . ,yk (k < n)
form a primitive set and

y ∈ Λ \ Λ(y1,y2, . . . ,yk),

then the (k + 1)-dimensional parallelotope P spanned by y1,y2, . . . ,yk,y contains
a vector yk+1 ∈ P ∩ Λ with a positive minimum distance to Λ(y1,y2, . . . ,yk), and
the k + 1 vectors y1,y2, . . . ,yk,yk+1 form a primitive set. The proof in [7] makes
use of the fact that for any k linearly independent lattice vectors y1,y2, . . . ,yk, the
infimum

inf{tk > 0 : z = t1y1 + t2y2 + . . . + tkyk ∈ Λ, ti ∈ R, ti ≥ 0, 1 ≤ i ≤ k}

is actually attained for some vector z ∈ Λ, and z is used in the construction of
an extended basis. These authors do not give formulas or efficient algorithms for
computing their extended bases.

A different way of dealing with this problem is through the matrix completion
problem: Let A be a k × n integer matrix, with k < n, such that the gcd of the
kth order minors of A is gk(A). Find an (n − k) × n integer matrix B such that
the absolute value of the determinant of the compound matrix

(

A

B

)

is the same as
gk(A). The matrix completion problem is a bit more general than the extended basis
problem, since when gk(A) = 1, the former becomes the latter.

In this article we study the problem of extending a primitive set of vectors in
a lattice to a basis from the point of view of the matrix completion problem, and
present our results in three cases. The first case is when k = 1. In this case,

PRIMITIVE SETS IN A LATTICE 175

we analyze the computational complexity of a previously known formula [6]. For
k = n − 1 we present a new formula and analyze its computational complexity.
Finally, in the general case, we utilize certain known algorithms for other problems
to design polynomial time algorithms for the matrix completion problem.

2 The case k = 1

Let Z
k×n denote the set of k × n matrices over Z. When k = 1, the following result

on matrices over a principal ideal domain (PID), presented by M. Newman [6], can
be used as a formula for the efficient computation of an extended basis from a given
primitive lattice vector.

Theorem 2.1 (Theorem II.1 in [6]) Let R be a principal ideal domain, α1, α2,
. . . , αn be elements of R, and let dn be their greatest common divisor. Then there is
a matrix U over R with first row (α1, α2, . . . , αn) and determinant dn.

Let a := (a1, a2, . . . , an) ∈ Z
n be a nonzero vector, and

d := gcd(a) := gcd(a1, a2, . . . , an).

By permuting the basis vectors, if necessary, we can achieve that a1 6= 0. Let

d1 = a1,

di = gcd(a1, a2, . . . , ai), 2 ≤ i ≤ n,

d = dn.

Since a1 6= 0, all the di are well defined, and

di = gcd(di−1, ai), 2 ≤ i ≤ n.

By the Euclidean algorithm, we can determine values ti, si, (2 ≤ i ≤ n) satisfying
Bézout’s identity :

di = ti−1 di−1 + si−1 ai, with |si−1| ≤ di−1, 2 ≤ i ≤ n. (2.1)

The corollary below follows immediately from Theorem 2.1 and its proof.

Corollary 2.1 Let n be a positive integer greater than 1, (a1, a2, . . . , an) ∈ Z
n a

nonzero vector with a1 6= 0, and d = gcd(a1, a2, . . . , an). Let U = Un be the n × n
matrix

176 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

U := Un := (ui,j) =





























a1 a2 a3 . . . an

−s1 t1 0 . . . 0

−a1 s2

d2

−a2 s2

d2

t2 . . . 0

.

−a1 sn−1

dn−1

−a2 sn−1

dn−1

−a3 sn−1

dn−1

. . . tn−1





























,

i.e.,

u1,j = aj, 1 ≤ j ≤ n

ui,j = −aj si−1

di−1

, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ n

ui,i = ti, 2 ≤ i ≤ n

ui,j = 0, i + 1 ≤ j ≤ n, 2 ≤ i ≤ n

Then Un is an integral matrix and

det (Un) = dn = d. (2.2)

Corollary 2.1 can be viewed as a formula for the computation of the extended
basis when the gcd d = 1. The complexity of the computation will be analyzed
latter.

By the way, it might be interesting to note that this corollary can be regarded as
a variant of Bézout’s identity : For integers a, b not both zero, there exist integers
t, s such that

gcd(a, b) = at + bs. (2.3)

Because (2.3) can be rewritten as

gcd(a, b) =

∣

∣

∣

∣

a b
−s t

∣

∣

∣

∣

, t, s ∈ Z. (2.4)

Based on the Corollary 2.1 stated above, one can easily compute matrix U as
shown in the following algorithm.

Algorithm A.

Input: A = (a1, a2, . . . , an) ∈ Z
n with a1 6= 0.

Output: U ∈ Z
n×n such that the first row of U is A and det(U) = gcd(A).

Steps :

PRIMITIVE SETS IN A LATTICE 177

Step 1. Invoke the Euclidean Algorithm to compute the di (2 ≤ i ≤ n) and the
values of si, ti (2 ≤ i ≤ n).

Step 2. Compute the integral values of the entries
ai sj

dj
, 2 ≤ i ≤ j − 1,

2 ≤ j ≤ n.

To analyze the time complexity of Algorithm A, we need some lemmas.

Lemma 2.1 Let u, v ∈ Z \ {0}. Then, there exist s, t ∈ Z such that gcd(u, v) =
su + tv and

|s| ≤ |v|, |t| ≤ |u|.

Proof. Let d denote gcd(u, v), and s0, t0 ∈ Z any numbers such that d = s0u + t0v.
Then for any k ∈ Z,

s = s0 + kv, t = t0 − ku

satisfy su + tv = d. We have

d ≥ |s0 + kv| · |u| − |t0 − ku| · |v|,
d + |t0 − ku| · |v| ≥ |s0 + kv| · |u|.

By the division algorithm, we can choose k such that |t0 − ku| < |u|, i.e., |t0 − ku| ≤
|u| − 1. So

d + (|u| − 1) · |v| ≥ d + |t0 − ku| · |v| ≥ |s0 + kv| · |u|,
and then

|s0 + kv| ≤ d

|u| + (1 − 1

|u|) |v| = |v| − |v| − d

|u| ≤ |v|. 2

We thank the anonymous referee for noting that the entries of matrix U , as computed
by Algorithm A, are nicely bounded. More precisely, from ui,j = −ajsi−1/di−1 and
|si−1| ≤ di−1, we have that

|ui,j| ≤ aj .

The following lemmas are well known, and can be found in many books, for
example, [1], [3], [5].

Lemma 2.2 Let u, v ∈ Z \ {0}. Then, gcd(u, v) as well as s, t such that gcd(u, v) =
su + tv can be computed in O((log |u|)(log |v|)) bit operations.

Lemma 2.3 Let u, v ∈ Z \ {0}. Then, each of u · v and u
v

can be computed in
O((log |u|)(log |v|)) bit operations.

We now analyze the time complexity of Algorithm A. Let a0 and a′
0 be the two

largest among all the absolute values |ai|. The case where either a0 or a′
0 is 0 is

trivial, so we now assume that both are nonzero.

178 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

Theorem 2.2 The worst-case time complexity of Algorithm A is
O(n2(log a0)(log a′

0)) bit operations.

Proof. Step 1 of the algorithm can be carried out by invoking the Euclidean Algo-
rithm n − 1 times. By Lemma 2.2, this can be done in

(n − 1) · O((log a0)(log a′
0)) = O(n(log a0)(log a′

0))

bit operations.

The number of divisions and the number of multiplications in Step 2 is the same,
that is

2 + 3 + . . . + (n − 1) = O(n2).

By Lemma 2.1, the absolute values of all entries of Un are bounded by a0 and a′
0.

Therefore, by Lemmas 2.2 and 2.3, all integral values of the fractions involved in
Step 2 of the algorithm can be computed in O(n2(log a0)(log a′

0)) bit operations.
Therefore, the worst-case time complexity of the algorithm is O(n2(log a0)(log a′

0))
bit operations. 2

Let us now apply the above results to primitive sets.

Let Λ = Λ(b1,b2, . . . ,bn) be a lattice with basis b1,b2, . . . ,bn. Let a = a1b1 +
a2b2 + . . . + anbn ∈ Λ be a primitive vector. Then we have

gcd(a1, a2, . . . , an) = 1.

Corollary 2.1 asserts that det(U) = 1, and the row vectors of matrix U = (ui,j) with
respect to basis {b1,b2, . . . ,bn} give rise to a new basis of Λ, which is an extension
of primitive vector a.

Combining this and Corollary 2.1, we have

Theorem 2.3 The primitive vector a together with the n − 1 vectors

n
∑

j=0

ui,jbj, 2 ≤ i ≤ n

form an extended basis of a, where

ui,j = −aj si−1

di−1

, 1 ≤ j ≤ i − 1, 2 ≤ i ≤ n

ui,i = ti, 2 ≤ i ≤ n

ui,j = 0, i + 1 ≤ j ≤ n, 2 ≤ i ≤ n

The worst-case time complexity (in bit operations) of computing the extended basis
is O(n2(log a0)(log a′

0)).

PRIMITIVE SETS IN A LATTICE 179

3 The case k = n − 1

We continue using the notation for ai, di, si, ti, Λ,bi as introduced in §2.
We need the following results. The first of them can be proved by induction, and

the second can be found in [2].

Lemma 3.1 Let ai (1 ≤ i ≤ n) be integers, not all zero. Then the
gcd(a1, a2, . . . , an) can be expressed as an integral linear combination of the ai as
follows:

gcd(a1, a2, . . . , an) =
n

∑

i=1

(si−1

n−1
∏

j=i

tj)ai, (3.1)

where s0 = 1.

Lemma 3.2 Let 1 ≤ k < n and

ai = ai,1b1 + ai,2b2 + . . . + ai,nbn ∈ Λ, 1 ≤ i ≤ k.

Let M denote the k × n matrix (ai,j) (1 ≤ i ≤ k, 1 ≤ j ≤ n). Then {ai : 1 ≤ i ≤ k}
is a primitive set if and only if the gcd of all the kth order minors of M is 1.

As a counterpart of Lemma 2.1 for n integers, not all zero, we have

Theorem 3.1 Let ai (1 ≤ i ≤ n) be integers, not all zero. Suppose that |an| is
the smallest among all |ai| 6= 0. Then the gcd(a1, a2, . . . , an) can be expressed as an
integral linear combination of the ai

gcd(a1, a2, . . . , an) =
n

∑

i=1

ciai, (3.2)

with

|ci| < |an|, 1 ≤ i ≤ n − 1 (3.3)

|cn| < |a1| + . . . + |an−1|. (3.4)

Proof. Let d denote the gcd(a1, a2, . . . , an). By Lemma 3.1, there are integers ei

such that

d =
n

∑

i=1

eiai. (3.5)

Writing

ei = ri + qian, 0 ≤ ri < |an|, 1 ≤ i ≤ n − 1, (3.6)

180 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

we can express (3.5) as

d =
n

∑

i=1

eiai

=
n−1
∑

i=1

(ri + qian)ai + enan

=
n−1
∑

i=1

riai + (en +
n−1
∑

i=1

qiai)an. (3.7)

Let ci = ri (1 ≤ i ≤ n−1) and cn = en+
∑n−1

i=1 qiai. Then (3.3) is satisfied according
to (3.6). We now prove (3.4).

By (3.5) and (3.7) we have

d ≥ |(en +
n−1
∑

i=1

qiai)an| − |
n−1
∑

i=1

riai|

≥ |(en +
n−1
∑

i=1

qiai)an| −
n−1
∑

i=1

|riai|

> |(en +
n−1
∑

i=1

qiai)an| − |an|
n−1
∑

i=1

|ai|,

which yields

d + |an|
n−1
∑

i=1

|ai| > |(en +
n−1
∑

i=1

qiai)an|.

Therefore,

d

|an|
+

n−1
∑

i=1

|ai| > |en +
n−1
∑

i=1

qiai|,

i.e.,
n−1
∑

i=1

|ai| ≥ |(en +
n−1
∑

i=1

qiai)| = |cn|.

2

The following notation will be used. Let M be a k×n matrix, {i1, . . . , ip} ⊆ [1, k]
and {j1, . . . , jq} ⊆ [1, n]. We use M [i1, . . . , ip | j1, . . . , jq] to denote the submatrix of
M formed by the rows i1, . . . , ip and columns j1, . . . , jq. We also use M [- | j1, . . . , jq]
and M [i1, . . . , ip | -] to denote M [1, 2, . . . , k | j1, . . . , jq] and M [i1, . . . , ip | 1, 2, . . . , n],
respectively.

Based on Lemmas 3.1 and 3.2 and Theorem 3.1 we develop the following algo-
rithm.

PRIMITIVE SETS IN A LATTICE 181

Algorithm B

Input: A = (ai,j) ∈ Z
(n−1)×n with det(A[1, 2, . . . , n − 1 | 1, 2, . . . , n − 1]) 6= 0.

Output: B ∈ Z
n×n such that A is a submatrix of B and det(A) is the gcd of the

(n − 1)th-order minors of A.

Steps:

Step 1. Compute

Ai := det(A[1, . . . , n − 1 | 1, . . . , i − 1, i + 1, . . . , n]), 1 ≤ i ≤ n.

By permuting Ai (1 ≤ i ≤ n) if necessary, we may assume without loss of generality
that A1 6= 0 and |An| is the smallest among all positive |Aj| (1 ≤ i ≤ n).

Steps 2. Employ the Euclidean algorithm to compute

d′
1 := A1,

d′
i := gcd(di−1, Ai), 2 ≤ i ≤ n,

d′ := d′
n

and t′i, s′i, (2 ≤ i ≤ n) such that

d′
i = t′i−1 d′

i−1 + s′i−1 Ai, 2 ≤ i ≤ n.

Step 3. Compute

bi = (−1)n−is′i−1

n−1
∏

j=i

t′j mod An, 1 ≤ i ≤ n − 1 (3.8)

and

bn =
d′ − ∑n−1

i=1 (−1)n+ibiAi

An

. (3.9)

Step 4. Output the compound matrix

B =

(

A
(b1, b2, . . . , bn)

)

,

and stop.

Theorem 3.2 Algorithm B is correct, and the integers bi are bounded as follows:

|bi| < |An|, 1 ≤ i ≤ n − 1 (3.10)

|bn| < |A1| + . . . + |An−1| (3.11)

182 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

Proof. Applying Lemma 3.1 to A1, . . . , An, we have

d′ =
n

∑

i=1

(s′i−1

n−1
∏

j=i

t′j)Ai =
n

∑

i=1

((−1)n−is′i−1

n−1
∏

j=i

t′j)((−1)n+iAi).

By (3.8), we can write

bi = (−1)n−is′i−1

n−1
∏

j=i

t′j − qiAn, 1 ≤ i ≤ n − 1,

where qi are some integers. So

d′ =
n

∑

i=1

((−1)n−is′i−1

n−1
∏

j=i

t′j)((−1)n+iAi)

=
n−1
∑

i=1

(bi + qiAn)((−1)n+iAi) + s′n−1An

=
n−1
∑

i=1

(−1)n+ibiAi + (s′n−1 +
n−1
∑

i=1

(−1)n+iqiAi)An.

Therefore,

s′n−1 +
n−1
∑

i=1

(−1)n+iqiAi =
d′ − ∑n−1

i=1 (−1)n+ibiAi

An

= bn,

which is an integer. Thus,

d′ =
n

∑

i=1

(−1)n+ibiAi = det(B).

This proves that B is a completion of A. The bounds in (3.10) and (3.11) are
immediate from Theorem 3.1. 2

Theorem 3.3 Suppose that the algorithm used for computing Ai has worst-case com-
plexity c(ai, a

′
i) and that the upper bound used for |Ai| is w(ai, a

′
i), where ai, a′

i are
the two largest absolute values among the entries in Ai. Then the worst-case com-
plexity of Algorithm B is O(n (c(a0, a

′
0) + n log2 w(a0, a

′
0))), where a0 and a′

0 are the
two largest among all the absolute values |ai|.

Proof. There are many algorithms for computing integral determinants and many
propositions establishing upper bounds for the absolute values of determinants. Sup-
pose that the algorithm used for computing Ai has worst-case complexity c(ai, a

′
i)

bit operations. Then the worst-case complexity of computing all Ai (1 ≤ i ≤ n) is

O(n c(a0, a
′
0)).

PRIMITIVE SETS IN A LATTICE 183

Suppose that the upper bound used for |Ai| is w(ai, a
′
i). Then all |Ai| (1 ≤ i ≤ n) are

bounded above by w(a0, a
′
0). Note that there are O(n) multiplications and divisions

in computing each of bi and that the magnitudes of all intermediate factors appearing
in computing bi are bounded above by w(a0, a

′
0) due to the modulus value An. By

Lemmas 2.2 and 2.3, the computations of all bi (1 ≤ i ≤ n) need no more than

O(n c(a0, a
′
0)) + O((n log w(a0, a

′
0))

2) = O(n (c(a0, a
′
0) + n log2 w(a0, a

′
0)))

bit operations. 2

4 The general case k < n

From the previous sections we know that there are formulas for the efficient ma-
trix completion of a given k × n matrix A, in two extreme cases. To the authors’
knowledge, no such formulas are known for the general case. Therefore, algorithmic
solutions have been sought. For example, Newman [6] has pointed out that one can
use the process of reducing a matrix over a PID into its Smith normal form by row
and column elementary operations. Unfortunately, even when the principal ideal
domain is the special ring of integers, the time complexity of the algorithm Newman
proposes does not seem to be polynomial because of the explosive growth of the
magnitudes of the entries of intermediate matrices. Our guess is that it would be
exponential in k. So we turn our attention to alternate methods.

Let k < n and A ∈ Z
k×n of rank k. It was proved, see, for example Newman [6],

that there are matrices V ∈ Z
n×n and H ∈ Z

k×n such that

AV = H, (4.1)

where V is unimodular, and H lower triangular with the property that its main
diagonal entries are positive and the value of any of its off-diagonal entries below
the main diagonal is between 0 and the value of the diagonal entry in the same row.
Such a matrix H is unique and is the well known Hermite normal form of A.
Matrix V is called a transformation matrix of A into its Hermite normal form.

The following theorem provides a way of employing the Hermite normal form of
A in the completion of A.

Theorem 4.1 Let k < n and A ∈ Z
k×n of rank k. Let H be the Hermite normal

form of A, and V a transformation matrix of A into H. Let B denote the matrix
formed by the last n−k rows of V −1. Then the compound matrix

(

A

B

)

is a completion
of A.

Proof. Write
H = (Gk 0k×(n−k)),

where Gk is a lower triangular matrix of order k and 0s×t denotes the s × t zero
matrix. Let

K =

(

Gk 0k×(n−k)

0(n−k)×k I(n−k)

)

.

184 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

Then

KV −1 =

(

A

B

)

.

Since V is unimodular, we have V −1 ∈ Z
n×n and | det(V)| = | det(V −1)| = 1. There-

fore,

| det(

(

A

B

)

)| = | det(K)| = | det(Gk)|.

Since the gcd of the kth order minors of A does not change after A is multiplied by a
unimodular matrix, we conclude that | det(Gk)| and the gcd of the kth order minors
of A are the same. 2

There are known polynomial time algorithms for computing both H and V
for given integer matrices. Let HNF denote any one of these algorithms, and let
O(f(k, n, ||A||)) denote the time complexity, in bit operations, of the algorithm on
the input matrix A = (aij) ∈ Z

k×n, where the norm of A is defined as

||A|| := max
1≤i≤k,1≤j≤n

|aij|.

There are also known polynomial time algorithms for computing the rational inverse
of nonsingular integer matrices. Let INV denote any one such algorithm, and let
O(g(n, ||C||)) denote the time complexity in bit operations of the algorithm on the
input matrix C = (cij) ∈ Z

n×n.

Then HNF and INV can be used to solve the matrix completion problem as shown
in the following algorithm.

Algorithm C.

Input: A ∈ Z
k×n of rank k.

Output: B ∈ Z
(n−k)×n such that the compound matrix

(

A

B

)

is a completion of A.

Step 1. Employ HNF on A to obtain the Hermite normal form H of A and a
transformation matrix V such that AV = H.

Step 2. Employ INV to compute V −1.

Step 3. Output as B the submatrix of V −1 formed by its last n − k rows, then
stop.

The correctness of Algorithm C is immediate from Theorem 4.1. As for its time
complexity, it is stated in the following theorem which is also immediate from The-
orem 4.1.

Theorem 4.2 Suppose that for the matrix V produced by algorithm HNF on A we
have ||V || = O(h(||A||)). Then the time complexity in bit operations of algorithm C
is

O(f(k, n, ||A||) + g(n, h(||A||))).

PRIMITIVE SETS IN A LATTICE 185

The generality of Theorems 4.1 and 4.2 allows us to produce a number of concrete
algorithms. As an example, we state one of them below.

We need some notation. Let O(µ(t)) denote the time complexity in bit operations
of multiplying two integers, each of t bits, and let O(kθ) denote the time complexity
in integer operations of multiplying two integer matrices of order k. It is well known
that θ can be 2.38 and µ(t) = O(t2). Let

O˜(f(x)) := O(f(x) logc f(x)),

where c > 0 is a constant.

Let us take as HNF the algorithm described in Storjohann [8] or Storjohann and
Labahn [9], and let INV be the algorithm described in Villard [10]. Let A ∈ Z

k×n.
The former has the time complexity, in bit operations, equal to

O˜(kθ−1n · µ(k log ||A||)),

and produces V with ||V || ≤ (
√

k ||A||)k. The latter has time complexity, in bit
operations, equal to

O˜(nθ+1 log ||V ||).
In this case, the time complexity, in bit operations, for completing A is

O˜(kθ−1n · µ(k log ||A||)) + O˜(nθ+1 log ||V ||)
= O˜(kθ−1n · µ(k log ||A||)) + O˜(nθ+1k log(

√
k ||A||))

= O˜(knθ+1(log2 ||A|| + log k)).

Consequently we see that by combining appropriate HNF and INV algorithms,
solving the general matrix completion problem can be achieved in time polynomial in
n, k, and log ||A||. Thus, extending a primitive set of lattice vectors to a basis can
be achieved in polynomial time in the same parameters.

Acknowledgments

The authors would like to thank the anonymous referee for her/his valuable com-
ments.

References

[1] Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, Volume 1: Efficient
Algorithms, The MIT Press, Cambridge, Massachusetts, 1997.

[2] J.W. S. Cassels, An Introduction to the Geometry of Numbers Springer, Berlin,
1997.

[3] Neal Koblitz, Algebraic Aspects of Cryptography, Springer, Berlin, 1998.

186 S.S. MAGLIVERAS, T. VAN TRUNG AND W. WEI

[4] C.G. Lekkerkerker and P.M. Gruber, Geometry of Numbers, Second edition
North-Holland Mathematical Library, 37, North-Holland Publishing Co., 1987.

[5] Daniele Micciancio and Shafi Goldwasser, Complexity of Lattice Problems, A
Cryptographic Perspective, Kluwer Academic Publishers, Boston, 2002

[6] Morris Newman, Integral Matrices, Academic Press, New York, 1972.

[7] Carl Ludwig Siegel, Lectures on the Geometry of Numbers, Springer-Verlag,
1989.

[8] Arne Storjohann, Algorithms for Matrix Canonical Forms, 2000.

[9] Arne Storjohann and George Labahn, Asymptotically Fast Computation of the
Hermite Normal Form of an Integer Matrix, in Proc. Int’l Symp. on Symbolic
and Algebraic Computation: ISSAC ’96 (ed. Y.N. Lakshman), ACM Press,
1996.

[10] Gilles Villard, Exact computations on polynomial and integer matrices,
http://www.ens-lyon.fr/gvillard

(Received 2 Feb 2007; revised 30 Aug 2007)

