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Abstract

In this paper we provide examples of V(12,¢) vectors for 800 < 12t +1 <
5000, and the 3 unknown V(m,t) vectors with m = 8,9. We also provide
other examples of transversal and incomplete designs, coming from differ-
ence and quasi-difference matrices. These include a TD(6,34), a TD(7, v)
for v = 28,42,44,52,54,62, an updated list of unknown T'D,(9,v) for
A > 1 and 2 ITDs which give (v, 6,1) BIBDs for v € {496, 526}.

1 Introduction

A transversal design T'D,(k,v) consists of a set V' of kv elements partitioned into
groups of size v plus a collection of k-element subsets of V' called blocks such that (1)
each block contains exactly one element from each group and (2) any two elements
in different groups appear in exactly A blocks. The parameter A can be omitted if it
equals 1.

An ITD or incomplete transversal design, T'Dy(k,v) — TDy(k,u) is a TDy(k,v)
missing a subdesign 7Dy (k, u). Such a design can exist even if the missing T'D,(k, u)
does not; however, if it does, it can be used in conjunction with the incomplete TD
to obtain a T'Dy(k,v).

Let v, k, h, A1, A2 be integers with v,k > 0 and h, A1, Ae > 0. A (v—"h, h, A1, Ag; k)
quasi-difference matrix (or QDM) over an abelian group G of size v — h is an array
A with k rows, ¢ = A\(v + h — 1) + Ay columns such that (1) each entry of A is
either an element of G or blank; (2) no column of A has more than one blank entry
(3) for any two rows i, j of A, each non-zero element of G occurs A; times and zero
occurs A among the differences A;; — A, : t =1...¢, Aijt, Aj; not blank. If h =0
and A\; = )\, then the simpler notation (v, k, A1) difference matrix (or DM) can be
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is used. Also, it is well known that if Ay < A, then existence of a (v — h, h, A1, Ag; k)
QDM implies existence of a T'Dy, (k,v) — T Dy, (k, h).

In this paper, we obtain a number of TDs and ITDs using difference or quasi-
difference matrices. Two of them also give GDDs which were used to obtain (v,6,1)
BIBDs for v = 496,526 in [6].

Our first new QDMs will come from V(m, t) vectors. Let ¢ = m¢ + 1 be a prime
power, and let & be a primitive element in GF(g). One can define multiplicative
cosets C in GF(q) by Cs = (y : y is of the form 2" with n = s mod m).

In [23], Wilson defined a vector V' = (v1,va, . . ., Umt1) with entries from GF(mt+
1) to be a V(m,t) vector if for every s, 1 < s < (m + 2)/2, the set of m differences
{vi—v;:1<4,5<m+1,i—j=s (mod m+ 2)} contains exactly one element
from each of the cosets Cy. For instance, (0,1,3,6) is a V(3,2) vector over GF(7).
Here, using = 5 as a primitive element in GF(7), the sets {1 —0¢€ Cy,3—1€ (4,
6—3€Cyland {3—0€ (Cy,6—1€ (C1,0—6 € Cy} both contain 1 element from
each C,.

If such a vector exists, then a (¢, m + 2;1,0;¢)-QDM can be obtained as follows:
Start with a single column whose first entry is blank, and whose other entries are
V1,2, ..., Ume1 (in that order). Multiply this column by the m’th roots of unity in
GF(q) (i.e., the elements of C) and form m(m + 2) columns by taking the m + 2
cyclic shifts of each of these columns.

2 QDMs from V(12,t) vectors

Recent results ([1], [12], [15], [14], [17], [18], [24]) have established that a V(m,t)
vector exists when m, ¢ are not both even in the following two cases:

1. 2 <m <8, g =mit+1 is a prime power, except for (m,t) € {(2,1),(3,5),(7,9)}
and possibly for m = 8, mt + 1 € {3%,31°} or m =9, mt + 1 = 55;

2.10 <m < 11, ¢ = mt + 1 is prime, t > m — 1, ¢ < 5000 and (m,t) &

{(9,8), (11, 18)}.

However increasing m by even 1 considerably increases the amount of computer
time required to obtain V(m, t) vectors. In addition for fixed m, provided ¢ is not too
large, the amount of time required to find V(m,t) vectors increases considerably as
t decreases; for several values of ¢ < 140 in the table below, the given V(12,¢)s took
more than 20,000 hours of CPU time to produce. By contrast, none of the V(11,¢)s
in [1] for ¢ > 30 took more than 2,000 hours of CPU.

Below, we give V(12,t) vectors for odd ¢ such that ¢ = 12¢ + 1 is a prime in the
range [800,5000] (i.e. for 66 < ¢ < 416). We have also managed to establish that
there is no V(12,t) vector for all odd values of ¢ < 15 such that 12¢ + 1 is prime, i.e.
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t =1,3,5,9,13 or 15. The existence of V(12,t) vectors for ¢ odd and 15 < t < 66
remains an open problem.

These vectors are given in the table below. In each case, x is a primitive element

in GF(q).

t

69
71
73
83
85
89
91
93
101
103
115
119
121
129
133
135
139
141
145
149
155
161
169
171
185
189
191
195
199
203
213
223
229
233
243
253
255

q

829
853
877
997
1021
1069
1093
1117
1213
1237
1381
1429
1453
1549
1597
1621
1669
1693
1741
1789
1861
1933
2029
2053
2221
2269
2293
2341
2389
2437
2557
2677
2749
2797
2917
3037
3061

V(12,t) vector

(01527 449 471 497 677 20 778 88 366 721 753)
(01645 446 813 543 413 7 55 177 468 503 646)

(0 1607 719 837 496 240 645 184 829 451 830 770)

(0 1627 898 836 939 742 42 847 531 173 607 361)

(0 1778 1000 913 819 961 456 507 186 509 495 300)

(0 1 602 894 827 661 350 647 304 47 430 533 550)
(01777 1054 855 892 792 134 224 740 240 898 631)

(0 1601 1004 872 557 599 819 381 248 270 1091 49)
(01787 1049 818 1064 288 346 464 958 1188 340 1192)
(01770 1027 806 1082 515 436 1096 1060 57 1135 1144)
(01747 1179 873 484 969 692 679 153 1237 1110 616)
(0 1701 1225 834 515 367 727 1349 407 891 1189 153)
(01713 1265 848 421 998 69 874 1126 693 467 1164)
(01623 1170 824 450 1099 418 948 177 207 797 59)
(01648 1157 822 371 407 180 1120 898 342 548 117)
(01712 1253 844 623 943 992 191 845 299 1381 611)
(01627 1216 711 489 642 904 733 1246 96 1617 12)
(01447 522 967 763 1035 344 93 561 1137 523 828)
(01426 582 937 534 1538 1606 1148 1436 191 1406 823)
(0 1 420 509 957 593 835 1031 1502 319 1552 1047 993)
(0 1 300 482 962 638 1207 1682 885 211 1838 1244 531)
(0 1 455 318 952 400 470 584 1368 292 678 1138 383)
(01425326 951 1211 1881 1063 1631 1363 1554 665 1600)
(0 1432 319 933 688 549 63 2002 1702 653 1081 1813)

(0 1 404 324 935 605 366 360 178 221 533 1940 30)

(0 1 303 329 957 866 2180 1899 597 2209 1186 994 1301)
(01491 527 939 377 1685 1735 1967 1176 391 2192 681)
(01331 313 934 384 2105 479 1546 86 184 1127 1822)
(01 377 524 946 560 316 1591 2036 273 1841 2091 713)
(01 324 312 933 341 547 68 39 1008 561 1372 1300)
(01343 312 933 378 229 60 1179 1781 1960 66 536)
(01463 316 933 413 970 1083 2322 491 1226 1809 560)
(0 1 338 312 933 380 401 2398 612 1279 1514 268 528)

(0 1405 314 934 398 1053 310 2254 2250 2652 1300 1079)
(01486 314 933 375 697 151 1964 1623 1590 1756 1152)
(01 322 312 933 395 1047 12 176 1859 881 1220 2465)
(01463 316 938 345 360 2537 2648 2270 789 2959 2796)
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t x q V(12,t) vector
259 11 3109 (01 486 314 933 350 575 1962 2347 750 3054 2719 1841)
265 7 3181 (01333312933 343 759 1754 2650 1633 2479 2718 1164)
269 6 3229 (01 432 312 938 345 567 2441 966 1935 470 2105 3043)
271 2 3253 (01463 313 933 356 453 2869 793 748 2116 3126 2839)
275 6 3301 (01477 313 943 358 474 2312 1258 52 1452 2370 260)
281 5 3373 (01483 313 933 387 418 961 1586 766 2937 275 2569)
280 2 3469 (01474 313 943 367 963 3147 2157 238 12 1610 2189)
293 2 3517 (01 423 335 945 397 235 2878 1793 2484 2440 503 1609)
295 7 3541 (01 428 337 931 406 360 1978 68 375 721 2390 2465)
301 2 3613 (01436 351924 367 1196 265 2527 720 664 105 250)
303 2 3637 (01487 572946 462 2646 2616 1249 3143 21 2537 2128)
309 2 3709 (01417 327 944 341 1924 1975 2308 1234 1658 1829 1606)
311 2 3733 (01435557 937 371 267 428 1289 3355 2948 3030 861)
321 2 3833 (01319325952 364 674 2128 643 393 1025 619 868)
323 2 3877 (01 445 344 920 365 567 3483 3364 1240 344 2683 3070)
335 2 4021 (01478 557 969 462 1587 1457 2552 2575 2420 168 924)
341 2 4093 (0 1498 362 954 440 584 421 3867 3964 404 664 2233)
355 2 4261 (01415 329 927 512 615 2336 127 2245 2250 2272 1888)
363 2 4357 (01 541 368 971 370 297 555 148 4195 1197 1527 211)
379 6 4549 (01 424 545 948 415 378 1181 2984 3458 3288 3888 74)
383 5 4597 (01477 534 964 441 246 972 2504 3957 3101 4366 2168)
385 2 4621 (01 543 334 943 531 793 1852 538 4231 4492 580 3816)
399 2 4789 (01487 571 964 391 300 4515 2211 3063 2771 2586 1056)
401 2 4813 (01 442 543 964 514 567 763 3816 3621 2124 1092 1456)
405 11 4861 (01 433 552 963 385 684 63 4243 3494 3500 560 4611)
409 6 4909 (01 426 541 954 411 708 1875 2058 2443 1913 2924 3673)
411 2 4933 (0 1 430 558 963 397 372 492 2502 3948 18 1191 3761)
413 2 4957 (01436 546 977 467 242 3695 682 483 3026 461 1334)

We conclude this section by giving examples of the unknown V(m, t)s mentioned
at the start of this section for m = 8,9. For m =8, 8t+ 1 = 3%, if we take x to
be a primitive element of GF(3°) satisfying 2% = 2z + 1, then we have V(8,91) =
(0,1, 2163 2376 253 140 122 2553 2378) For m = 8, 8t+1 = 30, if we take z to be a
primitive element of GF(31°) satisfying 21 = 2"+ 25+2%+2* +2°+22+22+1, then we
have V/(8,7381) = (0,1, 2% 2619 251 252 2197 1290 2.2383) For m =9, 9t +1 = 55,
if we take = to be a primitive element of GF(5°%) satisfying 2® = 4a*+42°+ 422 +42+2,
then we have V(9,1736) = (0, 1, 2202 123 222 22! o47 g8 2607 19408) o we now

have:

Theorem 2.1 If2 < m <9, mt+ 1 is a prime power, t > m — 1 and m,t are not
both even, then a V(m,t) vector exists, except for (m,t) € {(3,5),(7,9)}.
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3 Other QDMs which cyclically permute the rows

ITDs that come from V(m,t) vectors have a very large automorphism group. For
most other known ITDs the automorphism group is notably smaller, but finding
such ITDs is often still feasible when this automorphism group is large enough. The
next lemma provides some examples of ITDs with £ = 7 and an automorphism that
cyclically permutes the groups of the I'TD. Other examples of this can be found in

2].

Lemma 3.1 There exists a (v — h, h, 1, 1; 7)-QDM and hence also a TD(7,v) —
TD(7,h) in the following cases:

1. (v,h) € {(45,5), (50,6), (52,4), (55,8), (55,9), (59,5), (62,8)}.

2. v="06h and 5 < h < 15.

These QDMs are over Z,_j. For (v, h) # (90, 15) or (30, 5), we give two matrices
Ay, Ag; the required QDMs are obtained by replacing each column of [A;| — A;|As]
by its 7 cyclic shifts. Also, in 3 cases ((v,h) = (45,5),(55,9) and (59,5)) a column
of zeros should be added.

O _ _
2 0 0 0
7 26 2 23
(v,h) = (45,5): A= | 34 17 38 Ay=| 4
18 29 33 24
21 35 32 3
32 5 25 20
O _ — _ —
3.0 0 0 0
36 1 23 17 14
(v,h) = (50,6): A;=| 28 17 35 Ay=| 24 18
4 35 37 2 18
39 20 12 39 14
5 7 6 22 0
0 0 - - -
41 12 0 0 0
39 26 45 13 26
(v,h) = (52,4): A, =| 6 9 18 Ay=| 4 3
1 25 29 28 34
43 29 30 37 26

18 19 2 24 0



74 R. JULIAN R. ABEL

(v,h) = (55,8): A

(v,h) = (55,9): A

(v,h) = (59,5): A,

=] 22

=| 48

17
29

(v,h) = (62,8): A, =] 36

(v,h) = (36,6):

31
16
41

A1:

NEowro |

45

12 18

17

25

28
17
39

31

46 10
33 32

25
41

48

45
40
28
15

28
50

47
11

22
11
21

44 38
15 12
12 18

30
39

47 39

21
12 45

20

50 31

35

43
44

24

20
16
17

23
33
30
51
17

Ay

As

As

As

16
40
40
16

d
H
d

owwvtulw o |



A1:

22
10
34

32

=1

24
10

30

17
48
37
11
27

45
30

11

5 25

29
37
38

27
40
30
18
16

40
33

31
39

35
17

22

11
10

30

4 22

31
18
12

16

22
14
33

46
47
42
28

51
34
35
12
41

=

35
44
33
27

44
32

20
17

46 28

36
38 53
43 32

As
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19
24

39
20

37
28

12
25

O W= ~Jwo |

43
14
14
43

24
37
37
24
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00 0 0 0 0 0
25 53 54 46 57 34 47
(v,h) = (72,12): A;=| 4 15 18 44 25 Ay=| 57 36 |.
45 20 49 52 5 27 36
35 16 32 34 6 4 47
23 32 47 43 39 30 0
0 0 0 0 0 0
25 33 48 61 55 56 14
(v,h) = (78,13): A;=| 1 15 63 58 11 49 Ay=| 43
20 10 57 4 49 37 43
40 12 29 26 62 2 14
24 20 30 52 28 25 0
00 0 0 0 0 0 0
15 44 45 40 65 68 18 16
(v,h) = (84,14): A;=| 2 61 11 26 55 21 Ay=| 39 45
39 2 42 34 5 49 4 45
1 24 15 58 8 61 53 16
5 18 22 7 17 62 35 0

For (v, h) = (90, 15) our construction is similar, but here we cyclically permute
the rows of [A;]49- Ay |As] (instead of [A;|— A;|As]). The reason for using 49 (instead
of —1) as a multiplier is that it equals 1 (mod 3). These two arrays were found by
computer after prespecifying the (mod 3) values of their entries; when prespecifying
values (mod t), our experience suggests it is more efficient to use a multiplier = 1
(mod t) if possible. We also point out that each column of A; remains invariant if
we first multiply that column by —49, and then reverse the order of the non blank
entries in that column.

0o 0 0 0 0 O 0 25 30
30 19 23 39 44 15 54 5 10
Ay=119 28 5 47 15 74 Ay =1 64 12 8
7 48 37 1 41 33 14 12 58
20 51 9 B9 47 44 54 55 35
58 9 31 35 21 17 0 50 25

Finally, for (v, h) = (30, 5), the required QDM is obtained by cyclically permuting
the 7 rows of A where
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0 0 0 0 O
0 16 22 11 13
A= 18 15 5 21 19
0 7 14 8 24
20 3 15 2 22
24 5 18 17 11

Filling in the size h hole of a TD(k,v) — TD(k,h) with a TD(k, h) gives a
TD(k,v). A TD(7,h) exists for h = 7,8,9; therefore applying this result to 3 of
the ITDs in the previous lemma gives a TD(7,v) (or equivalently 5 mutually orthog-
onal Latin squares) of orders v = 42, 54 and 62. For v = 42, 54, 62 these are the
best known results so far.

A TD(k,v) is called idempotent if it possesses at least one parallel class, i.e. a
set of blocks containing each point exactly once. We note that deleting one group of
the above TD(7,30)—TD(7,5) gives a TD(6,30)—TD(6,5) with 25 disjoint parallel
classes; these correspond to the sets of blocks containing each of the 25 non-holey
points in the deleted group. Filling in the size 5 hole with a TD(6,5) therefore gives
an idempotent TD(6,30). In 1996, 30 and 60 were the only values > 26 for which
an idempotent TD(6,v) was unknown [7]; further, R.S. Rees [21] solved v = 60. In
addition, v = 15 is solved later in Lemma 4.1; now v = 10, 14, 18,22, 26 remain the
only unsolved cases.

The other TD(7,v)—TD(7, h)s in the previous lemma all appear to be new even
though they do not yield new TDs. However those with v = 6h have another
application: Every block in a TD(7,6h)—TD(7,h) contains exactly one holey point,
and therefore deleting all the holey points in this ITD gives a (frame resolvable) (6, 1)-
GDD of type 5h7. (The blocks containing any holey point form a partial parallel
class missing the 5k non-holey points in the group containing it). In particular for
h = 14 and 15, this gives (6,1)-GDDs of types 707 and 757; as noted in [6], the
groups of these GDDs can be filled (using 6 or 1 extra points and a (76,6,1) BIBD)
to produce new (496, 6, 1) and (526, 6, 1) BIBDs.

4 Some TDs from difference matrices and QDMs with h =1

A number of known general constructions for TD(k,v)s are known; however for
v < 80 and the largest known k, constructions for these TDs tend to be of a somewhat
miscellaneous nature when they come from difference or quasi-difference matrices and
v is not a prime power. In this section, we provide a few of these.

In [19], Mills gave a couple of TD(k, v)s with v = pg where p, ¢ were prime powers
and ¢ = 1 (mod p); these TDs all possessed an automorphhsm group of order p which
interchanged the first p groups of the TD and mapped each other group onto itself.
Other examples of incomplete TDs with a similar structure can be found in Lemma
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3.18 of [8]. The TDs for v = 34, 44 in the next lemma both possess a similar property;
although here and in [8], the order of this automorphism group is 5, and does not
divide v or v — 1.

Lemma 4.1 The following TDs exist: an idempotent TD(6,15), an idempotent
TD(6,34) and a TD(7,44).

Proof: For v = 15, 34, these TDs are obtainable from a (v —1,6;1,0;1) QDM. The
first, for v = 15 is obtainable from an orthogonal BIBD, OBIBD(15, 2, 1; 3) found by
by D.H. Rees [20]. For more information and the definition of OBIBDs see [16]. Not
all OBIBDs give QDMs; D.H. Rees found 24 OBIBD(15,2, 1;3)s, and fortunately
in one of them we were able to rearrange the order of elements in each base block
so that the rearranged base blocks could be taken as suitable generating columns
for our QDM. Let Ay, Az be the arrays below, and let A be the array obtained by
interchanging rows 4, i + 3 in A; (for i = 1,2,3). Then [A;]|As|As] is the required
QDM.

- 0 0 0 0 0 O 00

1 — 8 10 6 12 9 01

8 8 — 10 9 11 0 2

A=l 12 1 4 5 6 As=1¢ 7

5 13 5 12 11 4 10 0 8

3 12 1 7 2 10 13 09

For v = 34, consider the following matrices over Zss:

- 0 0 0 0 O 0 1 3 10 5
30 17 10 25 23 8 0 4 12 7 20
A — 22 4 32 29 28 22 A — 0 16 15 28 14
7125 10 20 15 21 16 2710 31 27 13 23
0 12 15 16 32 23 0 25 9 19 26
6 11 18 14 9 20 0 11 11 0 -—

We replace each column C = (a,b,c,d, e, f)T of A; by the five columns #(C),
0 < i < 4, where t(C) = (4e,4a,4b,4c,4d,4f)T. Then append the columns of A,.
We then have a (33,6;1,1;1) quasi-difference matrix, and hence also an idempotent
TD(6, 34).

For v = 44, let A; and A, be the folllowing arrays over Zs X Zy X Zy1:

(0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
(1,1,4) (0,1,4) (1,1,7) (1,0,6) (1,1,9) (0,1,2) (0,1,5) (0,1,1)
4 — | (1,0,6) (0.1,3) (1,0,0) (0,1,9) (1,1,1) (0,1,4) (1,1,9) (1,0,9)
7 (1,1,6) (1,1,9) (0,1,2) (1,1,0) (0,1,0) (1,1,5) (0,0,4) (0,0,9)
(1,0,9) (0,0,2) (0,0,1) (1,0,2) (0,0,7) (1,1,6) (1,1,0) (1,0,7)
(1,0,1) (1,0,6) (1,1,3) (0,1,5) (0,0,5) (0,1,3) (0,1,0) (1,1,0)
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(0,0,0) (1,0,1) (1,1,2) (0,0,8)

(0,0,0) (1,0,5) (1,1,10) (0,0,7)

A, — (0,0,0) (1,0,3) (1,1,6) (0,0,2)
27| (0,0,0) (1,0,4) (1,1,8) (0,0,10)
(0,0,0) (1,0,9) (1,1,7) (0,0,6)

(0,0,0) (0,0,0) (0,0,0) (0,0,0)

Here, we replace each column C' = [(z1,y1, 21), (T2, Y2, 22), ---, (T5, U5, 25) (T6, Y6, 26)] T
by the five columns #/(C), where t(C) = [(z5,vs,525), (T1,91,521), (T2,Ys,520),
(w3, 3,523), (T4,y4,524), (T6,ys,526)]T. Then append the four columns of A, each
of which remains invariant under ¢. This gives us a (44,6, 1) difference matrix over
Zy X Zy x Z11 and hence also a TD(7,44) .

In [10] and [22], TD(6,v)s for v = 20, 38,44 were given; these TDs all had an
automorphism group of order order 18(v — 1). The two TDs in the next lemma
possess a similar automorphism group of order 9v; one order 2 automorphism used
in [10] and [22] is not present here.

Lemma 4.2 There exists a TD(7,v) for v € {28,52}.
Proof: For v =52, consider the following arrays over GF(4,2% = z + 1) x Z3:

(0,0)  (0,0) (0,0) (0,0) (0,0)
(22,10)  (0,7) (1,10) (2,10) (22,3)
A, = (2,10)  (2%,2) (1,11) (2,2) (2%7)
(2,8)  (2%,12) (0,10) (2%,11) (2%,6)
(1,2)  (0,2) (2%,8) (2,3) (z,7)
(1,6)  (2,12) (0,7) (2%6) (z,2)
(1,1) (2% 11)
R
A2 (1,4)  (22,3)
(2,12)  (1,9)
(22,10)  (2,1)

For each column C = ((z1,%1), (T2, 92) .- (z6,96))T, let t1(C) = ((z - 3,3 - y3),
(z-21,3-m1), (22,3 12), (26,3 us), (z-34,3-14), (253 ys)T, and
t2(C) = ((w3,93), (w1, 51)s (¥2,92), (25, 95), (%6 e), (5547?;/4))71- Applying the group
of order 9 generated by ti, ty to the columns of A; give 45 columns. Six more
columns are obtained by applying the group of order 3 generated by ts to the two
columns of Aj; these two columns both remain invariant under ;. Finally add one
extra column whose entries all equal (0,0); the resulting 52 columns then give us a
(52,6,1) difference matrix and hence also a TD(7,52).

Similarly, for v = 28 we use the array B below over GF(4,2% = z + 1) x Zy,
and for each column C' = ((z1,41), (2,92) - .- (6, y5))T, let t1(C) = ((z - 23, 2 - y3),
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(2221, 2:1), (222, 2-y2), (226, 2-Ys), (224, 2-Ya), (2-25,2-y5))", and t(C) = ((x3, y3),
(x1,11), (T2, y2), (T5,95), (6, Y6), (24,y4))T. We apply the group of order 9 generated
by t1, t2 to the columns of B, and add one extra column whose entries all equal (0, 0).
This gives us a (28,6,1) difference matrix and hence also a TD(7, 28).

(0,0) (1,1) (0,0)
(2,2) (2,1) (2%,3)
B (z,3) (2%5) (2%2)
(0,5) (0,6) (0,4)
(0,3) (0,0) (1,1)
(1,3) (1,5) (22,6)

5 More examples of Incomplete TDs

In Lemmas 3.5 and 2.4 of [8] and [9] respectively, a TD(6,v) — T'D(6,2) for v = 15
and 19 was obtained by multiplying the columns of an initial array by 1 and —1.
The ITD in the next lemma is obtained in this manner.

Theorem 5.1 There exists a TD(6,17) — TD(6,2).

Proof: A (15,2;1,0;6)-QDM is obtained by multiplying the columns of the fol-
lowing array by 1 and —1:

o 0 o 0 0 0 0 0 -
5 7 1 3 2 4 6 — 0
1210 6 7 1 2 — 4 6
9 12 13 1 11 - 5 8 7
10 4 9 14 - 13 8 3 1
7 11 10 - 3 9 14 13 3

Any (v—h, h;1,0;k)-QDM (but not a (v—h, h; 1, 1; k)-QDM) which is obtained by
cyclically permuting the rows in an initial array gives an incomplete perfect Mendel-
sohn design, or more precisely, a k-IPMD(v,h). For more information on these
designs, see for instance, [2] or [3]. The next lemma gives 3 new 6-IPMD(v, 8)s, al-
though in only one of these cases, v = 53, was the corresponding T'D(6,v) —T'D(6, 8)
previously unknown. Other 6-IPMD(39 + h, h)s with 1 < h <7, h # 2 can be found
in [3].

Theorem 5.2 There exists a TD(6,v) — TD(6,8) and a 6-IPMD(v,8) for v = 47,
53, and 59.

Proof: Cyclically permute the the 6 rows in the arrays below. In each case, this
gives a (v — 8,8;1,0;6)-QDM.
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41

26
19
16
28

35

22

0 — — — — - _
24 0 0 0 0 0 0
w_y7.| 25 4 3110 20 27 17
20 32 5 24 23 18 16
27 14 13 4 34 33 18
17 19 9 22 11 17 24
00 — — — — —
3728 0 0 0 0 0
s3.| 3 34 4 2 1 2321
YT 19 23 35 17 33 32 18
1 30 29 31 7 37 42
30 2 37 33 25 17 41
00 0 — — — — —
40 28 7 0 0 0 0 0
b_sg.| 6 4338 4 10 19 38 42
19 41 26 34 35 18 8 45
4 36 49 35 49 40 28 18
45 14 25 31 9 22 44 11

Theorem 5.3 There exists a TD(7,43) — TD(7,7).

15

10

25
34
28
26

40 1

35
16
21
39

7

81

Proof: To obtain a (36, 7;1,0;7)-QDM we cyclically permute the the first 6 rows
in the array A; below while leaving the 7th row unaltered. Then append one extra

column from the array As.

28 24
8§ 32
A= 34 23
11 22
21 5
0 0

27
19
31
20
0

17

15
13

0

12

26

33
18
0

—
e~

w

t

[GCRN NN

30
16
25
29
10
0

15
17
20

22

A2:

12
18
24

The next theorem gives three new ITDs. Existence of the first two was mentioned
n [11], but they appear to have not been published before.

Theorem 5.4 A TD(6,70) — TD(6,3), a TD(6,77) — TD(6,4) and a TD(6,41) —

TD(6,4) all exist.

Proof These are obtainable from (67,3,1,0;6), (73,4,1,1;6) and (37,4,1,1;6)-
QDMs, (using the same method as in [22, 10] for TD(6,v) with v € {20, 38,44}). In
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each case, let w be a given cube root of unity in Z,_,; we take w = 29, 8 and 10
respectively for v — h = 67, 73 and 37. Below we give some generating columns for
these QDMs. We then define 3 automorphisms 73, Ty and T3 (of orders 3, 3 and 2)
on these columns as follows:

Ti(a,b,c,de, f)T = (w-c,w-a,w-bw- f,w-d w-e)T,
TQ(a7b,c,d7e,f)T :(b7C,(l,f7d,€)T7 T3(a7b7c7d7€af)T = (d,e7f,a,b,c)T.

We then apply the group of order 18 generated by Ti, Tb, T3 to the columns
below. Each column of A; generates 18 distinct columns in the required QDM. For
the second ITD, the column of A, remains invariant under 7577 and generates 6
columns in the QDM. The column of A3 remains invariant under both 77 and T3 and
generates 3 columns in the QDM.

18 54 52 42 15

(67,3,1,0; 6)—QDM : A, — | 42 °1 00 4617

31 44 47 16 25

— 45 23 61 22
0 0 O 0 3
18 60 58 50 0 24
59 61 60 24 — 46
(73,4,1,1; 6)—QDM : A, = 7 10 32 44 Ay = 1 Az = 3
53 44 57 36 64 24
- 3 27 69 8 46
0 O 0 3
19 1 0 30
22 25 — 4
(37,4,1,1;6)-QDM : Ay = 35 91 Ay = 1 As = 3
5 7 26 30
- 29 10 4

6 A few resolvable TDs with index greater than 1

For A = 1, existence of a resolvable T'D,(k,v) is equivalent to that of a TDy(k +
1,v); however for A > 1, having a resolvable T'D,(k, v) is a stronger result, since a
TDy(k+1,v) only gives a T Dy(k,v) with v A-parallel classes, instead of Av parallel
classes.

Any (v, k, \) difference matrix gives a resolvable T'Dy(k, v) (since the blocks of
the TD corresponding to any column in the DM form a parallel class). We now give
two new resolvable TDs using difference matrices:
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Theorem 6.1 There exists a resolvable T Dy(8,22) and a resolvable T Dy(7,34).

Proof: For v = 34, consider the following arrays over Zs4:

0 0 10 7 11 30 19 15 13 9 20 25 26

1 15 32 14 21 31 22 17 27 13 28 25 26

A, — 33 10 22 23 32 20 6 26 25 3 27 A, — 25 26
! 2 7 6 17 23 16 11 33 12 30 9 2 25 26
4 2119 3 16 285 5 29 8 24 25 26

8§ 29 4 24 12 14 31 2 18 18 1 25 26

Cyclically permute the six rows of the array of the array A;, then append the two
columns of Ay plus an extra row of zeros. This gives a (34,7,2) difference matrix
and hence also a resolvable T'D,(7,34) and a T'D(8, 34).

Similarlarly for a (22, 8, 2) difference matrix, we cyclically permute the seven rows
of the array A; below, and again add 2 extra columns from As plus a column of zeros.
This gives a (22,8, 2) difference matrix and a new resolvable T'Dy(8, 22); however we
point out that a TD5(9,22) is already known [4].

1 14 10 16 1 11

19 6 4 0 18 5 ; 12
9 20 15 8 17 12 9 18

A= 17 0 2 4 7 16 Ay = 9 18
5 7 21 13 20 15 9 18
10 13 14 6 21 3 2 18
12 11 9 3 19 8

In [13], the existence of T'Dy(k,v) with A > 1 and k = 8,9 was investigated,;
later a few improvements on these results were given in [4, 5] as well as some results

for k = 10. For completeness, we summarize these results (together with the new
TDy(8,34) above) in the 3 theorems below.

Theorem 6.2 If X > 1, then a TD,(8,n) ezists except for X = 2, v € {2,3} and
possibly for A =2, v = 6.

Theorem 6.3 If A > 1, then a TDx(9,n) exists except for A\ = 2, v € {2,3} and
possibly in the following cases:

1. A =2 and v € {6, 14,34,38,39,50, 51, 54, 62} ;
2. A=3 and v € {5,45,60};
3. A=5andv € {6,14}.

Theorem 6.4 A T'D3(10,v) exists except possibly for v € {5, 6, 14, 20, 35, 45, 55,
56, 60, 78, 84, 85, 102}. Also a T'Do(10,v) exists, except possibly for v = 35.
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