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Abstract

A set D of vertices in a graph G is (a) a dominating set if every vertex
of G\ D has a neighbor in D, (b) a locating-dominating set if for every
two vertices u, v of G\ D the sets N(u) N D and N(v)N D are non-empty
and different, and (c) an identifying code if for every two vertices x,y of
G the sets N[z]N D and N[y]N D are non-empty and different. The min-
imum cardinality of a dominating set, respectively, locating-dominating
set, identifying code, is denoted by (@), respectively, v.(G), M(G).
We show that for a tree 7" with n > 4 vertices, ¢ leaves and s support
vertices, M(T) > 3(n+ ¢ — s + 1)/7, and for a tree of order n > 3,
(n+l—5)/2>v,(T) > (n+¢—s+1)/3. Moreover we characterize the
trees satisfying v, (T) = (n+ ¢ — s)/2, M(T) = v(T) or v.(T) = v(T).

* This research was supported by joint Algerian-French program CMEP 05 MDU 639.
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1 Introduction

In a graph G = (V, E), the open neighborhood of a vertex v € V is N(v) = {u €
V | ww € E}, the closed neighborhood is N[v] = N(v) U {v}, and the degree of v
is degg(v) = |N(v)|. A set D C V is a dominating set if every vertex of V' \ D
has a neighbor in D. The domination number v(G) is the minimum cardinality of a
dominating set in G. A set D C V is a locating-dominating set if it is dominating
and every two vertices z,y of V' \ D satisty N(z) N D # N(y) N D. The locating-
domination number yr(G) is the minimum cardinality of a locating-dominating set.
Locating-domination was introduced by Slater [5, 6]. A set D C V is an identifying
code if D is dominating and every two vertices z,y of V satisfy N[z]ND # N[y|ND.
The minimum cardinality of an identifying code is denoted by M(G). Every graph
G = (V, E) admits a dominating set and a locating-dominating set, since V' itself is
such a set. In contrast, not every graph admits an identifying code; for if a graph
G has two vertices z,y such that N[z] = N[y] (twins), then it clearly cannot have
an identifying code. On the other hand, if a graph does not have twins then V" is an
identifying code. Moreover, since every locating-dominating set is a dominating set,
and an identifying code is a locating-dominating set, every graph G that admits an
identifying code satisfies the inequality

NG) < (@) < M(G).

This chain inequality can be strict and the difference between any two of the numbers
in the inequality can be arbitrarily large, even for trees. To see this, consider the
graph T}, (k > 3) formed by a path P on k vertices and by % paths on nine vertices
(Py) by identifying the center vertex of each Py with a different vertex of the path
Py. Then it is easy to check that M(T}) = 5k, v7.(G) = 4k and (k) = 3k.

A tree is a connected graph that contains no cycle. A vertex of degree one is
called a pendant vertex or a leaf. Every tree with at least two vertices has a leaf.
The neighbor of any leaf is called a support vertex, and every leaf adjacent to a
support vertex x is called a leaf of x. Here we establish sharp bounds on 7. (T') and
M(T) for trees T, improving the bound due to Slater [5] (Theorem 2.5 below) and
the bound due to Bertrand, Charon, Hudry and Lobstein [1] (Theorem 3.1 below).
More precisely, we show that if T is a tree of order n > 4, with ¢ leaves and s support
vertices, then M(T) > 3(n+ ¢ — s+ 1)/7, and if T' is a tree of order n > 3, then
(n+0—5)/2>v(T) > (n+¢—s+1)/3. We also give a characterization of trees
with 9,(T) = (n + € — 8)/2, M(T) = 9(T) or 4(T) = (T).

We finish this section with some terminology and notation. If v is a support
vertex in a graph G and there are at least two leaves of v, then v is called a strong
support. Let L(G) and S(G) respectively denote the sets of leaves and support
vertices in G, and let ¢(G) = |L(G)| and s(G) = |S(G)|. We may use ¢ and s if there
is no ambiguity. Whenever a tree called 7" (or 77, ...) is introduced, we let n', ¢, s’
(or n”,0",s", ...) be its order, number of leaves, and number of support vertices
respectively. A star is a tree with £ > n — 1. A double star is a tree that contains
exactly two vertices that are not leaves. A double star with respectively p and ¢
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leaves attached to each support vertex is denoted by S,,. A subdivided star SS, is
the tree obtained from a star K, by subdividing each edge by exactly one vertex.

The corona of a graph H is the graph obtained from H by adding a new vertex
v' for each vertex v € V(H) and the edge v'v. Note that the corona of a tree is a
tree.

The distance dist(z,y) between two vertices z,y in a graph G is the length of a
shortest path from x to y. The eccentricity of a vertex u is the maximum of dist(u,v)
over all v’s. The diameter of a graph G is the maximum distance over all pairs of
vertices of G.

2 Locating domination in trees

In this section we give a new upper bound and a new lower bound on 7., (T") when T
is any tree. We start with a lemma that will be very useful.

Lemma 2.1 In any tree T of order n > 3, there is a yp(T)-set X with the following
properties:

o [fx is a support vertex, and {, is the number of leaves of x, then X contains
x and exactly ¢, — 1 leaves of x;

o If a-b-c-d is a path where a is a leaf, b,c have degree two, and d is not a leaf,
then X contains b,d and does not contain a,c.

Proof. Let X be a7, (T)-set that contains as many support vertices as possible and
as few leaves as possible. Let & be any support vertex and ¢, be the number of leaves
of z. Suppose that x is not in X. Then all leaves of x are in X, for otherwise any
leaf of x that is not in X would have no neighbor in X. Let y be one leaf of . Then
(X \ {y})U{a} is a y;(T)-set that contains more support vertices and fewer leaves
than X, a contradiction. So # € X. Next, suppose that two leaves y, z of x are not
in X. Then y, z have the same neighbor in X, a contradiction. So at least ¢, — 1
leaves of x are in X. Now, suppose that all leaves of z are in X. Let y be one leaf of
z. Since X is a y,(T)-set, the set X \ {y} is not a locating-dominating set, so there
is a vertex u such that v ¢ X and the only neighbor of v in X is z. Note that u is
not a leaf of z. Then the set (X \ {y}) U {u} is a y.(T)-set with as many support
vertices and fewer leaves than X, a contradiction. This proves the first item. Now
consider the second item. By the first item, X contains b and not a. If X contains c,
then (X \ {c}) U {d} is a v,(T')-set, with as many support vertices and leaves as X,
and with the property described in the second item. If X does not contain ¢, then it
contains d, for otherwise a, c would have the same neighbor in X; and so X satisfies
the desired property. Thus the lemma holds. =
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2.1 A new upper bound on v, for trees

Now we give an upper bound on the locating-domination number of trees.
Theorem 2.2 If T is a tree of order n > 2 then y(T) < (n+ ¢ — s)/2.

Proof. If T has diameter one or two, then the result is easy to check (and we omit
the details). So assume that T has diameter at least three. Let T* be the tree
obtained from 7" by removing all its leaves. So 7™ has order at least 2 and admits a
unique bipartition A, B into non-empty independent sets. Let C' be a set of leaves of
T chosen as follows: for every strong support vertex x in T, put in C all the leaves
adjacent to x except one. Then |C| = ¢ — s. Note that every leaf of T* is a support
vertex in T and every vertex of T*\ S(T) has degree at least two in T*. Now the set
CUS(T)UA is a locating-dominating set of T since T is a tree and so no two vertices
of B\ S(T') have two common neighbors in A. Likewise C' U S(T) U B is a locating-
dominating set of T. Therefore v (T) < min{|C U S(T)U A|,|C U S(T)U B|} =
|C]+1S(T)|+ min{|A\ S(T)],|B\S(T)|} £ l—s+s+(n—L—5)/2=(n+{—35)/2.

|

For the purpose of characterizing the trees attaining the upper bound of Theo-
rem 2.2, we define a family F of trees as follows. A tree T isin F if it can be obtained
from a sequence T, T, ..., Ty (k > 1) of trees such that T} is a path P; = a-y-t or
a path Py, T =Ty, and, if £ > 2 and ¢ < k, T;41 can be obtained from T; by one of
the operations defined below, where D(T}) = {z,y} if Ty = P; and D(T}) = S(T3) if
T1 = P4.

Operation F;: Add a single vertex w attached by an edge to any support vertex
in T;. Set D(T;11) = D(T;) U {w}.

e Operation F»: Add a path P, = u-v attached by edge uz to any support vertex
zin T;. Set D(Ti41) = D(T;) U {u}.

e Operation F3: Add a subdivided star H of order at least five, with center
vertex a, attached by an edge ab’ to any leaf &' of a strong support vertex in
T;. Set D(T;+1) = D(T;) U S(H).

o Operation F,: Add a P; = b-c-d and p > 0 paths P, = u;-v; attached by edges
df and u;f for every j to any leaf f of D(T;) of a strong support vertex in T;.
Let D(Tiy1) = D(T;) U{c,u1,. .., upy}.

o Operation F5: Add a Py = a-b-c-d and p > 0 paths P, = u;-v; attached by
edges dy and u;d for every j to any vertex y of T; that is not a support vertex
and satisfies v, (T;\y) = v.(T;). Let D(T;41) = D(T3)U{b,d,uy, ..., u,}. (Note
that this operation cannot be performed on a leaf y of strong support vertex
since 72(Ti \ y) < 7(Th).)
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Lemma 2.3 IfT € F, then y,(T) = (n+{ —s)/2.

Proof. Let T' € F. From the way T is constructed, it is easy to check that D(T')
is a locating-dominating set of T. Now we show that D(T') is a v.(T)-set of size
(n+£—s)/2. We proceed by induction on the total number of operations JF; performed
to construct 7. Clearly the property is true for 77 = P3; or P;. Assume that the
property is true for all trees of F constructed with &k — 1 > 0 operations and let T’
be a tree of F constructed with & operations. Thus T is obtained by performing one
of the five operations on a tree T that can be obtained by k — 1 operations. We
examine the corresponding five cases. Let X be a y,(T)-set. We can assume that X
satisfies the properties described in Lemma 2.1.

Case 1: The operation performed on T' to obtain T is F,. So T is obtained
from 7" by attaching a single vertex w to a support vertex ¢ in 7”. So ¢ is a strong
support in 7. By Lemma 2.1, X contains ¢ and all its leaves except one, and we
may assume that w € X. Then X \ {w} is a locating-dominating set of 7", and so
v(T") < v, (T) — 1. Also since D(T") U {w} is a locating-dominating set of T', we
have v.,(T') < y,(T") + 1, which implies equality. Then since n =n'+1, ¢ =0 +1,
and s = ¢, it follows that D(T') is a v.(T)-set of size y,(T) = (n + ¢ — s)/2.

Case 2: The operation performed on T' to obtain T is F,. By Lemma 2.1,
X contains w,z and not v. Thus X \ {u} is a locating-dominating set of 7" and
v.(T") < v.(T) — 1. Then since D(T") U {u} is a locating-dominating set of T, we
have y,(T) = y(T') + 1. Sincen =n'+2, ¢ = '+ 1, and s = s’ + 1, it follows that
D(T) is a y(T)-set of size v (T) = (n+ ¢ — s)/2.

Case 3: The operation performed on T' to obtain T is F3. Then n = n' +
21S(H)|+ 1, =0+ |S(H)| -1, and s = s' 4+ |S(H)|. Clearly D(T")U S(H) is a
locating-dominating set of T, and so vz(T) < v.(T") + |S(H)|. By Lemma 2.1, we
have S(H) C X and a ¢ X. Thus X \ S(H) is a locating-dominating set of 7" and
Yu(T") < vL(T) — |S(H)|. It follows that v,(T) = v,(T") + |S(H)|, and so D(T') is
a yL(T)-set of size v, (T) = (n+ € — 5)/2.

Case 4: The operation performed on T' to obtain T is Fy. Then n = n' + 3+ 2p,
s=s4+1+p,and ¢ = ¢'+p. Clearly D(T")U{c,uy,...,u,} is a locating-dominating
set of T, and so v,(T) < v.(T") + 1 + p. Equality follows from the fact that, by
Lemma 2.1, there is a -y, (1”)-set that contains f, and such a set can be extended to a
locating-dominating set of T' by adding {c,u1,...,up}. Thus v (T) = y(T")+1+p
and D(T) is a yg(T)-set of size vp(T) = (n+{ — s)/2.

Case 5: The operation performed on T’ to obtain T is Fs. Then n = n' + 4+ 2p,
and either s = ¢'+1+4p, { =¢'+1+p (if yisnot aleaf) or s = s'+p, L = '+p (if y is
aleafin T"). Then D(T")U{b,d,uy,...,u,} is a locating-dominating set of T, and so
v(T) < 4L(T") +2 +p. On the other hand, by Lemma 2.1, there exists a yz(T')-set
X that contains {b,d,uy,...,u,}. If y € X, then X N7T" is a locating-dominating set
of T" and so y,(T") < v.(T) —2 —p. If y ¢ X, then X N7T" is a locating-dominating
set of 7"\ y and so y.(T") = v.(T" \ y) < v.(T) — 2 — p. In either case we obtain
ve(T) =vL(T") + 2+ p, and so D(T) is a y(T')-set of size y,(T) = (n+(—5)/2. =
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We are now ready to characterize the trees T' with v, (T) = (n + ¢ — s)/2.

Theorem 2.4 Let T be a tree with n > 2. Then v (T) = (n+ ¢ — s)/2 if and only
ifT eF.

Proof. If T € F, then, by Lemma 2.3, D(T) is a y.(T)-set of size (n +{ —s)/2. To
prove the converse, we proceed by induction on the order of 7. Let T be a tree of
order n with v,(T) = (n + ¢ — s)/2 and assume that every tree I” of order n’ < n
with v, (T") = (n' +¢' —s")/2isin F. If T has diameter 1, then T' is a P», and clearly
v(T) =1< (n+{¢—5)/2. If T has diameter 2, then T is a star K, (¢ > 2) and
v(T) = (n+¢—s)/2 = ¢. Thus T is in F because it is obtained from T; = P;
by using t — 2 operations F;. If T has diameter 3, then T is a double star S, , and
v(T) =(n+{—s)/2=p+gq. Thus T € F since it is obtained from T; = Py by
using zero or more operations F;. Now we may assume that 7" has diameter at least
4. Let X be a y,(T)-set. We may assume that X satisfies the properties described
in Lemma 2.1.

First suppose that 7" has a strong support vertex x. By Lemma 2.1, X contains
z and all leaves of x except for one leaf " of z. Let ' be another leaf of x and let
T"=T\«z'. Since N(z")NX = {z}, every non-leaf neighbor of = not contained in X
must have at least another neighbor in X, and so X \ {«'} is a locating-dominating
set of T". Thus v,(T") < v1(T) — 1. Equality results from the fact that every
vr(T")-set can be extended to a locating-dominating set of T by adding a’. Then
sincen=n'+1,s=4¢and { = — 1, we obtain v,(1") = (n' + ¢’ — s')/2. By the
induction hypothesis on 7", we have T" € F. Thus T is in F because it is obtained
from T" by using Operation F;. So we may now assume that there is no strong
support vertex in 7.

Recall the tree T* and sets A, B,C defined in Theorem 2.2. Since there is no
strong support vertex, we have ¢ = (). By the proof of Theorem 2.2, we know
that S(T)U A and S(T) U B are two locating-dominating sets of 7" where min{|A \
S(M)],|B\S(T)|} < (n—1{—s)/2; and since y,(T) = (n + ¢ — s)/2, it must be that
each of S(T)U A and S(T)U B is a y,(T)-set.

Let r,u’ be two vertices of T at maximum distance (equal to the diameter of
T). Root T at r, and in the rooted tree let w,v,z,y be the parents of u',u,v,z
respectively. We distinguish between three cases.

Case 1: v is a support vertex. Let T' = T\ {u,u'}. By Lemma 2.1, X contains u,v
and not «'. Then X \ {u} is a locating-dominating set of T" and v.(T") < v.(T) — L.
Moreover, every v.(1")-set can be extended to a locating-dominating set of 1" by
adding w. Thus y,(T") = v,(T) —1. Sincen =n'+2, s = s'+1, { = '+ 1, it follows
that y,(7") = (n' + ¢’ — s")/2. By the induction hypothesis, we have T" € F, and so
T € F because it is obtained from 7" by using Operation F».

Case 2: v is not a support vertex and has at least two children. Thus T, is a
subdivided star of order at least five. Up to symmetry we may assume that z isin A,
and so v is in B (since v is not a leaf). Recall that S(T)UB is a y.(T')-set. Therefore
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the set Y = S(T) U B\ {v} is not a locating-dominating set. Since v itself has two
neighbors in Y, it must be that z is not in ¥ and either (i) z has no neighbor in ¥’
or (ii) there is a vertex 2’ ¢ Y, 2’ # z, such that N(z) N Y = N(2') NY. Since z is
not in Y, it is not a support vertex, so y is not a leaf, and so y € B C Y. Thus we
are not in case (i), and we are in case (ii) with N(z) NY = N(z')nNY = {y}. If 2
has a child v’ # v, then by the same argument we have v' € B C Y, so v',y are two
neigbhors of z in Y, a contradiction. It follows that the only child of z is v. If 2’ is
not a leaf in T', then either 2’ € S(T") C Y, a contradiction, or 2’ € A\ S(T") and (as
in the proof of Theorem 2.2) 2z’ has two neighbors in B (necessarily in B\ {v}), again
a contradiction. So z' is a leaf and consequently y is a support vertex in 7. Now let
T'=T\T,. Then z,z are leaves of y in T", so y is a strong support vertex in T". It
can be seen that v,(7") = v,(T") — (degr(v) — 1), and since n = n' + 2degp(v) — 1,
s = +degrp(v)—1, and ¢ = ¢'+degy(v) —2, we obtain y,(T") = (n'+¢' —s')/2. By
the induction hypothesis on 7", we have T" € F. Thus T € F because it is obtained
from 7" by using Operation Fj.

Case 3: v is not a support vertex and has only one child. Seeing the previous
cases we may assume that every descendant of z has degree one or two. By the
second item of Lemma 2.1, X contains u,z and not «’,v. Let T = T \ {«/,u, v}.
Suppose that either z is a support vertex or there is a path z-¢-b-a in T,. In either
case, by Lemma 2.1, there is a vz (T")-set containing z. Such a set can be extended
to a locating-dominating set of T by adding u, and so v,(T) < v,(T") + 1. Since
n=n"+3,s=s"+1and ¢ ="+ 1, it follows that (n +¢ —s)/2 = v,(T) <
(n"+0"—5s")/24+1=(n—1+{—s)/2, a contradiction. Therefore every child of z
(if any) other than v is a support vertex. Call Z the set of support vertices adjacent
to z in T, (if any), and put |Z| = p. We consider two subcases:

Subcase 3.1: y is a support vertex in T. Let T" = (T'\ T,) U {z}. Thus y is
a strong support vertex in 7" and n’ > 3. Since z € X, the set X \ ({u} U Z) is
a locating-dominating set of 7" and so y,(T') < v(T) — 1 — p. By Lemma 2.1,
there exists a vz (T")-set that contains 2. Such a set can be extended to a locating-
dominating set of T by adding Z U {u}, and so v,(T) < 7,(T") + 1 + p. Thus
v (T") = v(T) =1 —p. Clearly " =n—-3-2p,s =s—1—pand ¢ ={—p,
implying that v,(7") = (n' 4+ ¢ — s")/2, where X \ ({u} U Z) is a v, (T")-set that
contains z. Now by induction on 7", we have 7" € F. Thus T is in F because it is
obtained from 7" by using Operation Fj.

Subcase 3.2: y is not a support vertex in T. Suppose that y has degree 2 and
its parent is a support vertex, and let 7" = T'\ T,. Then n’ > 2. If n’ = 2 then
v(T) # (n+ ¢ — s)/2 since { = s = p+ 2 and n is odd, a contradiction. So n' > 3.
Then every ,(T")-set can be extended to a locating-dominating set of T' by adding
ZU{u,z}, and so 7, (T) < y(T")+2+p. Sincen' =n—-5—-2p,s' =s—-1-p
and ¢ = ¢ —1—p, it follows that (n+ ¢ —s)/2 =y, (T) < (W' + 0 = §)/2+2+p=
(n — 1+ —s)/2, a contradiction. Thus either deg,(y) > 3 or degy(y) = 2 and the
parent of y is not a support vertex. Let 7" = T\ T,. Clearly n' =n —4 —2p > 3,
and either & =s—1—pand ¢' =¢(—1—p,or ' = s—pand ¢' = { — p, depending on
whether y has degree at least three or has degree two, respectively. Now since every
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~v.(T")-set can be extended to a locating-dominating set of 7" by adding Z U {u, 2},
we obtain:

n+l—5)/2=7(T) <y (T +2+p < (n'+0 —5")/2+24+p=(n+L—35)/2. (1)

It follows that v, (T") = (n' 4+ ¢' — s')/2 and, by induction, T’ € F. Let us prove that
vo(T'\ y) = vo(T"). Since v (T') = (n' + ¢ — s')/2 then, as remarked before (see
Theorem 2.2), T" admits two yz(T")-sets, namely @, = C(T') U S(T") U A(T") and
Q2 =C(T")US(TYUB(T"). If y is a leaf in T", then y ¢ C(T") since its parent is not
a strong support vertex which belongs to ()1, and so @) is a locating-dominating set
of 7"\ y. Now if deg,(y) > 3, then without loss of generality y € B'(1") and so Q; is
a locating-dominating set of 7"\ y. In each case, we have v, (T"\y) < |Q1| = y.(T").
Assume now that v, (7" \ y) < 7.(T"). Then every v,(T"\ y)-set can be extended to
a locating-dominating set of T by adding Z U {u, z}, where y is locating dominated
by z. So we have v,(T) < vp(T"\y) + 2+ p < 7L(T") + 2 + p, a contradiction to
(1). Thus y.(T'\ y) = v(T"), and T € F because it is obtained from T’ by using
Operation F5. This completes the proof. m

2.2 A new lower bound on v for trees

The following lower bound on the locating domination number in trees is due to
Slater [5].

Theorem 2.5 (Slater [5]) For every tree T, v,(T) > n/3.
Here we improve the lower bound of Theorem 2.5.

Theorem 2.6 If T is a tree with order n > 3, then v (T) > (n+ ¢ —5s+1)/3 and
this bound is sharp.

Proof. If there is no strong support vertex in 7', then ¢ = s and by Theorem 2.5,
the result is valid. Thus assume that 7' contains at least one strong support vertex.
Clearly the result holds for stars of order at least three. Let 7" be the smallest tree
that does not satisfy the theorem, that is y,(T) < (n+ ¢ — s+ 1)/3, and let S be
a v, (T)-set and u a strong support vertex. Let 7" be the tree obtained from T' by
removing a leaf v’ adjacent to u. Then without loss of generality, S contains u and all
its leaves except one leaf u” # u'. Then S\{v'} is a locating-dominating set of 7", and
50 YL(T") < vr(T)—1. Since T" has order less that T, then v.,(T") > (n'+¢'—s'+1)/3.
Also sincen' =n—1,0 =(—1, and s’ = s, we obtain:

Y(T) 2T +1> (' +0¢ - +1)/3+1>(n+0—s+2)/3,

contradicting our assumption.

The fact that this bound is sharp was already proved in [5] with trees that satisfy
s = (. Another example consists of the caterpillar (tree such that the removal of the
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leaves produces a path) with ¢ = s = k > 2 and where the distance between any two
consecutive support vertices is two. (The path Pj is the smallest such tree). Then
T has order n =2k +k —1, and v,(T) = k = (n + ¢ — s+ 1)/3. This completes the
proof. m

2.3 Trees T with v,(T) =~(T)

In order to characterize the trees T that satisty v.(T) = v(T'), we define a family T
of trees as follows. A tree T is in 7 if it can be obtained through a sequence T}, T,
.., Ty (k > 1) of trees such that T} is the path P, = zy, T = T}, and, if k > 2, T4y
can be obtained from T; by one of the operations defined below. Let one the vertices
of T} be considered a support, say z and the other a leaf, say y.

e Operation Ty : Pick one support vertex z in T; and add a path u-v attached by
an edge uz.

e Operation Ty: Pick one arbitrary vertex b of T; and add a subdivided star
H =88, p> 2, with center vertex a attached by an edge ab.

e Operation T3: Pick one vertex c of T; that belongs to a vy, (T;)-set and add a
path w-v-w attached by an edge uc.

Lemma 2.7 If T is a tree with v,(T) = y(T), then T has no strong support vertex.

Proof. For suppose that x is a strong support, and let y, z be two leaves adjacent
to . Let X be a yr(T)-set. By Lemma 2.1, we may assume that X contains z and
y. But then X \ {y} is dominating set that is strictly smaller than X, so T has a
dominating set of cardinality v(T) — 1, a contradiction. Thus the lemma holds. m

We now are ready to characterize the trees T with v.(T) = v(T).
Theorem 2.8 Let T be a tree withn > 2. Then y,(T) =~(T') if and only if T € T.

Proof. First suppose that T is a tree in 7. We prove that v, (71") = v(T) by induction
on the number of operations performed to construct 7. Clearly the property is true
for Ty = P,. Assume that the property is true for all trees of 7 constructed with
k —1 > 0 operations and let T be a tree of 7 constructed with %k operations. Thus
T is obtained by performing one operation of {71, 72,73} on a tree T" obtained by
k — 1 operations. Let X be a 7y.,(T)-set of T. By Lemma 2.1, we may assume that
X contains all support vertices.

Suppose that T" is obtained from 7" by operation 7y. Clearly y(T') = v(T") + 1.
Every 7,(T")-set of T" can be extended to a locating-dominating set of 7' by adding
u, and so v,(T) < y,(T") +1. By Lemma 2.1, we have u, z € X, and every neighbor
of z besides its leaf is either in X or adjacent to another vertex of X. Thus X \ {u}
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is a locating-dominating set of 7" and so v, (1") < v.(T) — 1. It follows that v.,(7) =
v(T") + 1 and, by induction on T", y,(T") = v(T"), hence y,(T) = ~(T).

Suppose that 7' is obtained from 1" by operation 75. Then it can be seen easily
that v(T') = ~(7") + p and v,(T) = ~v.(I") + p. By induction on 7" we obtain
7(T) = ().

Suppose that 7" is obtained from T" by operation T3. Then v(T') = y(T") + 1 and
v(T) < v2(T") + 1 because every . (T")-set that contains ¢ can be extended to a
locating-dominating set of 7' by adding v. By Lemma 2.1, X contains v and not u.
Thus v2(T") < v2(T) — 1 and the equality is obtained. By induction on 7", we have
71(T") = 7(T"), hence v, (T) = (T).

To prove the converse, we proceed by induction on the order of T. Let T be a
tree of order n with v, (T') = v(T), let D be a vz (T)-set, and assume that every tree
T' of order n' < n with ,(T") = 4(T") is in 7. By Lemma 2.7, T has no strong
support vertex. Thus, by Lemma 2.1, we may assume that

D contains every support vertex and no leaf. (2)

If T has diameter 1, then T = P, and T € 7. By Lemma 2.7, T cannot have
diameter 2. If T has diameter 3, then, by Lemma 2.7, T is a Py, which is a member
of T (a P, can be obtained from 77 by Operation 7;). Now we may assume that T’
has diameter at least 4. Let r,u’ be two vertices of T' at maximum distance (thus
equal to the diameter of T'). Root T at r and in the rooted tree let w,v, z be the
parents of u', u, v respectively. We distinguish between three cases.

Case 1: v is a support vertex. Let T' =T \ {u,u'}. Then v(T) =~v(T") + 1 and
v(T) < L(T") + 1. We have u,v € D, and so D \ {u} is a locating-dominating set
of T" because every vertex adjacent to v besides its leaf is either in D or adjacent to
at least two vertices of D. Thus v,(7") < v,(T") — 1, which implies that v,(7) =
v (T") + 1. It follows that v,(T") = v(1") and by induction on 7", we have T" € T .
Therefore T' € T since it is obtained from 7" by using Operation 7;.

Case 2: v is not a support verter and has at least two children. Let T, be
the subtree of T rooted at v. Note that every child of v is a support vertex, and
so T, is a subdivided star. Let 7" = 7'\ T,. Then 7" is nontrivial since T has
diameter at least 4. Moreover, it is easy to see that v(T') = v(T") + degy(v) — 1 and
v(T) = vp(T") + degy(v) — 1. It follows that v.(T") = v(T") and, by the induction
hypothesis on 7", we have T" € T. Therefore T' € T since it is obtained from 7" by
using Operation 7s.

Case 3: v is not a support vertex and has only one child. So degy(v) = 2. Let
T =T\ {«,u,v}. Then +(T) = v(T") + 1 and v,(T") < y.(T) — 1 since v € D
and v ¢ D (else replace v by z) and z € D. Suppose that v,(T") < y,(T) — 1, then
yu(T") < (v(T") +1) — 1, a contradiction. Thus v (T") = y,(T) —1, and D\ {u} is a
v.(T")-set containing z. By induction on T”, we have T' € T. It follows that T € T
because it is obtained from 7" by using Operation 7;. =
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3 Identifying codes in trees

3.1 A new lower bound on M for trees

In [1], Bertrand, Charon, Hudry and Lobstein established the following lower bound
on the minimum cardinality of an identifying code in trees.

Theorem 3.1 (Bertrand, Charon, Hudry, Lobstein [1]) IfT is a tree of order
n >3, then M(T) > 3(n + 1)/7, and this bound is sharp for infinitely many values
of n.

Our next result improves the lower bound of Theorem 3.1.

Theorem 3.2 If T is a tree of order n > 4, then M(T) > 3(n+{¢—s+1)/7, and
this bound is sharp for infinitely many values of n.

Proof. We prove the theorem by induction on n. The result holds clearly when
n = 4. Now let T be a tree with n > 5 vertices. If ¢ = 2, then T is a path P, with
n >4 and s = 2, and by Theorem 3.1 the result is valid. Thus we may assume that
¢ > 3. Choose an M(T)-set D that contains as few leaves of T' as possible.

For each support vertex x, let L, be the set that consists of x and all its leaves.
We observe that at most one vertex of L, is not in D; for otherwise, either z and
some leaf y of x are not in D, and then N[y] N D = 0, or two leaves y,z of x are
not in D, and then N[y] N D = N[z] N D, in either case a contradiction to the
fact that D is an identifying code. Moreover, the sets L, are disjoint for different
«’s in S(T). Thus D contains at least ¢ vertices of L(T) U S(T). Consider the set
W =V\(DUL(T)US(T)). f W =0, then V\ (S(T)UL(T)) C D, and so, by the
preceding observation, we have |D| > n—({+s)+{ = n—s. We obtain |D| > n—s >
3(n+¢—s+1)/7 as desired (where the last inequality follows from ¢ > 3). Now let
W # 0, and pick any w € W.

For every neighbor z of w, let T, be the component of T\ zw (the graph obtained
from T' by removing the edge zw) that contains z. Let n,,¢,, s, denote respectively
the order, number of leaves and number of support vertices in the tree T5,. If n, =1
then w is a support vertex in 7', a contradiction. If n, = 2, then, since w ¢ D, the
two vertices z, 2 satisfy N[z] N D = N[z'] N D, a contradiction. So n, > 3. Suppose
that n, = 3. Then T, is a path with vertex set {z, 2/, z"}. If {z,2',2"} C D, then one
of 2" or 2" is a leaf, say 2, but then {w}UD\{z'} is an M(T')-set that contains fewer
leaves than D, a contradiction. Thus D contains at most two vertices of {z, 2, 2"}.
Actually D must contain exactly two non-adjacent vertices of {z, z’, 2"}, for otherwise
either some vertex x of T, satisfies N[z]ND = () or some two vertices z, y of T}, satisfy
Nlz]ND = N[y|ND. Thus, if n, = 3, then either T is a path z-z'-z" with z,2" € D
and 2’ ¢ D, or T is a path z’-z-z" with z/,2" € D and z ¢ D.

Now suppose that w has a neighbor v in V' \ D. Let T}, be the component of
T \ vw that contains w, and let n,, ¢y, s, denote respectively the order, number of
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leaves and number of support vertices in Ty,. If n,, < 3, then either w is a leaf or a
support vertex in T, a contradiction, or n, = 3 and T}, is a path w"-w'-w, and then
N[w"]N D = N[w'] N D, again a contradiction. So n, > 4. Since v ¢ D, the set
D, = DnNT, is an identifying code of T, so, by the induction hypothesis, we have
|Dy| > 3(ny + ly — S+ 1)/7. Recall that n, > 3. Also the set D, = DN T, is an
identifying code of T, because w ¢ D. If n, = 3, then, by the preceding paragraph,
T, is a path v'-v-v" with v',v" € D, so |D,| = 2. Moreover, we have n,, = n — 3,
by >0—2and s, =s—1. S0 |D| = |Dy|+2>3nw+ly—Su+1)/7T+2 >
3(n—3+0—2—s+1+1)/7T+2=3(n+l—s+1)/7T—12/7+2 > 3(n+{—s+1)/7 as desired.
If n, > 4, then, by the induction hypothesis, we have |D,| > 3(n,+¢, —s,+1)/7. So
|D| = |Dy|+|Dy| 2 3(ny+ly—$0w+1)/74+3(ny+ 6, —s,+1)/7. Let ¢ = sy + 5, — 5.
Then we have 0 < ¢ < 2 and £, + ¢, > ¢ +q. It follows that |D| > 3(n+¢—s+2)/7.

Hence we may assume that all neighbors of w are in D. If n, = 3 for every
neighbor z of w, then, by the paragraph before the preceding one, T is a tree obtained
from a star K, with center w by subdividing each edge twice. Then n = 3k + 1,
¢ =5==Fk(sok >3),and |D| = 2k > 3(n+{ — s+ 1)/7 as desired. Therefore
we may assume that n, > 4 for some neighbor y of w. Suppose that degp(w) >
3. Since w is not a support vertex, the component 77 of T\ yw that contains w
has n; > 5 vertices. Since degy(w) > 3, the set D N T} is an identifying code of
Ty, and since w ¢ D, the set D N Ty is an identifying code of T,. Then the rest
of the proof is similar to the preceding paragraph. Finally we may assume that
degr(w) = 2 and call z,y the two neighbors of w, where n, > 4. If n, = 3, then
T, is a path z-z'-z" with z,2" € D and 2’ ¢ D. Let T = T\ {2/,2"}. Then
D NT' is an identifying code of T and so, by the induction hypothesis, we have
ID| > |DNT'|+1>3(n +¢ —s+1)/7+1. Sincen’ =n—2,¢ ={and s’ = s,
the result follows. Now assume n, > 4. Then D, = DNT, and D, = DN T, are
identifying codes for T, and T} respectively. Let ¢ = s, +s, —s. Then 0 < ¢ < 2,
ng +ny =n—1and ¢, + ¢, > {4+ ¢q. Thus, by the induction hypothesis, we have
|D| = |Dy|+|Dy| > 3(ne+ly — 5, +1)/T+3(ny + Ly, —s5,+1)/7 > 3(n+{—-s+1)/7.

The fact that this bound is sharp was already proved in [1] with trees that satisfy
s = {. Another example consists of the tree T}, (k > 2) obtained from % disjoint
coronas of P with centers ¢; by adding £ — 1 new vertices z; and the edges x;c;
and z;ciy1, ¢ = 1,...,k — 1. Then in T} we have n = Tk — 1, { = s = 3k and
M(Ty) = 3k = 3(n+ ¢ —s+1)/7. (For instance, the set of support vertices is a
minimum identifying codes of T},). ®

3.2 Trees T with M(T)=~(T)

Let us first recall that a set A C V(G) is a packing set of G if N[z]N N[y] = 0 holds
for any two distinct vertices z,y € A. It is well known (see [3]) that every graph G
satisfies |A| < v(G), for every packing set A of G.

Theorem 3.3 Let G be a forest. Then M(G) = ~(G) if and only if V(G) can be
partitioned into two sets C, F such that: every component of C' is a corona of size
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at least 6, there is a set I C F such that the closed neighbourhoods of the vertices
of I are pairwise disjoint, there is no edge between I and C, every vertex of N(I)
has a neighbour in S(C) and no neighbour among the leaves of C, every vertex of
F\(IUN(I)) has at least two neighbours in S(C'), and at most one neighbour among
the leaves of C. Moreover, if G has this structure, then I U S(C) is an identifying
code of T of minimum size.

Proof. Let G = (V,E) be a forest such that M(G) = v(G), and let D be an
identifying code of size M(G). So D is also a minimum dominating set. For each
vertex v € V, put D(v) = N[v] N D. The fact that D is an identifying code means
that there are no two vertices u, v such that D(u) = D(v). Let I be the set of isolated
vertices in the subgraph induced by D. Note that there is no component of size 2 in
the subgraph induced by D, for otherwise the two vertices u,v of such a component
would satisfy D(u) = D(v) = {u,v}. So every component of D \ I has size at least
three. Let X be any component of size at least 3 of D, and let  be any vertex of
X. Then z has a private neighbour in V' \ D (i.e., a vertex of N(z) \ N(D \ z)),
for otherwise, since x has a neighbour in X, the set D \ « would be a dominating
set smaller than D. Moreover x has exactly one private neighbour, for if it had two
private neighbours «’, 2", then we would have D(z') = D(z2") = {z}. So let us call '
the unique private neighbour of z in V'\ D, for every vertex z of every component of
size at least 3 of D. Let C4,...,C} be the components of size at least 3 of D, and let
C1, ..., Cj be the corresponding sets of private neighbours. So, foreach i =1,...,k,
we have |C]| = |Cy], and the set C is a stable set, for otherwise C;UC! would contain
a cycle. Also C1U...UC] is a stable set for otherwise, up to symmetry, there would
be vertices z € Cy, y € C, such that 2'y’ € E, and then (D \ {z,y}) U {z'} would
be a dominating set smaller than D. So Cy U CY,...,Cy U C}, induce pairwise non-
adjacent coronas or size at least 6. Put R = (V' \ D)\ (C{U---UC}), and consider
any vertex r of R. Then r has at least two neighbours in D, for otherwise, if v is
its unique neighbour in D, then, if v € D\ I we have D(r) = D(v'), and if v € I
we have D(r) = D(v), in either case a contradiction. It follows that no vertex of I
has a private neighbour, and so every vertex of I has at least two neighbours in R.
Then any r € R cannot have two neighbours z,y € I, for otherwise (D \ {z,y})U{r}
would be a dominating set smaller than D. Therefore the sets N[z] (z € I) induce
pairwise disjoint stars of size at least 3, and for any « € I, every neighbour of = has
a neighbour in C; U--- U CY, If some vertex u of R has at least two neighbours 2/, ¢’
in ¢, then (D \ {z,y}) U {u} is a dominating set smaller than D, a contradiction.
If some vertex u of N(I) has a neighbour z' in C’, with z being the neighbour of
win I, then (D \ {z,2}) U {u} is a dominating set smaller than D. So the sets
C,F(F =V \ C), ]I have the property described in the theorem.

Conversely, suppose that G has the structure described in the theorem. Then it is
easy to see that JUS(C) is an identifying code, so v(G) < M(G) < |[IUS(C)|. On the
other hand, the set (C'\ S(C'))UI is a packing set of G, and so y(G) > |(C\S(C))UI|.
Since |C'\ S(C)| = |S(C)|, we have equality throughout. m
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Comments

During the submission of this manuscript, the article [4] by Haynes, Henning and
Howard appeared. These authors introduce locating-total dominating sets and differ-
entiating-total dominating sets, which are defined respectively as locating dominating
and identifying sets S with the additional property that the subgraph induced by
the vertices of S does not contain isolated vertices. Since locating-total dominating
sets are locating sets and differentiating-total dominating sets are identifying sets,
we have vF(G) > v2(G) and vP(G) > M(G), where vF(G) and v (G) denote the
minimum cardinality of a locating-total dominating set and a differentiating-total
dominating set of G respectively. Haynes, Henning and Howard prove that every
non-trivial tree T satisfies v/(T) > 2(n + 1)/5 and every tree T of order n > 3
satisfies 77 (T) > 3(n + 1)/7. Clearly, since v2(G) > M(G), our Theorem 3.2
improves the lower bound on v2 (T') for trees T of order n > 4.

Finally, we note that the lower bound on vF(T') has been improved recently by
the second author in [2].
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