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Abstract
For a fixed graph H without isolated vertices, the H-decomposition num-
ber dy(G) of a graph G is the minimum number of vertices that must
be added to G to produce a graph that can be decomposed into copies
of H. In this paper, we find formulas for dg(G) in the cases where H
is a path or a cycle and G is a path or a cycle. We also show a general
lower bound which is useful in these cases and conjecture a formula for

dp, (K1m)-

1 Introduction

For a fixed graph H without isolated vertices, the H-decomposition number dg(G) of
a graph G is the minimum number of vertices that must be added to G to produce a
graph that can be decomposed into copies of H. (Any number of edges may be added
incident with the new vertices.) Equivalently, it is min(|V(K)| — |V(G)|) where K is
an H-decomposable graph with induced subgraph G. The H-decomposition number
was previously studied in [1], where the authors show that the H-decomposition
number is well-defined and give general upper bounds, as well as specific bounds
and formulas when H is a path, cycle, or complete graph. In this paper, we present
formulas for the H-decomposition number dy (&) when both H and G are restricted
to the class of paths and cycles.

Our first result provides a general lower bound on the H-decomposition number
of a graph G. We use ¢(G) to represent the number of edges in a graph G and A(G)
for the maximum degree of G.

Theorem 1. The H-decomposition number of any graph G satisfies

e(f) @)
S~ S| 90O

where M = max ([SE?{H’ [ﬁ((g))})

* This paper is dedicated to the memory of Kevin McDougal.
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(%1 )

U10 U11 Ur2 U3 = U2 U21 U22 U23 U24

Figure 1: Ps with the addition of two new vertices and several new edges is decom-
posed into copies of Py, illustrating dp,(Ps) = 2.

Proof. Let d = dg(G).
Let K be a graph with induced subgraph G so that |V(K)| = |V(G)|+ d and K
can be decomposed into k copies of H. Thus, K has exactly k - e(H) edges.
However, each new vertex in K can be incident with at most A(H) edges from
each copy of H. Thus, K has at most e(G) + A(H)dk edges. We have k- e(H) <
e(G)+A(H)dk, so d > 2. el@ " Gince we must have enough copies of H to cover

A(H)  A(H)E
every edge of G, k > [

( H)-I We must also have enough copies of H to cover every

edge at a maximum-degree vertex of G, so k > [A(G)-‘ ) A"Ef;)M. O
If e(H) divides e(G) and = e(H) > 2((11;’ then this bound is trivial. In general,

however, it is sharp. In the following sections, we show that dp,(P,) and dp,(C,)
achieve this bound when n > m, and that dc,, (P,) achieves the following slightly
stronger version of the bound in Theorem 1 for n > m.

Corollary 1. The C,,-decomposition number of any graph G that does not contain
Cp as a subgraph is at least

m e(G)
EREER P

This is essentially Theorem 1 except for the denominator of m — 2. If the graph
G does not contain any copies of C,,, then every copy of C,, in the decomposition
will necessarily contain at least one vertex and two edges that are not in G. Thus,
each copy uses at most m — 2 edges of G.

2 Decomposing Paths into Paths

First we consider dp, (P,). Figure 1 illustrates the method and the labelling that
will be used in the next theorem with the example dp,(Ps) = 2. We will also need
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the following observation about the ceiling function.
Observation 1. For any positive real number z, [% [z]] = [%].

Proof. Since [z] > z, we can see that [ [z]] > [£]. Since 2 [%] is an integer that
is as least as large as z, we have 2 [

2] > [x] If we divide both sides by 2, we see
that [%] is an integer at least as large as 3 [2]. The result follows. a

Theorem 2. For any positive integers n and m with m > 3, we have

—1 -1 .
|25 - sy | o m
m-—n ifn <m.

de(Pn) = {

Proof. When n < m, we must add enough vertices to complete a single copy of P,,.
Thus, we will concentrate on the case n > m. The lower bound in this case comes
from Theorem 1. We must show that this number can be achieved.

We will divide the n — 1 edges of P, into N = Hfb;_ﬂ subpaths so that the lengths
of any two subpaths differs by at most 1. Let j; be the number of edges in the ith
subpath, 1 < i < N, and notice that j; < m — 1 for each i. Label the vertices of
the path, in order, U105 ULy -« -5 ULy = W20, U2L, - - -5 U255 = UQjzy -+ -y W(N-1)jn_1 = UjO,
Uj1,-..,Unjy. LThus, the first subscript indicates which subpath the vertex belongs
to and the second subscript indicates which vertex on that subpath; N — 1 of the
vertices belong to two different subpaths and so have two labels.

Let d — [Tl - sk 111] . First, we will add d new vertices vy, vy, - . ., vg. We wish

to extend each of the subpaths into a path of length m. For each i, 1 << N — 1,
join wgj;, = ugi1)o to v1; join vy tO U(ig1)1; join U(iy1)1 to v2; and so forth, until we have
a path g, U, - - ., Usj;, V1, U(i41)1, V2, UGi41)2, U3, - - - Of length m for each 4. Similarly,
we join uyj, to v, join vy to wiy, join wy; to ve, and so forth, to extend the last
subpath to a path of length m. We must check that both d and j;1;, for each i, are
large enough so that we can, in fact, extend each path to length m.

n—1

There are at least \‘ (le J edges in each subpath, so at most m —1— W;ﬁ J =
1

m—

[m -1- [Lj —‘ additional edges are required for each path. For every two new

edges needed on each path, we need one new vertex v;. Since d = [7—1 -3 E]-I,
m—1
it follows (see Observation 1) that there are enough new vertices to extend each
subpath into a copy of P,.
We will refer to the vertices u;1,us,. .., uij,-1) as the internal vertices of the

tth subpath. In order to extend the ith subpath as described above, we need at

least [mT’l -‘ internal vertices on the 7+ 1st subpath. The minimum number

n—
2("_11

of vertices internal to any subpath is [ o= 1J Thus, we need [

2=% 111 = 111

[WT—I = ]]. With some algebra, we find that this inequality holds whenever
m—1

_1J2




92 BULLINGTON, EROH, MCDOUGAL, MOGHADAM AND WINTERS

[2-L] (m+3) <3(n—1). For n > m >5 and m < n — 2, we have

2oy = (250 |25 @

m—1

n—1
< -1 -2 4
< n-tem-2+[223]
n—1
< 3(n—-1).
For m = n — 1, the inequality [ Lill] - 1J > [7—1 - 2{& -| becomes |%52| >
m—1 m—1
[223]. This inequality holds for n = 5,6,7 and, since |253| > 224 > 2 > [
for n > 8. We can check that dp,(P,) is 0 when n is odd and 1 when n is even, an
dp,(P,) is 0 when 3 divides n — 1 and 1 otherwise. O

For a given n, the value of m that produces the largest decomposition number
is m = n — 1. In this case, our formula becomes dp, ,(P,) = {"T’?’] In particular,
path into path decomposition numbers can be arbitrarily large. On the other hand,
for n sufficiently large relative to m, we will show (in Theorem 3) that dp,, (P,) < 1.

First, we need the following number-theoretic lemma.

Lemma 1. Let a be a positive integer. Let S be the set of nonnegative linear com-
binations of a, a + 1, and a + 2, that is,

S={za+y(a+1)+z2(a+2)]|z,y,2 are non-negative integers}.
Then the largest integer not in S is

(a=2)(a+1) if a is odd

if a is even.

Proof. Observe that if n € S for some positive integer n, then n + ka € S for
every nonnegative integer k. This observation leads us to consider residue classes of
integers modulo a. Let

R.(n)={...,n—2a,n—a,n,n+a,n+2a,n+3a,...}

be the residue class modulo a of the integer n. Notice that n(a 4+ 1) € S N Ry(n)
for any integer n, so SN R,(n) is non-empty. Let s(n) denote the least non-negative
integer in the residue class R,(n) that is a member of S. Certainly the smallest
member of R,(0) contained in S is 0. Note that

za+yla+1)+z2(a+2)=y+2z moda.

Therefore, for n = 1,2,...,(a — 1), the least positive integer in R,(n) that is a
member of S is s(n) = y(a+1) + z(a +2) = (y + z)a + (y + 2z) where y and z are
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chosen so that y + 22z = n and y + 2 is as small as possible. The values of y and z
that satisfy these conditions are

y=12="1 ifnisodd
y=0,2=7% if n is even.

With these values for y and z, the value of s(n) = (y + z)a + (y + 2z) is strictly
increasing with n. Therefore the largest of these minimal values is s(a — 1) which
computes to

L{a+1)+%2(a+2) when ais even
sla—1) =
0(a+ 1)+ %*(a+2) when aisodd
or ,
422 when a is even
s(a—1)=

% when a is odd.

The largest integer that is not a member of S will be N(a) = s(a — 1) — a, which
simplifies to the formula in the assertion. a

Remark 1. The conclusion of Lemma 1 is valid when the set S is restricted by
requiring y = 0 ory = 1.

Proof. This restriction on y leaves the set S unchanged since the number n = za +
y(a+ 1) + z(a + 2) may be written

@+ %)a+0(a+1)+ (2 + %)(a+2) when y is even
e (Hy g4 la+1)+ (2 + 52)(a+2) when yis odd.

O

Now it can be shown that for n sufficiently large relative to m, the decomposition
number dp, (P,) is at most 1.

Theorem 3. Let n and m be positive integers with n > m > 3. Define
(m=3)(m-4) ;
s if mis even
B(m) =
(m—3)2 . .
— if m is odd.
If n > B(m), then dp, (P,) < 1. If n = B(m), then dp,,(P,) = 1.

Proof. Suppose we have a decomposition of P, into copies of P,, in which only one
new vertex is added. Each copy of P, has at most 2 edges not on the path P,, and
hence exactly m — 1, m — 2, or m — 3 edges on P,. Conversely, if the n — 1 edges
of P, can be partitioned into subpaths of length m — 1, m — 2 and m — 3, then P,
can be decomposed into copies of P, using only one additional vertex. We can add
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Figure 2: Example of construction for n < m, showing dp(C5) = 2 =
[5(6-1) - 35].

the new edge to the right end of each subpath. For a subpath of length m — 3, an
additional path vertex is needed, but we can use an internal vertex of some other
subpath. In the case m = 4, there is at most one subpath of length m — 3 = 1 and
at least one of length m — 2 = 2.

Thus, dp,, (P,) < 1if and only if there exist non-negative integers z, y, and z such
that n — 1 =x(m — 1) + y(m — 2) + z(m — 3). From Lemma 1, the smallest integer
n — 1 that cannot be written in the form n — 1 =xz(m — 1)+ y(m — 2) + z(m — 3) is
N(m — 3). Thus, we know dp, (P,) < 1forn—12> N(m — 3) 4+ 1 which simplifies
to the formula given. a

3 Decomposing Cycles into Paths

Theorem 4. For any positive integers n and m with m > 3, we have

de(On):{ [mTl_'”% -| ifnzm

maz([s(m —1) — in] ,m—n) ifn <m.

Proof. In the case n < m, the cycle C,, should be divided into two subpaths of
equal or nearly equal length. Each subpath can be extended by alternating new
vertices with internal vertices of the other subpath. The shorter subpath has |7 ]
edges and needs m — 1 — | 3] = [m—1- %-| more. Since we can add at most two
new edges to this subpath for each new vertex, we need at least [% [m —-1- %H =
[$(m — 1) = 1n] new vertices (see Observation 1). However, each path will need m
vertices total, including both new vertices and internal vertices of the other subpath,
so we must also have at least m — n new vertices.

We concentrate on the case n > m. The lower bound follows from Theorem 1.
We must show that this bound can be achieved. The n edges of the cycle are divided
into [#] subpaths of nearly equal length less than m, and then these subpaths
are extended using the new vertices and the internal vertices of the next subpath
clockwise around the cycle alternately. The proof that there are enough new vertices
and enough internal vertices in the next path clockwise to extend each subpath is

very similar to the proof in Theorem 2 and therefore omitted. a
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Figure 3: Example of construction for n > m, showing dp,(Cyp) = 1 =

5—-1 10
[T B zr%ﬂ'
4 Decomposing Paths into Cycles

Next, we will consider a formula for d¢,, (P,). First, we need a lemma about parti-
tioning an integer into a sum of integers with desired properties. This lemma will be
useful in dividing the path P, into subpaths to form copies of C,,.

Lemma 2. Let a and b be positive integers with a > b, and let g and r be positive
integers so that a = qb+1r, 0 < r < b— 1. Then there is a partition of a into a sum
of ¢+ 1 positive integers, a = j1 + ja + ...+ jg+1, 50 that each of the following holds:

o fori <k, ji < Ji;
o for every i and k, |ji, — ji| <2;

e there is at most one i so that j; Z b modulo 2.

Proof. Notice that ¢ > 1 s0 ¢+ 1 > 2. If the number (b —r) — 2(q + 1) {quﬂJ is

even, it can be written as 2z for some integer x where 0 < z < ¢+ 1. In this case,
we define

b_
jizb—Q{irJ—2 for1<i<zx
2(¢+1)
i =b 2{ bor J forz+1<i<q+l

i =b—2 | ——r or x 1 .
g 2(¢+1) ==
Notice that j1 + o+ ...+ jg+1 = (¢ + 1)b—2(¢ + 1) [%J —2x =qb+7r =aand
each j; = b modulo 2.

Otherwise, (b—r) —2(¢+1) [%J is odd and can be written as 2z + 1 for some
integer « where 0 < z < ¢. In this case, we define
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bh—
Ji=0b Q{AJ—2 forl1<i<uw
2(q+1)
b—r
i=b—2|——| -1 fori=o+1
’ MH)J
=b 2{b_TJ forz4+2<i<q+1
i=b—2 | —-— or <1< ,
g 2(q+1) !

and notice that jy +jo+ .. . +jos1 = (¢+1)b—2(q+1) {%J 2 —1=gbtr=a.

Each j; = b modulo 2 except for j 1. O

For decomposing paths into cycles, we have the following formula. The con-
struction in the proof also satisfies some additional conditions that will be useful in
Section 5, when we decompose cycles into cycles.

Theorem 5. For any positive integers m and n with n > 2 and m > 3, the decom-
position number

m-—n ifn < m.

Furthermore, there is a Cy,-decomposable graph G with order n+dc,, (P,) and induced
subgraph P, such that the endpoints of P, have degree 2 in G. If dc,,(P,) > 2 and
n > 4, then G can be constructed so that the endpoints of P, have no common
netghbors.

Proof. For n < m, we must add enough vertices to form a single copy of C,,, so
de,,(Py) =m —n.

In the case n > m, we must decompose P, into at least two different cycles C,.
Some vertex of P, must lie on more than one cycle, and hence be adjacent to more
than one new vertex. Thus, d¢, (P,) > 2 in this case. From Corollary 1, we have

A, (P) 2 3 - 2

m—

We proceed by showing that this lower bound can be
achieved with specific conditions on n and m and then explore the remaining cases
individually.

Claim 1. The formula holds for m > 5, n > m, and [ﬁ_j] > [mT%]

m—2

Let d = max ([E —. w ,2). We will produce the graph G as follows.

2 2nDg

Begin with P, and a set U of d additional vertices, U = {v;,vs,...,v5}. Partition
the n — 1 edges of the path P, into N = [%1 subpaths with lengths 71, ja, ..., N,

as described in Lemma 2, so that, for any 1 <i <k < N, j; < jr < i +2 and
there is at most one 7 so that j; Z m modulo 2. Label the vertices of P,, in order,
U0, U11y -+ -y uljl = U0, U214 -+ -, u2j2 = U30, U31y -+, u(Nfl)]'N—l = UNQ, UN1y- - - ,UN]'N.
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For i odd, 1 <17 < N, add the edges uv; and u;;,v1, so the endpoints of the ith

path are each joined to v;. Let C; be the cycle i, i, - - ., wij,, v1,up on j; +2 <m
vertices. Similarly, for ¢ even, add the edges v, and u;;,ve. Let C; be the cycle
Wi0, Uity - - - Ui, U2, Ujp ON J; + 2 < m vertices. We now have a graph G that can be

decomposed into [:;;12] cycles Cy,Cy,...,Cy of length at most m. We must adjust

G, and the cycles Cy, Cs, ..., Cy, so that each cycle has length exactly m.

First we will describe the construction, then we will check that d and j;, for
1 < i < N, are large enough for this construction. Let z = |{Ci|l < ¢ <
N and order(C;) < m}|. If z is odd and m — (j; + 2) = 2, we will remove the
edge ujov; and replace it with the edges wujgva, vaus, and ugvy. If 2 is odd and
m — (j1 + 2) = 4, we will replace the edge uiov; with the edges wigva, v2, Us1, U213,
U3z, and ugmv;. Similarly, for any odd value of © and any even value of m — (j; +2),
we can adjust the cycle C so that it has m vertices.

If m — (51 +2) = 1, we replace the edge ujpv; with edges wjovs and wvyvy. If
m — (j1 + 2) is odd and greater than one, we can adjust the cycle just as in the case
when m — (1 +2) is even to produce a cycle of length m + 1, then replace the edges
V19 and wugyve with the edge vyvs.

We may assume, then, that there are an even number of cycles C; remaining
with fewer than m vertices. Based on our construction, we may also assume that
they appear in pairs C; and Cjy; that share a vertex w;;, = u(t1)0. Without loss of
generality, suppose currently the edge u;;,v; is used in cycle C; and the edge u(41)0v2
is used in cycle Cy1;. We will replace the edge u;;v1 with the edges g, vz, Va1,
U(i4+1)1V3,V3U(i41)2, - - -, joining the last vertex to v; to produce a new cycle for Cj
with exactly m vertices. At the same time, we will replace the edge u(iy1)v2 with
the edges w(i+1)0V1, ViU(i+2)1, U(i+2)1V3, V3U(i42)2, - - -, jOining the last vertex to vy to
produce a new cycle for C;y; that has exactly m vertices. (If necessary, take ¢ + 2
modulo N.) Since there is only one cycle C; that initially had parity j; different from
m, at most one of the new cycles will use an edge of the form wvjv,. All other new
edges added to each cycle are incident with different vertices of P,, so we have not
added any new edge twice.

The total number of edges missing from all of these cyclesis M = (m—2) [2=] —

m—2

(n —1). Since we maintained the same parity as m in all but one of the cycles, we

can think of these missing edges in pairs. Each cycle is missing at most [ M/2 —‘

n—1
E=)
pairs of edges. Since d > % — 2{%1 , it follows that no cycle is missing more than
d — 1 pairs of edges.
The expansion of each cycle C; also uses vertices uiy11, Usr12, . - -, Ust1j;,,—1 from

cycle Cir1. We will refer to these vertices as the internal path vertices of Cir1. We
must check that each cycle C;; has enough internal path vertices for its neighbor
C; to use. Let p be the minimum number of internal path vertices on any one cycle,
where the minimum is taken over the cycles C;, 1 < ¢ < N. Taking into account
the parity restrictions and the two vertices of each cycle that are joined to vy, or s,

we still have p > MZ&?}J — 3. The maximum number of internal-path vertices that
m—2
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must be added to any one cycle C; is at most me,f*?’J, since the cycle C; has p+ 3
vertices already and internal-path vertices will alternate with new vertices. Thus, we

need p > |2=L=2|, or equivalently, p > “=2. It would suffice if [ 1] -3 > [==3],
orpiay 2 [

In this construction, the endpoints uip and uy;, of P, each have degree 2 in G.
Suppose d > 2 and u;p and uy;, share a common neighbor v; not on P,. We would
like to replace v; in the cycle Cy with some other vj, j # i. If v; € Cy, we can simply
replace v; with v; in Cy; otherwise, we may swap the roles of v; and v; in this cycle.
The potential problem is that uyg is adjacent to a vertex vy in Cy_; and a vertex
Um in Cly, so the swap might create a double edge at uyy if {k,m} = {i,7}. If uno is
not adjacent to v;, there is no difficulty. In the above construction, uyo is adjacent
to only two vertices of U and |U| > 3. Thus, if uyo is adjacent to v;, then we may
choose v;, j # 4, so that uyo is not adjacent to v;. Thus, we have a construction in
which 419 and uyj, have no common neighbor.

Claim 2. The formula holds for n > m and m > 22.

With a bit of algebra, we can show that if n > % + 1, then >
[28]. Since m > 22, we have 2(77’;;87) < 1. Since n > m, it follows that n >
(nisins) ;)

Claim 3. The formula holds for n > m +9 and m > 11.
In this case, 2(m 7) < 1, so again we have n > % + 1 and hence [mﬂ >

m+6

{ 3If]we wish to decompose P, into copies of (3, each edge of P, must be used in
a different copy of Cj3, and each copy of C3 will use exactly one new vertex. If P,
has vertices wuy,us,us,...,u,, we can add new vertices v; and v,. Then for 7 odd,
0<i<n-—1,u; and u;11 can be joined to v; to form a 3-cycle u;, wiy1,v1,u;. For ¢
even, 1 <i <n-1, u; and u;41 can be joined to vy. Thus, de,(P,) = 2 for all n > 3.

To decompose P, : uy,us,...,u, into copies of Cy, we add new vertices v; and
vy, Fori =1( mod4),1<i<n—2 wejoin u; and u;+2 to v to form a cycle
Uiy Wi 1, Uita, U1, u;. Similarly, for i = 3( mod 4), 1 < i < n—2, we join u; and ;42 to
vy. If nis odd, then we have P, decomposed into copies of Cy. Otherwise, if n—1 = 1(
mod 4), add edges u,_1v1,01v2, and veu, to form the cycle u,_1,v1, vy, Uy, Up—1. If
n—1=3( mod 4), add edges u,_1v2, v2v1, and vyu,. We have de,(P,) = 2 for all
n > 4.

If n = k(m—2)+1 for some integer k, then the number of edges in P, is divisible
by m — 2. We may again add two new vertices vy and vy; join w; and u,,—; to vy,
Um—1 and Usm—3 t0 vz, and so forth. Therefore, d¢,, (P,) = 2.

If n = k(m — 2) for some integer k, then we claim d¢,, (P,) = 2. If we use the
same construction as above, there are m — 3 edges Un—mr3Un—m+a, Un—mraln—m+5,

. Up—1Uy, left over. We may add the edges w,_p,43v1, 102, and vau,, or the edges
Up—m3V2, Va1, and viu,, depending on whether wu,_,,43 is already adjacent to v; or
vs.
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If n = k(m —2) — 1, then our earlier construction with two new vertices v; and
vy will leave m — 4 edges Uy _m+4Un_m+5, Un—m+5Un—m+6,- - - Un_1Uy, left over. As long
as k > 2 and m > 5, we may add edges Up_m4+401, V1Un—m+3, Un—m4+3V2, and vyl
assuming (without loss of generality) that w,_,,+4 is not already adjacent to v;.

Similarly, if n = k(m — 2) — 2, k > 2, and m > 5, we may add two new vertices
vy and vy and edges u V1, Um_1V1, Um_1V2, Usm_3V2, Usm_3V1, Usm_5U1, €tC., to form
cycles of length m with 2m — 7 edges Uy _om+7Un_2m+s, Un—2m+8Un—_2m+9s- - - Un_1Up
left over on the path. Assume without loss of generality that w,_s,47 is not already
adjacent to v;. Then we may add the edges w,_2m17V1, V1Un_1, Up_1V2, Volp_mis tO
create one m-cycle and the edges wy_y,y3v1, V109, V2u, to create another m-cycle.
Thus, de,, (P,) = 2.

Similar constructions show d¢, (P,) =2 for n = k(m —2) -3,k > 2, and m > 6.
Taken together, these cases show that d¢,, (P,) =2 for n > m and m < 7.

Furthermore, algebra shows that —2=i- > [T”T“LG] for m = 8 and n > 26, for

n—1

m = 9 and n > 16, and for m = 10 ar"{dzn > 22. There are only a finite number
of remaining open cases, namely m = 8, n = 8,14,20; m = 9, n = 9,10; m = 10,
n = 10,11,12,18,19,20; m = 11, n = 11,12,13,14; n = 12, m = 12,13, 14,15, 16;
m=13,13<n<18m=14,14<n <20;m=15,15<n<22;and 16 < m < 21
with m < n < m+8. Each of these remaining cases is straightforward and has been
checked individually. We leave out those details. |

Once again, when n is sufficiently large relative to m, the decomposition number
is at most 2. We have the following result.

Theorem 6. Let n and m be positive integers with n > m > 4. Define

W if m is odd

fm) =
(m—4)2

5 if m is even.

Then de,,(P,) < 2 whenever n > f(m). Furthermore, if m <9 and n = f(m), then
de,, (P) = 2.

Proof. The situation is similar to Theorem 3. We have d¢,, (P,) < 2 if and only if
the path P, can be divided into subpaths of length m — 2, m — 3, and m — 4, with at
most one subpath of length m — 3. Notice that to extend a subpath of length m — 3
to a cycle of length m, we must use both new vertices and an edge between them.
Equivalently, dc,, (P,) < 2 if and only if there exist non-negative integers x, v, and
z such that n — 1 = &(m — 2) + y(m — 3) + z(m — 4) where y = 0 or 1. From Lemma
1, the smallest integer that is not of the form z(m — 2) 4+ y(m — 3) + z(m — 4) for
some non-negative integers z, y, and z is N(m — 4). Therefore, the smallest n for
which there does not exist a decomposition of P, into copies of C,, with at most two
additional vertices is f(m) = N(m—4)+1, which simplifies to the formula given. 0
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5 Decomposing Cycles into Cycles

Next we consider dg¢,, (C,). Notice that for n > m, we necessarily have dc¢,, (Cr,) > 2.
Any decomposition requires at least two cycles, and some vertex of C,, which appears
in two cycles C,, must be incident with two new edges. In the next lemma, we explore
the relationship between the decomposition numbers of paths and of cycles.

Lemma 3. For any positive integers m and n, we have
de,, (Pry1) < dg,, (Cr) < de,, (Ppy1) + 1
and furthermore, if dc,, (Pnt1) > 3, then de, (Cr) = dc,, (Pot1)-

Proof. Let K be a graph with €, as an induced subgraph, so that [V (K)| = |V(C,)|+
dc, (Cr), and K can be decomposed into copies of Cp,. Then some vertex u in
the induced subgraph C), has the property that its neighbors in C), are not in the
same copy of C,. We can replace this vertex with two vertices v’ and u” and
divide the edges incident with u among these two vertices to produce a graph K
with induced subgraph P,.; that can be decomposed into copies of C,,. Thus,
de (Pn+l) S de (Cn)

On the other hand, if we begin with a graph K with induced subgraph P,.; that
can be decomposed into copies of C,,, then we wish to associate the endpoints of
P, to produce a graph for C),. The only difficulty is that the endpoints may share
common neighbors. By Theorem 5, we may assume that the endpoints share at most
one common neighbor. We may add one additional vertex to take the place of one
of these common neighbors in one of the copies of Cy,. If dg,, (Pny1) > 2, then we
may assume that the endpoints have no common neighbor, so no additional vertex
is needed. O

Thus, aside from the case dc,,(C,) = 2, the problem of determining dc,,(C,)
reduces to the problem of determining dg,, (Ppt1)-

Notice that for n > 3, d¢,(C,) is 2 when n is even and 3 when n is odd. Each
edge of C,, appears in a different copy of C3. The remaining vertex of each C3 must
be different for adjacent edges, so the decomposition is analogous to an edge coloring,
where the new vertices are the colors.

Theorem 7. For positive integers n and m, with n > m > 4, we have d¢, (Cy) = 2
if and only if n can be written in the formn = 2(m—2)k+ (m —3)p+ (m —4)l where
k,p, and | are nonnegative integers with k41> 1 and p ts equal to either 0 or 1.

Proof. Suppose K is a graph with induced subgraph C, so that V(K) = V(C,) U
{a,b} and K can be decomposed into copies of Cy,. The edges of C), are partitioned
by the cycles Cy,. A cycle C},, may consist of m — 2 edges of C,,, one of the vertices
a or b, and two edges incident with that vertex; m — 3 of the edges of C,,, both of
the vertices a and b, an edge incident with each of them, and the edge in between
them; or m — 4 of the edges of C), along with both a and b and two edges incident
with each of them. Since there is only one edge ab, there can be at most one cycle
using exactly m — 3 of the edges of C,,; hence, p is either 0 or 1.
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Each of the cycles that use either m — 3 or m — 4 edges of C,, will use either one
or two strings of edges in C, with one endpoint of each string adjacent to a and the
other adjacent to b. Each cycle that uses m — 2 edges of C), will use a string of edges
with both endpoints adjacent to a or both endpoints adjacent to b.

Suppose we fix a particular direction to travel around the cycle C,. Then we
may call a cycle C,, that uses m — 2 edges of C,, an a-cycle if it includes vertex a
and a b cycle if it includes vertex b. A cycle C,, that uses m — 3 or m — 4 edges of
C), will be an ab-cycle if the first vertex of this cycle that we reach, when traveling
around C,, is adjacent to a and the last vertex of this cycle on C, is adjacent to b.
Similarly, a cycle C, that uses m — 3 or m — 4 edges of C,, might be an ba-cycle.
We cannot have multi-edges incident with vertex a or b. Thus, every ab-cycle must
be immediately followed by either an a-cycle or another ab-cycle, and every ba-cycle
must be followed by either a b-cycle or another ba-cycle.

It follows that we must have an even number of cycles C,, that use m — 2 edges
of Cy. Thus, if d¢,, (Cy) = 2, we must have n = 2(m — 2)k + (m — 3)p+ (m — 4)l as
required.

Now, suppose n can be written in the desired form. Then the cycles ), described
above may be arranged around the cycle C,, to create the desired decomposition. We
must ensure that the additional vertex needed for each cycle that uses m — 4 edges
of C, is available. If m > 6, then each cycle using m — 4 edges of C,, has at least two
consecutive edges on C),. Each such cycle may use an internal vertex of one other
such cycle. If m = 5, then we may assume without loss of generality that [ < 5. If
k>2orifk=1and p=1orif k=1 and [ < 4, then there are enough internal
vertices available on C),.

The remaining cases are m =5, k=1, p=0,l=5;, m=5,k=0,p=0,1,
1=0,1,2,3,4,5 m = 4. When m = 4, we have n = 4k 4+ p where p = 0 or 1. If
n = 4k, then C,, may be divided into an even number of subpaths of length 2. These
subpaths may be joined with either vertex a or vertex b alternately to create cycles
of length 4. If n = 4k 4 1, then C), can be similarly divided into subpaths, with one
subpath of length 1. This subpath can be joined to both ¢ and b and the edge ab to
create a cycle of length 4. If m = 5 and k = 0, then since m < n we must have either
n=T7p=11l=50rn=6,p=1,1=>5. The graph Cg may be divided into two
subpaths of length 4; we can join one to vertex a and the other to vertex b to create
the 5-cycles. The graph C7 may be divided into two subpaths of length 4 and one of
length 1. One subpath of length 4 will be joined to a, the other to . The subpath
of length 1 will be joined to both @ and b, which in turn will be joined to an internal
vertex of a different subpath. For m =5, k =1, p =0 and [ = 5, we have n = 11.
One possible decomposition for this graph is shown in Figure 2.

d

6 Remark

Since any path P, requires n vertices, it follows that dp, (K1,,) > n—(m+1). In the
attainment of dp, (K1), no P, can consist of only existing edges between vertices
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Figure 4: The cycle C; with two additional vertices, decomposed into copies of Cj.

of K ,,, so one sees that
[252] =n— (14 [%]) when m is even
dp, (K1) >
[23] =n— (1+ [2]) when m is odd.
Combining this information, we conjecture that
n—1—min{[2],m} when m is even
dPn(Kl,m) =

n—1—min{|[%|,m} when m is odd.

This equality holds when m is even and n is odd and in numerous other cases using
the results and methods in [1] but several open cases remain unproven.

Thanks

We would like to thank the first referee for suggestions that greatly improved the
notation and proofs.
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