Changing and unchanging acyclic domination: edge addition

VLADIMIR SAMODIVKIN

Department of Mathematics
University of Architecture, Civil Engineering and Geodesy
Hristo Smirnenski 1 Blv., 1046 Sofia
Bulgaria
vlsam_fte@uacg.bg

Abstract

A subset A of vertices in a graph G is acyclic if the subgraph it induces contains no cycles. The acyclic domination number $\gamma_a(G)$ of a graph G is the minimum cardinality of an acyclic dominating set of G. An acyclic dominating set A of a graph G with $|A| = \gamma_a(G)$ is called a γ_a -set of G. A vertex x of a graph G is called: (i) γ_a -good if x belongs to some γ_a -set, (ii) γ_a -fixed if x belongs to every γ_a -set, (iii) γ_a -free if x belongs to some γ_a -set but not to all γ_a -sets, (iv) γ_a -bad if x belongs to no γ_a -set. In this paper we deal with γ_a -good/bad/fixed/free vertices and present results on changing and unchanging of the acyclic domination number when a graph is modified by adding an edge.

1 Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes et al. [3]. We denote the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. The complement of a graph G is denoted by \overline{G} . For a vertex x of G, N(x,G) denotes the set of all neighbors of x in G, $N[x,G] = N(x,G) \cup \{x\}$ and the degree of x is $\deg(x,G) = |N(x,G)|$. The maximum degree in the graph G is denoted by $\Delta(G)$. For a graph G, let $x \in X \subseteq V(G)$. The private neighbor set of x with respect to X is $\operatorname{pn}[x,X] = \{y \in V(G) : N[y,G] \cap X = \{x\}\}$.

A dominating set in a graph G is a set of vertices D such that every vertex of G is either in D or is adjacent to an element of D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. A subset of vertices A in a graph G is said to be acyclic if $\langle A, G \rangle$ contains no cycles. The acyclic domination number $\gamma_a(G)$ of a graph G is the minimum cardinality of an acyclic

dominating set of G. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [5].

A vertex v of a graph G is γ_a -critical if $\gamma_a(G-v) \neq \gamma_a(G)$. A vertex v of a graph G is γ_a^+ -critical (γ_a^- -critical, respectively) if $\gamma_a(G-v) > \gamma_a(G)$ ($\gamma_a(G-v) < \gamma_a(G)$, respectively).

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with the property P and with $\mu(G)$ vertices in G is called a μ -set of G.

Fricke et al. [2] defined a vertex v to be

- (i) μ -qood, if v belongs to some μ -set of G and
- (ii) μ -bad, if v belongs to no μ -set of G.

Sampathkumar and Neerlagi [10] defined a vertex v to be:

- (iii) μ -fixed if v belongs to every μ -set;
- (iv) μ -free if v belongs to some μ -set but not to all μ -sets.

For a graph G we define:

```
\begin{split} &\mathbf{G}_{a}(G) = \{x \in V(G) : x \text{ is } \gamma_{a}\text{-good}\}; \\ &\mathbf{B}_{a}(G) = \{x \in V(G) : x \text{ is } \gamma_{a}\text{-bad}\}; \\ &\mathbf{Fi}_{a}(G) = \{x \in V(G) : x \text{ is } \gamma_{a}\text{-fixed}\}; \\ &\mathbf{Fr}_{a}(G) = \{x \in V(G) : x \text{ is } \gamma_{a}\text{-free}\}; \\ &\mathbf{V}_{a}^{0}(G) = \{x \in V(G) : \gamma_{a}(G - x) = \gamma_{a}(G)\}; \\ &\mathbf{V}_{a}^{-}(G) = \{x \in V(G) : \gamma_{a}(G - x) < \gamma_{a}(G)\}; \\ &\mathbf{V}_{a}^{+}(G) = \{x \in V(G) : \gamma_{a}(G - x) > \gamma_{a}(G)\}. \end{split}
```

By a partition of a set S we mean an unordered family $\{S_1, S_2, \ldots, S_n\}$ of pairwise disjoint subsets of S with $\bigcup_{i=1}^n S_i = S$. Note that some of the S_i 's may be empty.

Clearly, $\{\mathbf{V}_a^-(G), \mathbf{V}_a^0(G), \mathbf{V}_a^+(G)\}$ and $\{\mathbf{G}_a(G), \mathbf{B}_a(G)\}$ are partitions of V(G), and $\{\mathbf{Fi}_a(G), \mathbf{Fr}_a(G)\}$ is a partition of $\mathbf{G}_a(G)$.

Much has been written about the effects on domination related parameters when a graph is modified by deleting a vertex or adding an edge. For surveys see [3, Chapter 5], [4, Chapter 16], [1], [6] and [11]. In this paper we deal with γ_{a} -good/bad/fixed/free vertices and present results on changing and unchanging of the acyclic domination number when an edge is added.

We need the following results.

Theorem 1.1. Let G be a graph of order $n \geq 2$ and $u, v \in V(G)$.

(i) Let
$$\gamma_a(G-v) < \gamma_a(G)$$
.

- (i.1) [8] If $uv \in E(G)$ then u is a γ_a -bad vertex of G v;
- (i.2) [9] If M is a γ_a -set of G-v then $M \cup \{v\}$ is a γ_a -set of G;
- (i.3) [8] $\gamma_a(G-v) = \gamma_a(G) 1;$
- (ii) [9] Let $v \in \mathbf{V}_a^+(G)$. Then v is a γ_a -fixed vertex of G;
- (iii) [9] If $v \in \mathbf{V}_a^-(G)$ and $u \in \mathbf{V}_a^+(G)$ then $uv \notin E(G)$;
- (iv) [9] If v is a γ_a -bad vertex of G then $\gamma_a(G-v) = \gamma_a(G)$.

For the sake of completeness, we repeat the proof.

Proof. (i): (i.1): Let $uv \in E(G)$ and M be a γ_a -set of G - v. If $u \in M$ then M will be an acyclic dominating set of G with $|M| < \gamma_a(G)$ — a contradiction.

(i.2) and (i.3): If M is a γ_a -set of G-v then (i.1) implies that $M_1=M\cup\{v\}$ is an acyclic dominating set of G with $|M_1|=\gamma_a(G-v)+1\leq \gamma_a(G)$. Hence M_1 is a γ_a -set of G and $\gamma_a(G-v)=\gamma_a(G)-1$.

(ii) If M is a γ_a -set of G and $v \notin M$ then M is an acyclic dominating set of G - v. But then $\gamma_a(G) = |M| \ge \gamma_a(G - v) > \gamma_a(G)$ and the result follows.

(iii) Let $\gamma_a(G-v) < \gamma_a(G)$ and M be a γ_a -set of G-v. Then by (i.2), $M \cup \{v\}$ is a γ_a -set of G. Let $\gamma_a(G-u) > \gamma_a(G)$. Now (ii) implies that $u \in M$ and by (i.1), $uv \notin E(G)$.

(iv) By (ii), $\gamma_a(G-v) \leq \gamma_a(G)$. Assume $\gamma_a(G-v) < \gamma_a(G)$. It follows from (i.2) that $M \cup \{v\}$ is a γ_a -set of G, where M is a γ_a -set of G-v — a contradiction.

Since for every $v \in V(G)$ we clearly have $\gamma_a(G-v) \leq |V(G)|-1$ and because of Theorem 1.1 it follows that $\gamma_a(G-v) = \gamma_a(G) + p$, where $p \in \{-1, 0, 1, \dots, |V(G)|-2\}$. This motivated us to define for a graph G:

$$\begin{array}{l} \mathbf{Fr}_a^-(G) = \{x \in \mathbf{Fr}_a(G) : \gamma_a(G-x) = \gamma_a(G) - 1\}; \\ \mathbf{Fr}_a^0(G) = \{x \in \mathbf{Fr}_a(G) : \gamma_a(G-x) = \gamma_a(G)\}; \\ \mathbf{Fi}_a^p(G) = \{x \in \mathbf{Fi}_a(G) : \gamma_a(G-x) = \gamma_a(G) + p\}, \ p \in \{-1, 0, 1, \dots, |V(G)| - 2\}. \end{array}$$

Now, by Theorem 1.1 we have:

Corollary 1.2. Let G be a graph of order $n \geq 2$.

- (i) $\{\mathbf{Fr}_a^-(G), \mathbf{Fr}_a^0(G)\}\ is\ a\ partition\ of\ \mathbf{Fr}_a(G);$
- $(\mathrm{ii}) \quad \{\mathbf{Fi}_a^{-1}(G), \mathbf{Fi}_a^{0}(G), \ldots, \mathbf{Fi}_a^{n-2}(G)\} \ \textit{is a partition of } \mathbf{Fi}_a(G);$
- (iii) $\{\mathbf{Fi}_a^{-1}(G), \mathbf{Fr}_a^{-}(G)\}\ is\ a\ partition\ of\ \mathbf{V}_a^{-}(G);$
- $(\mathrm{iv}) \quad \{\mathbf{Fi}_a^0(G), \mathbf{Fr}_a^0(G), \mathbf{B}_a(G)\} \ \textit{is a partition of} \ \mathbf{V}_a^0(G);$
- $(\mathbf{v}) \quad \{\mathbf{Fi}_a^1(G), \mathbf{Fi}_a^2(G), \dots, \mathbf{Fi}_a^{n-2}(G)\} \ \textit{is a partition of} \ \mathbf{V}_a^+(G).$

Corollary 1.2 will be used in the sequel without specific reference.

As an immediate result of Theorem 1.1 we also have:

Corollary 1.3. Let G be a graph of order at least two and $x \in \mathbf{V}_a^-(G)$. Then:

- (i) $\mathbf{B}_a(G) \cup N(x,G) \subseteq \mathbf{B}_a(G-x)$;
- (ii) $\mathbf{Fi}_a(G) \{x\} \subseteq \mathbf{Fi}_a(G x)$.

We will refine the definitions of the $\gamma_a(G)$ -free vertex and the $\gamma_a(G)$ -fixed vertex as follows. Let x be a vertex of a graph G.

- (i) x is called γ_a^0 -free if $x \in \mathbf{Fr}_a^0(G)$;
- (ii) x is called $\gamma_a^-(G)$ -free if $x \in \mathbf{Fr}_a^-(G)$ and
- (iii) x is called $\gamma_a^q(G)$ -fixed if $x \in \mathbf{Fi}_a^q(G)$, where $q \in \{-1, 0, 1, \dots, |V(G)| 2\}$.

We conclude this section with the following useful lemma:

Lemma 1.4. Let x be a γ_a^0 -fixed vertex of a graph G. Then $N(x,G) \subseteq \mathbf{B}_a(G-x) \cap (\mathbf{V}_a^0(G) \cup \mathbf{Fi}_a^1(G))$.

Proof. Let M be a γ_a -set of G-x and $y\in N(x,G)$. If $y\in M$ then M will be an acyclic dominating set of G of cardinality $|M|=\gamma_a(G-x)=\gamma_a(G)$ — a contradiction with $x\in \mathbf{Fi}_a(G)$. Thus $N(x,G)\subseteq \mathbf{B}_a(G-x)$. If y is a γ_a^- -critical vertex of G, then by Theorem 1.1 there will exist a γ_a -set M_1 of G with $x\not\in M_1$ — again a contradiction with $x\in \mathbf{Fi}_a(G)$. Assume $y\in \mathbf{Fi}_a^p(G)$ for some $p\geq 2$. It follows from $M\cap N(x,G)=\emptyset$ that $M_2=M\cup\{x\}$ is an acyclic dominating set of G with $|M_2|=\gamma_a(G-x)+1=\gamma_a(G)+1$. But $y\not\in M$ and then $|M_2|\geq \gamma_a(G)+p$. Thus we have a contradiction.

2 Edge Addition

It is often of interest to know how the value of a graphical parameter is affected when a small change is made in a graph. In this connection, we now consider this question in the case of $\gamma_a(G)$ when an edge is added on G.

Theorem 2.1. Let x and y be two nonadjacent vertices in a graph G. If $\gamma_a(G+xy) < \gamma_a(G)$ then $\gamma_a(G+xy) = \gamma_a(G) - 1$. Moreover, $\gamma_a(G+xy) = \gamma_a(G) - 1$ if and only if at least one of the following holds:

- (i) x is a γ_a^- -critical vertex of G and y is a γ_a -good vertex of G-x;
- (ii) x is a γ_a -good vertex of G-y and y is a γ_a^- -critical vertex of G.

Proof. Let $\gamma_a(G+xy) < \gamma_a(G)$ and M be a γ_a -set of G+xy. Then $|\{x,y\} \cap M| = 1$, otherwise M will be an acyclic dominating set of G which is a contradiction. Let, without loss of generality, $x \notin M$ and $y \in M$. Since M is no dominating set of G, then $M \cap N(x,G) = \emptyset$. Hence $M_1 = M \cup \{x\}$ is an acyclic dominating set of G with $|M_1| = \gamma_a(G+xy) + 1$ which implies $\gamma_a(G) = \gamma_a(G+xy) + 1$. Since M is an acyclic dominating set of G-x, $\gamma_a(G-x) \le \gamma_a(G+xy)$. Hence $\gamma_a(G) \ge \gamma_a(G-x) + 1$ and by Theorem 1.1 it follows that $\gamma_a(G) = \gamma_a(G-x) + 1$. Thus x is a γ_a -critical vertex of G and M is a γ_a -set of G-x. Since $y \in M$, it follows that y is a γ_a -good vertex of G-x.

For the converse, without loss of generality suppose (i) holds. Then there is a γ_a -set M of G-x with $y \in M$. Certainly M is an acyclic dominating set of G+xy and then $\gamma_a(G+xy) \leq |M| = \gamma_a(G-x) = \gamma_a(G) - 1 \leq \gamma_a(G+xy)$.

Corollary 2.2. Let x and y be two nonadjacent vertices in a graph G and $x \in V_a^-(G)$. Then $\gamma_a(G) - 1 \le \gamma_a(G + xy) \le \gamma_a(G)$.

Proof. Let M be a γ_a -set of G-x. By Theorem 1.1, $M_1=M\cup\{x\}$ is a γ_a -set of G and $M_1\cap N(x,G)=\emptyset$. Hence M_1 is an acyclic dominating set of G+xy and $\gamma_a(G+xy)\leq |M_1|=\gamma_a(G-x)+1=\gamma_a(G)$. The rest follows by Theorem 2.1.

It is well known fact that for any edge $e \in \overline{G}$, $\gamma(G + e) \leq \gamma(G)$. In general, for the acyclic domination number this is not valid.

Theorem 2.3. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma_a(G + xy) > \gamma_a(G)$ if and only if every γ_a -set of G is not an acyclic set of G + xy and one of the following holds:

- (i) x is a γ_a^p -fixed vertex of G and y is a γ_a^q -fixed vertex of G for some $p, q \geq 1$;
- (ii) $x \in \mathbf{Fi}_a^0(G)$ and $y \in \mathbf{Fi}_a^1(G) \cap \mathbf{B}_a(G-x)$;
- (iii) $x \in \mathbf{Fi}_a^1(G) \cap \mathbf{B}_a(G-y)$ and $y \in \mathbf{Fi}_a^0(G)$;
- (iv) x and y are γ_a^0 -fixed vertices of G, x is a γ_a -bad vertex of G y and y is a γ_a -bad vertex of G x;

Proof. Let $\gamma_a(G+xy) > \gamma_a(G)$. By Corollary 2.2, $x, y \in \mathbf{V}_a^0(G) \cup \mathbf{V}_a^+(G)$. Assume to the contrary, that (without loss of generality) x is no γ_a -fixed vertex of G. Hence there is a γ_a -set M of G with $x \notin M$. But then M will be an acyclic dominating set of G + xy and $|M| = \gamma_a(G) < \gamma_a(G+xy)$, a contradiction. Thus x and y are both γ_a -fixed vertices of G. This implies that each γ_a -set M of G is a dominating set of G + xy and is no acyclic set of G + xy.

Let x be γ_a^p -fixed, y be γ_a^q -fixed, and without loss of generality, $q \geq p \geq 0$. Assume (i) does not hold. Hence p = 0. Let M_1 be a γ_a -set of G - x. Then $|M_1| = \gamma_a(G - x) = \gamma_a(G) < \gamma_a(G + xy)$ and we have that y is a γ_a -bad vertex of G - x. By Lemma 1.4, $N(x, G) \cap M_1 = \emptyset$. Then $M_1 \cup \{x\}$ is an acyclic dominating set of G + xy which implies $\gamma_a(G + xy) = \gamma_a(G) + 1$. Since $y \notin M_1 \cup \{x\}$, then $M_1 \cup \{x\}$ is an acyclic

dominating set of G-y and then $\gamma_a(G)+1=|M_1\cup\{x\}|\geq \gamma_a(G-y)=\gamma_a(G)+q$. Thus if $q\geq 2$ then we have a contradiction. So $q\in\{0,1\}$. If q=1 then (ii) holds. If q=0 then by symmetry, it follows that x is a γ_a -bad vertex of G-y and hence (iv) holds.

For the converse, let every γ_a -set of G be a non acyclic set of G+xy and let one of the conditions (i), (ii), (iii) or (iv) hold. Assume to the contrary, that $\gamma_a(G+xy) \leq \gamma_a(G)$. By Theorem 2.1, $\gamma_a(G+xy) = \gamma_a(G)$. Let M_2 be a γ_a -set of G+xy. Hence $|M_2 \cap \{x,y\}| = 1$ — otherwise M_2 will be a γ_a -set of G. Let, without loss of generality, $x \notin M_2$. Then M_2 is an acyclic dominating set of G-x which implies $\gamma_a(G-x) \leq |M_2| = \gamma_a(G+xy) = \gamma_a(G)$. Thus $\gamma_a(G-x) = \gamma_a(G+xy) = \gamma_a(G)$ and then M_2 is a γ_a -set of G-x. Hence x is a γ_a^0 -fixed vertex of G and g is a g-good vertex of G-x, which is a contradiction with some of (ii), (iii), (iv).

By Theorem 2.1 and Theorem 2.3 we immediately have:

Theorem 2.4. Let x and y be two nonadjacent vertices in a graph G. Then $\gamma_a(G + xy) = \gamma_a(G)$ if and only if at least one of the following holds:

(i)
$$x \in \mathbf{V}_a^-(G) \cap \mathbf{B}_a(G-y)$$
 and $y \in \mathbf{V}_a^-(G) \cap \mathbf{B}_a(G-x)$;

(ii)
$$x \in \mathbf{V}_a^-(G)$$
 and $y \in \mathbf{B}_a(G-x) - \mathbf{V}_a^-(G)$;

(iii)
$$x \in \mathbf{B}_a(G-y) - \mathbf{V}_a^-(G)$$
 and $y \in \mathbf{V}_a^-(G)$;

(iv)
$$x, y \notin \mathbf{V}_a^-(G)$$
 and $|\{x, y\} \cap \mathbf{Fi}_a(G)| \le 1$;

(v)
$$x \in \mathbf{Fi}_a^0(G)$$
 and $y \in \mathbf{Fi}_a^s(G) \cap \mathbf{G}_a(G-x)$ for some $s \in \{0,1\}$;

(vi)
$$x \in \mathbf{Fi}_a^s(G) \cap \mathbf{G}_a(G-y)$$
 and $y \in \mathbf{Fi}_a^0(G)$ for some $s \in \{0,1\}$;

(vii)
$$x \in \mathbf{Fi}_a^0(G)$$
 and $y \in \mathbf{Fi}_a^q(G)$ for some $q \ge 2$;

(viii)
$$x \in \mathbf{Fi}_a^q(G)$$
 and $y \in \mathbf{Fi}_a^0(G)$ for some $q \ge 2$;

(ix) there is a γ_a -set of G which is an acyclic set of G + xy and one of the (i), (ii), (iii) and (iv) of Theorem 2.3 holds.

Corollary 2.5. Let x and y be two nonadjacent vertices in a graph G. If $x \in \mathbf{B}_a(G)$ then $\gamma_a(G + xy) = \gamma_a(G)$.

Proof. If $y \notin \mathbf{V}_a^-(G)$ then the result follows by Theorem 2.4 (iv). If $y \in \mathbf{V}_a^-(G)$ then by Corollary 1.3, $x \in \mathbf{B}_a(G-y)$ and the result now follows by Theorem 2.4 (iii).

Sumner and Blitch [12] defined a graph to be edge-domination critical if $\gamma(G+e) \neq \gamma(G)$ for every edge e missing from G. Analogously, we define a graph G to be $edge-\gamma_a$ -critical if $\gamma_a(G+e) \neq \gamma_a(G)$ for every edge e of the complement of G. Relating edge addition to vertex removal, Sumner and Blitch [12] showed that $\mathbf{V}^+(G) = \{x \in V(G) : \gamma(G-x) > \gamma(G)\}$ is empty for edge-domination critical graphs. For edge- γ_a -critical graphs the following holds.

Theorem 2.6. Let G be an edge- γ_a -critical graph. Then

- (i) $V(G) = \mathbf{Fi}_a^{-1}(G) \cup \mathbf{Fr}_a(G)$;
- (ii) $\gamma_a(G+e) < \gamma_a(G)$ for every edge e missing from G;
- (iii) If $\mathbf{Fr}_a^0(G) \neq \emptyset$ then $\langle \mathbf{Fr}_a^0(G), G \rangle$ is complete;
- (iv) $\mathbf{Fi}_a^{-1}(G) = \{x \in V(G) : \deg(x, G) = 0\}.$

Proof. (iii) Let $x, y \in \mathbf{Fr}_a^0(G)$ and $xy \notin E(G)$. Then by Theorem 2.4 follows $\gamma_a(G + xy) = \gamma_a(G)$.

- (i) By Corollary 2.5, $\mathbf{B}_a(G) = \emptyset$. Assume $x \in \mathbf{Fi}_a^q(G)$ for some $q \geq 0$. Let M be any γ_a -set of G. Hence there is $y \in \operatorname{pn}[x,M] \{x\}$ otherwise $\operatorname{pn}[x,M] = \{x\}$ which implies $x \in \mathbf{V}_a^-(G)$. Since $\operatorname{pn}[x,G] \cap \mathbf{V}_a^-(G) = \emptyset$ (by Theorem 1.1 when $q \geq 1$ and Lemma 1.4 when q = 0), $\mathbf{B}_a(G) = \emptyset$ and $y \notin M$ then $y \in \mathbf{Fr}_a^0(G)$. Let M_1 be a γ_a -set of G and $y \in M_1$. Then there is $z \in (\operatorname{pn}[x,M_1] \{x\}) \cap \mathbf{Fr}_a^0(G)$. Hence $y, z \in \mathbf{Fr}_a^0(G)$ and $yz \notin E(G)$ a contradiction with (iii). Thus $\mathbf{Fi}_a(G) = \mathbf{Fi}_a^{-1}(G)$ and the result follows.
- (ii) This immediately follows by (i) and Theorem 2.3.
- (iv) Let $x \in \mathbf{Fi}_a^{-1}(G)$. Assume $N(x,G) \neq \emptyset$ and let $y \in N(x,G)$. By Corollary 1.3, $y \notin \mathbf{V}_a^-(G)$. So $y \in \mathbf{Fr}_a^0(G)$ because of (i). Thus $N(x,G) \subseteq \mathbf{Fr}_a^0(G)$. Now let M be a γ_a -set of G with $y \in M$. By (iii), $\mathbf{Fr}_a^0(G) \subseteq N[y,G]$ and then $N[x,G] \subseteq N[y,G]$ which implies that $M \{x\}$ is an acyclic dominating set of G a contradiction with the choice of M.

Kok and Mynhardt [7] defined the reinforcement number r(G) to be the smallest number of edges which must be added to G to decrease the domination number. Similarly we define the acyclic reinforcement number $r_a(G)$ of a graph G to be the smallest number of edges which must be added to G to decrease the acyclic domination number. If $\gamma_a(G) = 1$, then define $r_a(G) = 0$. For any graph G, [7] $\gamma(G) \leq |V(G)| - \Delta(G) - r(G) + 1$. For $r_a(G)$ the following holds.

Theorem 2.7. For any graph G:

- (i) $r_a(G) \le |V(G)| \Delta(G) 1$;
- (ii) $\gamma_a(G) \le |V(G)| \Delta(G) r_a(G) + 1$.

Proof. If $\Delta(G) = |V(G)| - 1$ then $\gamma_a(G) = 1$ and the results are trivial. So, let $\Delta(G) < |V(G)| - 1$, $x \in V(G)$, $\deg(x, G) = \Delta(G)$ and $G_1 = G + \{xy_1, \dots, xy_s\}$ where $\{y_1, \dots, y_s\} = N(x, \overline{G})$. Clearly $\deg(x, G_1) = \Delta(G_1) = |V(G_1)| - 1$ and $\gamma_a(G_1) = 1 < \gamma_a(G)$. Hence $r_a(G) \leq |N(x, \overline{G})| = |V(G)| - \Delta(G) - 1$. Now, let $G_2 = G + \{xy_1, \dots, xy_m\}$ where $m = r_a(G) - 1 \leq s - 1$. Then $\gamma_a(G) = \gamma_a(G_2) \leq 1 + \gamma_a(G_2 - N[x, G_2]) \leq 1 + (|V(G_2)| - \Delta(G_2) - 1) = |V(G)| - (\Delta(G) + r_a(G) - 1)$.

Remark 2.8.

- (a) It follows by the proof of Theorem 2.7 that the bounds in Theorem 2.7 (i) and (ii) are sharp for all graphs G with $\gamma_a(G) = 2$.
- (b) For each graph G with $\gamma_a(G) \geq 3$ and $|V(G)| = \Delta(G) + \gamma_a(G)$, the bound in Theorem 2.7 (ii) is also sharp. Note for example that such a graph is the corona $H \circ K_1$ where H is any graph of order $n \geq 3$ with $\Delta(H) = n 1$.

References

- J.R. Carrington, F. Harary, and T.W. Haynes, Changing and unchanging the domination number of a graph., J. Combin. Math. Combin. Comput. 9 (1991), 57-63.
- [2] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and R.C. Laskar, Excellent trees, Bull. Inst. Combin. Appl. 34 (2002), 27–38.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, *Domination in graphs*, Marsel Dekker Inc., New York, NY, 1998.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced topics, Marsel Dekker Inc., New York, NY, 1998.
- [5] S.M. Hedetniemi, S.T. Hedetniemi and D.F. Rall, Acyclic domination, Discrete Math. 222 (2000), 151–165.
- [6] T.W. Haynes and M.A. Henning, Changing and unchanging domination: a classification, Discrete Math. 272 (2003), 65–79
- [7] J. Kok and C.M. Mynhardt, Reinforcement in graphs, Comgressus Numer. 79 (1990), 225–231.
- [8] V.D. Samodivkin, Minimal acyclic dominating sets and cut-vertices, Mathematica Bohemica 130 (1) (2005), 81–88.
- [9] V.D. Samodivkin, Partitioned graphs and domination related parameters, Ann. Sofia Univ., Fac. Math and Inf. 97 (2005), 89-96.
- [10] E. Sampathkumar and P.S. Neerlagi, Domination and neighborhood critical fixed, free and totally free points, *Sankhya* **54** (1992), 403–407.
- [11] D.P. Sumner, Critical concepts in domination, Discrete Math. 86 (1990), 33-46.
- [12] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983), 65–76.