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Abstract

A subset A of vertices in a graph G is acyclic if the subgraph it induces
contains no cycles. The acyclic domination number ~,(G) of a graph G
is the minimum cardinality of an acyclic dominating set of G. An acyclic
dominating set A of a graph G with |A| = 7,(G) is called a ~y,-set of G.
A vertex z of a graph G is called: (i) v,-good if & belongs to some ~,-set,
(ii) 7,-fixed if = belongs to every v,-set, (iii) y,-free if z belongs to some
Ya-set but not to all y,-sets, (iv) v,-bad if & belongs to no v,-set. In this
paper we deal with v,-good/bad/fixed/free vertices and present results
on changing and unchanging of the acyclic domination number when a
graph is modified by adding an edge.

1 Introduction

All graphs considered in this article are finite, undirected, without loops or multiple
edges. For the graph theory terminology not presented here, we follow Haynes et
al. [3]. We denote the vertex set and the edge set of a graph G by V(G) and
E(G), respectively. The subgraph induced by S C V(G) is denoted by (S, G). The
complement of a graph G is denoted by G. For a vertex z of G, N(x,G) denotes
the set of all neighbors of z in G, N[z,G] = N(z,G) U {z} and the degree of z is
deg(z,G) = |N(z,G)|. The maximum degree in the graph G is denoted by A(G).
For a graph G, let x € X C V(G). The private neighbor set of x with respect to X
ispnjz, X]={y € V(G) : Nly,G]Nn X = {z}}.

A dominating set in a graph G is a set of vertices D such that every vertex of G is
either in D or is adjacent to an element of D. The domination number v(G) of a
graph G is the minimum cardinality taken over all dominating sets of G. A subset of
vertices A in a graph G is said to be acyclic if (A, G) contains no cycles. The acyclic
domination number v,(G) of a graph G is the minimum cardinality of an acyclic
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dominating set of G. The concept of acyclic domination in graphs was introduced
by Hedetniemi et al. [5].

A vertex v of a graph G is 7,-critical if v,(G — v) # 7.(G). A vertex v of a graph
G is v} -critical (v, -critical, respectively) if 7,(G — v) > 7,(G) (7(G — v) < 71.(G),
respectively).

Let u(G) be a numerical invariant of a graph G defined in such a way that it is the
minimum or maximum number of vertices of a set S C V(@) with a given property
P. A set with the property P and with u(G) vertices in G is called a p-set of G.

Fricke et al. [2] defined a vertex v to be

(1) p-good, if v belongs to some u-set of G and

(ii) p-bad, if v belongs to no p-set of G.
Sampathkumar and Neerlagi [10] defined a vertex v to be:

(ili) p-fized if v belongs to every u-set;

(iv) w-free if v belongs to some p-set but not to all u-sets.

For a graph G we define:
G.(G) ={z € V(Q) : x is 7y,-good };
B.(G) ={z e V(G)

Fi,(G) = {z € V(G) : x is v,-fixed};
Fr,(G) = {z € V(G) : x is y,-free};
VO(G) = {& € V(G) : (G - 2) = 1(G)}
Vi (G) ={z € V(G) : (G — 7) < 7(G)};
Vi(G) ={z € V(G) : (G = z) > 1(G)}-

: @ is y,-bad};

By a partition of a set S we mean an unordered family {Si, Ss,...,S,} of pairwise
disjoint subsets of S with Ul-,S; = S. Note that some of the S;’s may be empty.
Clearly, {V,(G),VYG), VS (G)} and {G,(G),B,(G)} are partitions of V(G), and
{Fi,(G),Fr,(G)} is a partition of G,(G).

Much has been written about the effects on domination related parameters when a
graph is modified by deleting a vertex or adding an edge. For surveys see [3, Chapter
5], [4, Chapter 16], [1], [6] and [11]. In this paper we deal with ~,-good/bad/fixed /free
vertices and present results on changing and unchanging of the acyclic domination
number when an edge is added.

We need the following results.

Theorem 1.1. Let G be a graph of order n > 2 and u,v € V(G).

(i) Let 'Ya(G - U) < ’Ya(G)'
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(i.1) [8] If uv € E(G) then u is a y,-bad vertex of G — v;
(1.2) [9] If M is a v,-set of G — v then M U {v} is a y,-set of G;
(1:3) 8] 70(G —v) = 7(G) — 1;

(i) [9] Let v € VI(G). Then v is a v,-fized vertex of G;

(i) [9] Ifv € VZ(G) and u € VH(G) then uwv & E(G);

(iv) [9] If v is a v,-bad vertex of G then v,(G — v) = 71,(G).

For the sake of completeness, we repeat the proof.

Proof. (i): (i.1): Let wv € E(G) and M be a v,-set of G —v. If u € M then M
will be an acyclic dominating set of G with |M| < 7,(G) — a contradiction.

(i.2) and (i.3): If M is a v,-set of G — v then (i.1) implies that M; = M U {v} is
an acyclic dominating set of G with |M;| = 7,(G — v) + 1 < 7,(G). Hence M, is a
Ya-set of G and 7,(G —v) = 7, (G) — L.

(ii) If Mis a ~y,-set of G and v ¢ M then M is an acyclic dominating set of G — v.
But then 7,(G) = |M| > 7,(G — v) > 7,(G) and the result follows.

(iil) Let 7,(G — v) < 7,(G) and M be a 7,-set of G — v. Then by (1.2), M U {v} is
a vg-set of G. Let v,(G — u) > 7,(G). Now (ii) implies that v € M and by (i.1),
uwv ¢ E(G).

(iv) By (ii), 7 (G — v) < 7,(G). Assume 7,(G — v) < 7,(G). It follows from (i.2)
that M U {v} is a y,-set of G, where M is a v,-set of G — v — a contradiction. M

Since for every v € V(G) we clearly have v,(G — v) < |[V(G)| — 1 and because of
Theorem 1.1 it follows that v,(G —v) = 7,(G) +p, where p € {-1,0,1,...,|V(G)|—
2}. This motivated us to define for a graph G:
Fr; (G) = {z € Fr,(GQ) : 7.(G — z) = 7(G) — 1};
Fro(G) = {x € Fro(G) : (G — 2) = 7a(G)};
Fij(G) = {z € Fio(G) : %(G = 2) = 7a(G) +p}, p € {=1,0,1,..., [V(G)[ - 2}.
Now, by Theorem 1.1 we have:
Corollary 1.2. Let G be a graph of order n > 2.

(i) {Fr;(G),Fr)(G)} is a partition of Fr,(G);
(ii) {Fi;Y(G),Fil(G),...,Fi"*(G)} is a partition of Fi,(G);

{Fi,'(G),Fr;

(ii -

) (G)} is a partition of V;(G);
(iv) {Fi)(G),Fr’(G),B.(G)} is a partition of VO(G);
) Fi2(G),..

(v) {Fil(G), G),...,Fi"%(G)} is a partition of V}(G).
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Corollary 1.2 will be used in the sequel without specific reference.

As an immediate result of Theorem 1.1 we also have:

Corollary 1.3. Let G be a graph of order at least two and x € V, (G). Then:
(i) B.(G)UN(z,G) CB,(G —z);
(if) Fio(G) — {z} C Fio(G — ).

We will refine the definitions of the 7,(G)-free vertex and the v,(G)-fixed vertex as
follows. Let  be a vertex of a graph G.

(i) = is called 72-free if » € Fr2(G);
(i) @ is called v, (G)-free if « € Fr, (G) and
(ili) = is called v4(G)-fized if x € Fil(G), where ¢ € {-1,0,1,...,|V(G)| — 2}.
We conclude this section with the following useful lemma:

Lemma 1.4. Let x be a °-fived vertex of a graph G. Then N(z,G) C B,(G —z)N
(Vo(G) UFi,(G)).

Proof. Let M be a v,-set of G — 2z and y € N(z,G). If y € M then M will
be an acyclic dominating set of G of cardinality |[M| = 7,(G — 2) = 7,(G) — a
contradiction with « € Fi,(G). Thus N(z,G) C B,(G — z). If y is a v, -critical
vertex of GG, then by Theorem 1.1 there will exist a vy,-set M; of G with © ¢ M,
— again a contradiction with z € Fi,(G). Assume y € Fi¥(G) for some p > 2. It
follows from M N N(z,G) = 0 that M, = M U {z} is an acyclic dominating set of
G with |Mz]| = 7,(G — ) + 1 = 7,(G) + 1. But y € M and then |Ms| > 7,(G) + p.
Thus we have a contradiction. ]

2 Edge Addition

It is often of interest to know how the value of a graphical parameter is affected when
a small change is made in a graph. In this connection, we now consider this question
in the case of 7,(G) when an edge is added on G.

Theorem 2.1. Let z and y be two nonadjacent vertices in a graph G. If v,(G+zy) <
7a(G) then v,(G + zy) = 7,(G) — 1. Moreover, ,(G + zy) = 7,(G) — 1 if and only
if at least one of the following holds:

(i) z is a v, -critical vertex of G and y s a v,-good vertex of G — x;

(i) @ is a v4-good vertex of G —y and y is a 7y -critical vertex of G.
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Proof. Let v,(G+zy) < 7,(G) and M be a ,-set of G+zy. Then [{z,y}NM| =1,
otherwise M will be an acyclic dominating set of G which is a contradiction. Let,
without loss of generality, © ¢ M and y € M. Since M is no dominating set of G,
then M N N(z,G) = 0. Hence M; = M U{z} is an acyclic dominating set of G with
|Mi| = 7,(G + zy) + 1 which implies 7,(G) = 7,(G + zy) + 1. Since M is an acyclic
dominating set of G — z, 7,(G — ) < 7,(G + zy). Hence 7,(G) > 7,(G — )+ 1 and
by Theorem 1.1 it follows that 7,(G) = v,(G — ) + 1. Thus z is a 7, -critical vertex
of G and M is a ~,-set of G — x. Since y € M, it follows that y is a ~,-good vertex
of G —u.

For the converse, without loss of generality suppose (i) holds. Then there is a 7,-set
M of G — x with y € M. Certainly M is an acyclic dominating set of G + zy and
then 7,(G + zy) < |M| =7(G = 1) = 7(G) = 1 < %(G + zy). u

Corollary 2.2. Let x and y be two nonadjacent vertices in a graph G and x© €
Va_(G) Then 'Ya(G) -1< 'Ya(G + xy) < 'Ya(G)'

Proof. Let M be a q,-set of G — x. By Theorem 1.1, M; = M U {z} is a v,-set
of G and M; N N(z,G) = . Hence M is an acyclic dominating set of G + zy and
(G + zy) < |Mi] =7,(G — z) + 1 = 7,(G). The rest follows by Theorem 2.1. H

It is well known fact that for any edge e € G, (G +¢€) < 7(G). In general, for the
acyclic domination number this is not valid.

Theorem 2.3. Let © and y be two nonadjacent vertices in a graph G. Then ,(G +
zy) > 7.(G) if and only if every y,-set of G is not an acyclic set of G+ xy and one
of the following holds:

(1) z is a YP-fized vertex of G and y is a ~I-fized vertex of G for some p,q > 1;

)
(ii) = € Fi)(G) and y € Fi.(G) N B,(G —z);
(iii) = € Fiy(G) NB,(G —y) and y € Fi)(G);
(iv) = and y are y°-fized vertices of G, = is a ,-bad vertez of G —y and y is a
Yo -bad vertex of G — x;

Proof. Let v,(G + 2y) > 7,(G). By Corollary 2.2, z,y € VI(G)UVF(G). Assume
to the contrary, that (without loss of generality) « is no ,-fixed vertex of G. Hence
there is a y,-set M of G with ¢ M. But then M will be an acyclic dominating set
of G+ zy and |M| = 7,(G) < 7(G + zy), a contradiction. Thus z and y are both
v.-fixed vertices of G. This implies that each v,-set M of G is a dominating set of
G + xy and is no acyclic set of G + xy.

Let « be vP-fixed, y be i-fixed, and without loss of generality, ¢ > p > 0. Assume (i)
does not hold. Hence p = 0. Let M; be a y,-set of G — . Then |M;| =7,(G —z) =
7a(G) < (G + zy) and we have that y is a v,-bad vertex of G — z. By Lemma
1.4, N(z,G)NM; = (. Then M; U{z} is an acyclic dominating set of G + zy which
implies 7,(G + zy) = 7,(G) + 1. Since y ¢ M; U {z}, then M; U {z} is an acyclic
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dominating set of G — y and then v,(G)+ 1 = |M; U{z}| > 7.(G — y) = 7.(G) + q.
Thus if ¢ > 2 then we have a contradiction. So ¢ € {0,1}. If ¢ = 1 then (ii) holds.
If ¢ = 0 then by symmetry, it follows that x is a v,-bad vertex of G — y and hence
(iv) holds.

For the converse, let every v,-set of G be a non acyclic set of G + zy and let one of
the conditions (i), (ii), (iii) or (iv) hold. Assume to the contrary, that v,(G + zy) <
7a(G). By Theorem 2.1, v,(G + zy) = 7.(G). Let M, be a v,-set of G + wy.
Hence |M, N {z,y}| = 1 —otherwise M, will be a ,-set of G. Let, without loss of
generality, x ¢ M,. Then M, is an acyclic dominating set of G — x which implies
fYa(G - 23) < |M2| = 7a(G+$y) = fYa(G)' Thus fYa(G - .Z‘) = 7a(G+$y) = fYa(G) and
then M, is a 7,-set of G — . Hence z is a 7°-fixed vertex of G and y is a 7,-good
vertex of G — z, which is a contradiction with some of (ii), (iii), (iv). [ |

By Theorem 2.1 and Theorem 2.3 we immediately have:

Theorem 2.4. Let x and y be two nonadjacent vertices in a graph G. Then v,(G +
zy) = v.(G) if and only if at least one of the following holds:

(1) 2 € V;(G)NB,(G —y) andy € V;

a

(i) £ € Vo (G) and y € Bo(G — z) — V; (G);

a

(ili) z € Bo(G —y) — V (G) and y € V (G);

(G)NB,(G —x);

(iv) z,y € V;(G) and [{z,y} NFi,(G)| < 1;

(vi) = € Fi{(G) N G,(G —y) and y € Fi)(G) for some s € {0,1};

a(G)
(G) N
(vii) = € Fil(G) and y € Fil(G) for some q > 2;
(viil) = € Fil(G) and y € Fil(G) for some q > 2;

)
)
)
)
(v) z € Fi%(G) and y € Fi5(G) N G4 (G — ) for some s € {0,1};
)
)
)
(ix)

there is a y,-set of G which is an acyclic set of G+ xy and one of the (i), (ii),
(itt) and (iv) of Theorem 2.3 holds.

Corollary 2.5. Let x and y be two nonadjacent vertices in a graph G. If © € B,(G)
then 7,(G + zy) = 7a(G).

Proof. If y ¢ V,(G) then the result follows by Theorem 2.4 (iv). If y € V_(G)
then by Corollary 1.3, v € B,(G — y) and the result now follows by Theorem 2.4
(ii). n
Sumner and Blitch [12] defined a graph to be edge-domination critical if y(G + ¢) #
7(G) for every edge e missing from G. Analogously, we define a graph G to be edge-
Ya-critical if v, (G+e) # 7.(G) for every edge e of the complement of G. Relating edge
addition to vertex removal, Sumner and Blitch [12] showed that V(G) = {z € V(G)
: Y(G—1) > v(G)} is empty for edge-domination critical graphs. For edge-v,-critical
graphs the following holds.
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Theorem 2.6. Let G be an edge-y,-critical graph. Then

(i

) V(G) =Fig(G) UFry(G);

(i) 7a(G +€) < 1a(G) for every edge e missing from G
)
)

(iii) If Fro(G) # 0 then (Fr%(G),G) is complete;
(iv) Fi;(G) = {z € V(G) : deg(z,G) = 0}.

Proof. (iii) Let 2,y € Fr’(G) and 2y ¢ E(G). Then by Theorem 2.4 follows
/Ya(G + a:y) = ’Ya(G)-

(i) By Corollary 2.5, B,(G) = 0. Assume z € Fil(G) for some ¢ > 0. Let M be
any 7,-set of G. Hence there is y € pn[z, M| — {#} — otherwise pn[z, M| = {z}
which implies z € V (G). Since pn[z, G)NV; (G) = 0 (by Theorem 1.1 when ¢ > 1
and Lemma 1.4 when ¢ = 0), B,(G) = 0 and y ¢ M then y € Fr)(G). Let M; be
a Yq-set of G and y € M;. Then there is » € (pn[z, M;] — {z}) N Fr(G). Hence
y, 2 € Fr’(G) and yz ¢ E(G) — a contradiction with (iii). Thus Fi,(G) = Fi;}(G)
and the result follows.

(ii) This immediately follows by (i) and Theorem 2.3.

(iv) Let z € Fi;'(G). Assume N(z,G) # 0 and let y € N(z,G). By Corollary 1.3,
y &€ V. (G). So y € FrY(G) because of (i). Thus N(z,G) C Fr?(G). Now let M be
a Yg-set of G with y € M. By (iii), Fr’(G) C Ny, G] and then N[z, G] C Nly,G]
which implies that M — {«} is an acyclic dominating set of G —a contradiction with
the choice of M. [ |

Kok and Mynhardt [7] defined the reinforcement number 7(G) to be the smallest
number of edges which must be added to G to decrease the domination number.
Similarly we define the acyclic reinforcement number r,(G) of a graph G to be
the smallest number of edges which must be added to G to decrease the acyclic
domination number. If 4,(G) = 1, then define r,(G) = 0. For any graph G, [7]
G) < |V(G)| — A(G) — r(G) + 1. For r,(G) the following holds.

Theorem 2.7. For any graph G:

Proof. If A(G) = |V(G)| — 1 then 7,(G) = 1 and the results are trivial. So, let
A(G) < V(@) - 1, ¢ € V(G), deg(z,G) = A(G) and Gy = G + {zy1, ..., 2ys}
where {y1,...,ys} = N(z,G). Clearly deg(z,G)) = A(Gy) = |V(G1)| — 1 and
7.(G1) = 1 < 7(G). Hence r,(G) < |N(2,G)| = |V(G)| — A(G) — 1. Now, let
Gy = G+ {zy1,...,2ym} where m = r,(G) = 1 < s — 1. Then 7,(G) = 7.(G2) <
14 9(Ga — N2, Ga]) < 1+ (V(Ga)l — A(Ga) — 1) = [V(G)] — (A(G) +71a(G) — 1),

|
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Remark 2.8.

(a) It follows by the proof of Theorem 2.7 that the bounds in Theorem 2.7 (i) and

(i1) are sharp for all graphs G with v,(G) = 2.

(b) For each graph G with v,(G) > 3 and |V(G)| = A(G) + 7,(G), the bound in

Theorem 2.7 (11) is also sharp. Note for example that such a graph is the corona
H o K, where H is any graph of order n > 3 with A(H) =n — 1.
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