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Abstract

Let m # n. An m X n X p proper array is a three-dimensional rectangular
array composed of directed cubes that obeys certain constraints. Because
of these constraints, the m X n X p proper arrays may be classified via a
schema in which each m xn X p proper array is associated with a particular
m x n planar face. By representing each connected component present in
the m x n planar face with a distinct letter, an m x n array of letters is
formed. This m x n array of letters is the letter representation associated
with the m xn x p proper array. The main result of this paper involves the
enumeration of all m x n letter representations modulo symmetry, where
the symmetry is derived from the group D, = Cy x Cy acting on the set of
letter representations. The enumeration is achieved by forming a linear
combination of four exponential generating functions, each of which is
derived from a particular symmetry operation. This linear combination
counts the number of partitions of the set of m x n letter representations
that are inequivalent under Ds.

0 Introduction

0.1 History of the Problem: Two-Dimensional Proper Arrays

This article is an extension of the author’s work involving the enumeration of two-
dimensional proper arrays [1], [2],[3]. In both the two-dimensional and three-dimens-
ional situations, the basic building block of a proper array is a directed cube, where
a directed cube is a cube with five faces that containing indentations while the sixth
face has a cylindrical plug or connector.
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Figure 1: A directed cube. In this illustration, the connector extends from the right face
while the other five faces contain circular indentations.

Rectangular arrays can be built by fitting the connector of one directed cube into
an indentation of another. If the ensuing rectangular array, which consists m rows
and n columnns, obeys certain connectivity constraints, it is said to be an m X n
proper array [1],[2],[3]. The m x n proper array may be classified by its rightmost
column of directed cubes. The right edge structure contains all of the path-connected
subsets that appear in the m x n proper array and all of the connectors that extend
from this edge.

The right edge structure does not uniquely determine the number m x n proper ar-
rays since two different m x n proper arrays may have the same right edge structure.
However, the right edge structure is the state for a transition matrix, M,,, which
for a fixed m and arbitrary n, describes how an m x n proper array evolves into an
m X (n + 1) proper array [1], [2], [12]. Note that M,, is an r x r matrix, where r is
the number, modulo symmetry, of possible rightmost columns associated with m x n
proper arrays [1],[2],[12]. Let S, be the 1 xr vector (s,,;), where s,; counts the num-
ber of m x n proper arrays, modulo symmetry, having the ¢th kind of right edge. We
find S,,M,,, = S,,+1. For example, in the case of 2 x n proper arrays, there are four
possible right edge structures. Hence, My is a 4 x 4 matrix. Let S; =[1, 2, 0, 1],
where the entries of S7 count the number of 2 x 1 proper arrays, with a particular
right edge structure. Note, there are 1 +2 4 0 + 1 = 4 distinct 2 x 1 proper arrays.
Then S1 M, = S, =[2, 8, 0, 3], where the entries of Sa count the number of 2 x 2
proper arrays with a particular right edge structure. Note, there are 2+8+4-0+3 = 13
distinct 2 x 2 proper arrays. Thus, the right edge structure of an m x n proper array
can determine the total number, modulo symmetry, of m xn proper arrays [1],[2],[12].

For a fixed n, the author wrote a computer program which constructs M,,. In
the process of writing this program, the author realized that one of the main re-
search questions associated with the enumeration of m X n proper is determining,
for any given m, the size of r, where r is the number of right edge structures, mod-
ulo symmetry, associated with m x n proper arrays. By having such a formula, the
author and various computer scientists [5] would be able to determine the amount
of computer time and memory necessary for the construction of M,,. This formula
consists of a linear combination of four ordinary generating functions, each of which
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enumerate a particular subset of right edge configurations [1], [3]. Thus, for the
two-dimensional situation, the basis size for M, is completely determined.

m |12 3] 4] 5 6
M,, |1|4]|16 | 72| 364 | 1916

Table 1: The basis size for the transition matrix M,,.

0.2 Three-Dimensional Proper Arrays

Next the author decided to enumerate three-dimensional proper arrays. An mXn X p
proper array is an m X n X p array of directed cubes that obey certain constraints.
These constraints allow the set of m x n X p proper arrays to be classified via a
schema in which each m x n X p proper array is associated with a particular m x n
planar face, called the preferred face. The preferred face of the m x n x p proper
array contains all the path-connected subsets that appear in the m X n X p proper
array and the number of connectors that extend from the preferred face.

After defining the notion of an m X n X p proper array, it was an easy exercise to
adapt the computer program which constructed M, into one which constructed
M, «n, where M,,«, is the transition matrix that describes how an m x n X p
proper array evolves into an m X n X (p + 1) proper array. Note that My, x, is an
r X r matrix, where r counts, modulo symmetry, the number of m x n preferred faces
associated with m x n x p proper arrays. The most important adaptation involved
the varying numbers of symmetry maps. Unlike m x n proper arrays, which have only
one symmetry map, m X n X p proper arrays have four or eight symmetry maps. More
precisely, if m # n, an m X n X p proper array possesses the rectangular symmetry
of Dy. However, when m = n, an m x m X p proper array has D4 symmetry. Each
of these symmetry maps must take the preferred face onto itself.

Once again, we would like to find a formula that predicts r, the basis size of M, x -
The main result of this paper is a first step to constructing such a forumla, when
m # n. In particular, Theorem 2.1 provides a formula, in the form of a linear
combination of four exponential generating functions, for calculating, modulo D,
symmetry, the number of preferred face structures associated with m x n X p proper
arrays. The techniques used to derive the generating functions are similar in nature
to the techniques used by Yoshinaga and Mori [7] and David Branson [8]. The second
result provides generating functions which count the number of m x n x p proper
arrays whose associated m x n preferred face is fixed by the four symmetry maps of
D,.

0.3 Connections to Percolation Theory

Before continuing, we would like to provide a physical interpretation for an m xn x p
proper array. If the center of each directed cube is represented as a point of Z?2, with
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the connectors providing a network of open paths between the various vertices, then
the m x n X p proper array is a model of bond percolation [10 Section 1], [11 p. 16].
Furthermore, this bond percolation has the following property, namely, there exists
an open cluster that allows water to flow from the back face of the m x n x p
array to its front face [10 p.2]. Moreover, since there is a relationship between bond
percolation and the Ising Model [10 p. 8], an open question involves the exact nature
of the connection between m x n x p proper arrays and Ising Models. At this point
in time, we have not investigated this connection between the Ising Model and the
three-dimensional proper arrays and leave it as an open question for future research.

1 Proper Arrays and Letter Representations

We are now ready to give the definition of an m x n X p proper array.

Definition: A (connected) component of an array of directed cubes is a (path)
connected subset of the array.

Definition: Let A represent an m X n x p array of directed cubes. Orient A so that
one planar m X n face has a center at (0,1,0) and is perpendicular to the y axis.
This m X n planar face is the preferred face of A.

Definition: An m X n X p proper array is a three-dimensional array of directed

cubes that obeys the following two conditions:

1. The array is 5-way flat. That is, only the preferred face has outward pointing
connectors.

Figure 1.1: This 3 x 3 x 3 array of directed cubes is not 5-way flat since the white
component in the upper left corner has a connector that extends from the top face.

2. We define an island to be a component that does not reach the preferred face.
The array can not have islands.
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Figure 1.2: The darkest gray (purple) component, which is directly behind the
white component, forms an island since it does not reach the preferred face.

An m x n X p proper array may be associated with its preferred face, since the
preferred face corresponds to the state of a transition matrix. In particular, by
letting each distinct component be denoted by a distinct letter, and any outward
pointing connectors be depicted as circles around the letters, the geometry of the
preferred face is recorded as m x n array of circled letters. This m x n array of
circled letters is called the word representation of the m x n x p proper array. It
encodes the number of connected components that appear in the m X n X p proper
array and the connectors that extend from the m x n X p proper array. By deleting
the circles in the word representation, the letter representation of the m x n x p
proper array is formed.

A B0 AlB]c
D (D¢ D|D|C
(Olp|c D|c

Figure 1.3: An example of a 3 x 3 x 3 proper array. At the bottom left corner, the word
representation is given. This word representation records the components as (colored)
letters and outward pointing connectors as circles. At the bottom right corner, the letter
representation is given.
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Remark 1.1 Letter Representations are partitions of the preferred face. Hence, two
letter representations are regarded as the same if they have the same components but
their letters are different. In other words, the letters are just labels for the components
and the labels are unimportant. For evample, take the letter representation provided
in Figure 1.3. If we replace the A with an X, the resulting letter representation is
the same as the orginal letter representation.

The definition of an m X n X p proper array is motivated by the desire to ensure that
a particular m x n face of the proper array corresponds to the state of the transition
matrix [1],]2],[12]. In order to see how the definition of proper array guarantees
this correspondence, we will take a moment to describe how the transition matrix
constructs proper arrays. Fix m and n. The matrix multiplication Sp_1Mpmxn
corresponds to attaching an m xn layer of directed cubes onto a previous constructed
m x n X (p — 1) proper array. The concept of 5-way flat ensures this conncection
could only occur on the preferred face. The concept of no islands ensures there are no
connected subsets of the m x n x (p— 1) proper array that do not reach its preferred
face. Hence, all the connected subsets of the m x n x (p — 1) proper array will be
affected by the attachment of the new m x n layer and will percolate throughout
the newly constructed m X n X p proper array. Since this percolation occurs, we
are able to record the state of construction by simply looking at the geometry of
the m x n preferred face of the newly build m x n x p proper array. Without the
conditions of 5-way flat and no islands, this correspondence between preferred face
and construction state would not exist.

2 Enumerating Letter Representations

For the remainder of this paper, we can ignore the three-dimensional context pro-
vided by the proper array and work in the two-dimensional setting of the letter
representation.

Our goal is to fix m and n, and enumerate, modulo symmetry, all letter representa-
tions associated with m x n x p proper arrays. If m # n, the symmetry equivalence
is determined by Ds.

Definition: A m X n letter array is an m x n arrangement of letters which obeys
the following condition: Each distinct letter labels an element in the partition of the
m x n array of squares. The comments of Remark 1.1 apply to the set of m x n letter
arrays.

It is an easy exercise to show that B, ,, the cardinality of the entire set of m x n
letter arrays, equals to the mnth Bell Number. Define L,,, to be the number of
m X n letter representations modulo D, symmetry. Note that L,, , is a lower bound
for the basis of the transition matrix My, x». We calculate L,, , as follows.
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Figure 2.1: The four equivalent versions of a 2 x 3 X 2 array. Let the diagram in the
upper left corner represent the orginal array. Then by reading in a clockwise manner, the
next diagram depicts a 180° rotation of the orginal array. The bottom right corner
depicts a vertical reflection of the orginal array. The remaining diagram depicts a
horizontal reflection of the orginal array. These four symmetry images are only counted
once in the enumeration procedure.

1. Let Sy, count the m x n letter arrays that are fixed via horizontal reflection,
vertical reflection, and 180° degree rotation.

2. Let H,,, count the m x n letter arrays fixed via horizontal reflection. Then,
Hpn — Sm,n counts the m x n letter arrays that are fixed only by horizontal
reflection.

3. Let Vi, count the m x n letter arrays fixed via vertical reflection. Then,
Vinn — Smn counts the m X n letter arrays that are fixed only by vertical
reflection.

4. Let Ry, count the mxn letter arrays fixed via 180° rotation. Then, R, »—Sm.n
counts the m x n letter arrays that are fixed only by rotation.

9. Let Cm,n - Bm,n - (Hm,n - Sm,n) - (Vm,n - Sm,n) - (Rm,n - Sm,n) - Sm,n~
Then, Cp, , counts the m x n letter arrays that are not fixed by any symmetry
transformation.

Theorem 2.1 Let Ly, Cruny Bmny Vi, Hmony R, and Sy be as previously de-
fined. Then
L _ Bm,n + Hm,n + Vm,n + Rm,n
m,n — 4




296 JOCELYN QUAINTANCE

Proof of Theorem 2.1: To calculate the letter representations associated with
m X n x p proper arrays modulo symmetry, we first determine whether a given m x n
letter array, called A, is fixed via any of the four symmetry transformations. If A
is not fixed by any symmetry, it has four equivalent images. However, if A is fixed
under a symmetry transformation, it has at most two symmetry images. It follows
that

Lm,n — C?Z,,’!L + (Hm,n - Sm,n) + (Rm,n; Sm,n) + (Vm,n - Sm,n)

_ Bm,n + Hm,n + Vm,n + Rm,n
o 4

+ Smn

O

Remark 2.1 Theorem 2.1 can be considered to be an immediate consequence of
Burnside’s Lemma.

2.1 Numerical Example

In order to understand how the information provided by Theorem 2.1 helps provide a
lower bound on the basis size of the transition matrix, look at the following example.
Let m = 3 and n = 1. The goal is to compute the size of the transition matrix
associated with the 3 x 1 x p proper arrays. It can be shown that the transition matrix
is a 16 x 16 matrix [1],[2]. Thus, there are 16 possible 3 x 1 word representations
modulo symmetry. Theorem 2.1 simply counts the letter representations modulo
symmetry. Ignoring symmetry, there are Bs; = b letter representations. By direct
calculation, we find that Hs; = 3,V3; =5, and R3; = 3. Theorem 2.1 implies that
the number of 3 x 1 letter representations modulo symmetry is 2242 — 4. Thus,
the transition matix associated with the 3 x 1 x p proper arrays is at least a 4 x 4
matrix. The goal of our research is to obtain a formula that calculates the actual
basis size of the transition matrix. As this example demonstrates, the theorems in
this paper provide not actual basis size, but a lower bound.

3 Generating Function for Horizontal /Vertical Symmetry

In order to use Theorem 2.1, we need to find generating functions for H, n, Vina,
and R,, ., These generating functions are obtained by dividing the m x n array into
small sections determined by the symmetry transformation. For instance, in the
case of horizontal reflection, the array is divided into two halves. If two or more
transformations are applied, the array is divided into four quarters. In either case,
we can arbitrarily fill one of the halves/quarters with any arrangement of letters and
then use symmetry to fill the remaining half/quarters of the m x n array. The key
in this technique is to carefully divide the array around the row and/or column that
may be fixed under a symmetry transformation. Hence, the generating functions
depend on the parity of m and n.
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We begin with the generating functions associated with H,,,. Due to symmetry,
they are also the generating functions associated with V;, ,,. Before going further,
we should recall the following representations of the Bell Numbers and the Second
Stirling Numbers [4],[7], [8].

Remark 3.1
xn _et—1
(n)ﬁ =
n=0
Remark 3.2
Sy e
t e t!
r=0

Using the aforementioned subdivision technique, we find that

. {mn}w 31
P ) S
j=1 s=0

where

1. j counts the letters in the first m rows. We will refer to the first m rows as the
top half of the array and the remaining m rows as the bottom half of the
array.

2. s counts the number of these j letters that are interchanged when reflected to
the bottom half of the array.

A|B|C|D

ABID|C

Figure 3.1: This figure demonstrates the three possiblities that occur to the letters that
appear in the top half of the array. A letter can reflect to itself; this is demonstrated by
A. A letter can reflect to an entirely new letter; this is demonstrated by B reflecting to
X. Otherwise, two letters, such as C' and D, can interchange position under reflection.

Theorem 3.1 The coefficient of t™ in the expansion of exp(3(e' + 3)(e! — 1)) is
H2m,n-
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Proof of Theorem 3.1: Let k = mn, then

wo- 5 L

51 — 251K (3.1)

k,j,s=0

To obtain the desired result, use Remark 3.2 and sum over s and j. See the proof of
Theorem 3.2 for a more elaborate example. O

Remark 3.3 In Equation (3.1), we sum only over a range of values than ensure
nonnegative factorials. Instead of explicitly writing the range of summation for each
index, we use the shorthand notation of summing each variable from zero to infinity.
This convention will be used throughout the paper.

Next we determine Hypy1,. Finding Hopmy1, is more complicated since we must
contend with a middle row that is fixed by the reflection map.

mn min(n,i) n [ ]{ man }{ 'l; }Bn,kl!Ql J=3s
H2m+1n_n'z Z ZZ
i=

)! _
b=y =0 Vsl(i — 5 —2s)!
where

1. 7 counts the letters in the top half of the array.

2. j counts the number of those i letters that appear in the middle row.

3. k counts the squares in the middle row occupied by the j letters.

4. s counts the number of the ¢ — j letters that are interchanged when reflected
to the bottom half of the array.

. By counts the 1 x (n — k) letter arrays. These 1 x (n — k) letter arrays only
appear in the middle row of array.

ot

AlB|C D

A% D| |C

Figure 3.2: In this case, the middle row is fixed under horizontal reflection. If a letter
from the top half of the array occurs in the middle row, it is fixed under reflection.
Otherwise, it obeys the three possiblities discussed in the construction of Hyy, p.

Theorem 3.2 The coefficient of y™ " in the expansion of exp(e¥™® + %e%’ — %) 18

H2m+1,n-



LETTER REPRESENTATIONS OF m xn xp PROPER ARRAYS 299

Proof of Theorem 3.2 Let ¢ = mn and define

q k S19i—j—35,.n,,q
f: {i}{j}Bn,,ﬂ.Q "y

El(n — k)lsl(i — 7 — 2s)lq!

H(z,y) =
,7,k,s,m,q=0

Using Remarks 3.1 and 3.2, we find

o ey _ 1 1)] e®—19i—j—3s
H<W):Z ||Z_]_25)

1,J,5=0

iey_]_ e+1)2288—123
sl(i — 2s)!
2s et” 1+ (e?—1)(e*+1)9—s

i s!

1
= exp(e?t* + 5621’ - -

5)

O

4 Generating Function for Rotational Symmetry

Our next step is to find a generating function for the rotational symmetry. Observe
that Romon = Homn, Roms1,2n = Hongme1, and Romong1 = Homane1. It remains to
compute Rami12n+1. In this situation, the 180° rotation fixes the central square of
the array. Our geometric subdivision must avoid this central square and takes the
form of an upper L and a lower L.

6]7]8]9]10
Q

Figure 4.1: Under 180° rotation, the central square is fixed, and the array is subdivided
into two L shapes.

We find that
(3] i72s{ 3 }i!(i—25+1—r)
Bman = Z Z s25p1(i — 25 — 1)!

where
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- q=nl2]+ (2.

1 counts the letters in the top L.

s counts the number of the i letters that are interchanged in the bottom L.

7 counts the new letters that appear in the bottom L. The central square can
contain a letter that does not appear in the rest of the array or is filled by one
of the i — 2s — r letters that go to themselves in the bottom L.

AlA

A/x [ has no X
AlA

- =

Figure 4.2: The two ways to fill the central square. The central square contains either
new letter or a letter from in the upper L that rotates to itself in the bottom L.

Theorem 4.1 Let m and n be odd integers. Let q = n[3] + [§]. The coefficient of
t4 in the expansion of exp(2e’ — 2+t + 1(e' — 1)%) is Ry .

Proof of Theorem 4.1:

Let
o { ‘f }t%!(i—?s—r—i—l)
R(t) =
®) Z q'25srl(i — 2s — 7)!
q,%,8,7=0
By using the techniques of Theorem 3.1, we obtain the desired result. a

Remark 4.1 We should note that the theorems in Sections 3 and 4 could be proven
using the context of involutions acting on a finite set. In particular, suppose the
wmvolution is acting on a finite set in manner which provides t matching pairs and u
fized points. Then, by the argument used to derive Hopmy1 ., the number of partitions
of the set that are inequivalent under the involution is exp(eV*® + %ezy - %), where
the powers of x correspond to u and the powers of y correspond to t. Thus, Hop, p 1S
the case whent = mn and w = 0, Hopy1p 5 the case when t = mn and u =n, and

Rpn (with m,n odd) is the case when t = q = n[%] 4 [§] and u = 1.

5 Generating Function for Fully Symmetrical Letter Repre-
sentation

We define an m x n letter representation to be fully symmetric if and only if it is
fixed via horizontal and vertical reflection. Let S, , count the number of fully sym-
metrical letter representations. Although Sy, , only appears in the proof of Theorem
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2.1, we can apply the techniques of Sections 3 and 4 to determine the generating
functions for S, ,. Since the fully symmetrical letter representations are invariant
under two symmetry transformations, the underlying m x n array is divided into
four quadrants. The upper left quadrant is arbitrarily filled and the remaining three
quadrants are completed by applying the two symmetry transformations to the up-
per left quadrant. There are two types of letters in the upper left quadrant. The
first type of letter is called a singleton letter. A singleton letter is a letter whose
image, in the remaining three quadrants, is never another letter that appears in the
upper left quadrant. There are five possible ways a letter can be a singleton. These
five ways are illustrated in Figure 5.1

=[x
<[<

i XX ii.
XX

<|X
<|X

—| X
c<

<X

Figure 5.1: The five ways a singleton letter can be transformed under symmetry.

The second type of letter present in the upper left quadrant can be considered to be
part of a double pair. A letter is part of double pair when its image in one of the
other three quadrants is another letter orginally present in the upper left quadrant.
Figure 5.2 illustrates the six ways double pairs transform in a fully symmetrical
manner.

We begin by assuming the row and column dimensions are even. The geometric
construction depends on locating the singleton letters and the double pairs present
in the upper left quadrant. In particular,

n 3] { }655] 254

2551(5 — 2s)!

SZm,Z'rL
j=1 s=0

where
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A|B|IB|A||A|B|A|B
iy iy
A|lA|B||C|D|C|D

A|B|A|B||A|B|D|C
Vil vy

A|B|A|B||B|A!C|D

A|lB|A|B A|B|D|C
v Vi

B|A[B|A||D|C|A|B

D does not contain C or D

Figure 5.2: The six ways two letters, each appearing in the upper left quadrant, form
double pairs.

1. j counts the letters in the upper left quadrant.
2. s counts the number of these j letters that are interchanged under symmetry
operations.

The proof of Theorem 5.1 is similiar to that of Theorem 3.1 and will be omitted.

Theorem 5.1 The coefficient of t™ in the expansion of exp(5(e' — 1)63(8t+1)2) is
52771,271-

Next we calculate Sym ont1. By symmetry, the calculation for Som 2nt1 determines
Son+12m- In this particular case, we decompose the 2m x (2n + 1) array into four
quadrants and a middle column and fill the upper left quadrant with an arbitrary
letter configuration. Using symmetry, we complete the remaining three quadrants
as illustrated by Figures 5.1 and 5.2. However, we need to determine whether a
singleton letter or letter from a double pair may occur in the middle column. In
particular, the two singleton types illustrated by Diagrams i and ii in Figure 5.1
and the double pair illustrated by Diagram i of Figure 5.2 may occur in the middle
column. The middle column is completed as follows. The first m squares of the
middle column, called the top half of the middle column, are filled by letters
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that appeared in the quadrants or by new letters. Then, using horizontal reflection,
the corresponding positions in the lower half of the middle column are filled. Hence,

mn 131 B=2E] i—oF—2p i—2F—2M—f m m—1 (5]
SZm,Zn—H = E E E E E
i=1 F=0 M=0 =| p=0 1=0 k=min(1,m—1) t=0

{ n }i! 5F3I9—F-M+k=3ty1(2j — 2f — p — 4F — 2M)! { " ! } k!

FIMUfIpl(i — 2F — 2M — f — p)l il (m — [)(k — 2¢)T#]

where

1. 7 counts the letters in the upper left quadrant.

2. F counts the double pairs of the upper left hand quadrant that cannot occur
in the middle column.

3. M counts the double pairs of the upper left quadrant that can occur in the
middle column.

4. f counts the singleton letters of the upper left quadrant that cannot occur in
the middle column.

5. p counts the letters in the upper left quadrant that are the singleton letters
illustrated by Diagram i of Figure 5.1

6. [ counts the squares in the top half of the middle column that are filled by
letters that appeared in the quadrants

7. k counts the letters in the top half of the middle column that do not appear in
the quadrants.

8. t counts the interchanges that occur as the k letters are reflected to the bottom
half of the middle column.

Theorem 5.2 The coefficient of y™x™" in the expansion of eXp(%[ T(—4 + 2e¥) +
e¥ (e +5) — 4]) is Samant1-

To prove Theorem 5.2, we make use of the following version of Taylor’s Theorem.

Remark 5.1

i b pab” b
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Proof of Theorem 5.2 Let ¢ = mn. Then,

~ { a }{ mk_l }i!k!(%f2ffpf4F72M)15F3f2*F*M+k*3ta:qym

Sle,y)= Y !

i,F,M,f.p,
m,l,k,t,q=0

3 (€ —1)¥(e¥ — 1)kpFgf o= F=M+k=3t(2; _of —p — 4k — 2M)y!
F.M
Lkt

FIMIfipl(i — 2F —2M — f — p)tl! (m — D¢ (k — 2¢)!q!

FIMUfipl(i — 2F — 2M — f — p)U1 (k — 201!

(¢" = 1)i(e¥ — 1)¥5F372-F=M—4(2j — af — p — AF — 2M)'y/[dz]* 2"
FIMIfIpl(i — 2F — 2M — [ — p) Ik !

I
]2

i, F,M,f, 2=2
p,l,k,t=0
B i (eF — 1)i(eV — 1)F5F872-F-M (2 _9f —p — 4F — 2M)yle 5= 2H
_ZFMf FIMIfipl(i —2F —2M — f —p)! 1V k! o
k=0 N
Due to Remark 5.1, we obtain
S(z,y) i (e* = 1)i57312°F~M(2j — 2f — p — 4F — 2M)lylex(¥+2"—3)
€T =
Y o FIMIFIp\(i — 2F — 2M — f — p)!1!
i (ez _ 1)i5F3f2—F—Mey(2i—2f—p—4F—2M)e%(62y+28y—3)
B R FIM\flp\(i — 2F —2M — f — p)!
Let M = u — F. The above line becomes
S(zy) = i [(e” — 1)) [3e=2] [5e=2)" e~ ]P[2e2] ~er (™ 2 8)
’ FaTo Fllu = F)f!pl(i = 2u — f — p)!
© [(ex _ 1)62y]i[5e—2y]F[1 +3e2 4 e—y]FZu[QeZy}fue%(ezerZey—3)
_z‘FZu=0 Fl(u — F)!(i — 2u)!
_ i [(e® — 1)e?¥]{[1 + 5e2¥]*[1 + 3e~% + e‘y}i_Z”[Qezy]_”e%(e%”ey_?’)
N = ul(i — 2u)!

- exp(%[ez(—ﬁl F2eY) (4 5)F —4) O

The final sum of this section counts S(gm+1)x(2n+1).- In this case, the geometric
decomposition involves four quadrants, a central square, and a middle cross, where a
middle cross is the union of the middle column and middle row minus the central
square. Thus, a middle cross consists of the top and bottom halves of the middle
column along with the left and right halves of the middle row. In this situation, the
top half of the middle column is the m squares above the central square, and
the left half of the middle row is the n squares to the left of the central square.

For this situation, we will not begin by analyzing the components in the upper left
quadrant. Instead, we will work first with the middle cross and then extend outward
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to the quadrants. In particular, we begin by filling in the top half of the middle
column in an arbitrary manner. Next, using the horizontal reflective symmetry,
we determine bottom half of the middle column. A letter from the top half, when
reflected to the bottom, can either go to itself, go to an entirely new letter, or become
interchanged with another letter present in the top half. In all three cases, these top
half letters (and possibly new bottom half letters) may occur in the quadrants. This
situation is illustrated by Figure 5.3.

A A A
vy || Y
A—>Y
A A M hasno ¥
Y Y Y component goes to new letter
A A A
Y|Y|Y
A—>Y
AlA|A components interchange
Y Y Y
A A A
A—A
component goes to itself
A A A

Figure 5.3: The three ways A, a letter from the top half of the middle column, is
transformed, via horizontal reflection, to the bottom half of the middle column. In all
three cases, note that A and its image have a unique way of appearing in the quadrants.

The next step is to determine the middle row. This is done by first filling the left half
of the middle row with letters occuring in the middle column. The only such middle
column letters that may be used are those letters which are fixed under horizontal
reflection. To fill in the remaining spaces of the middle row minus the central square,
we repeat the procedure used to determine the middle column. The only difference is
that we use a vertical reflection. Once again, these middle row letters may appear in
the quadrants. To visualize this situation, simply rotate the diagrams in Figure 5.3
by 90 degrees. Next, we are in a position to determine the quadrants. This is done
by first placing the cross letters throughout the quadrants. Then, for the remaining
spaces of the quadrants, we repeat the geometric analysis of singletons and double
pairs used for determining Sa, 2,. The last step is to fill the central square with an
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entirely new letter, a singleton from the quadrant that is fixed under symmetry, or
a letter from the middle cross that is also fixed under symmetry.

Following the steps outlined above, we arrive at a summation of 22 variables. The
derivation of the exponential generating function utilizes the techniques of Theorem
5.2. Details are available, upon request, from the author.

Theorem 5.3 The coeffiecient of y™x™I™" in the expansion of
exp(l + & + y) exp(2e? + 12 4 L2204 oty — el — 2) 45 Syrp1ons1.

6 Further Research

By using a particular decomposition of the Bell Numbers [4],[7],[8] and applying var-
ious symmetry transformations to m x n rectangular arrays, we are able to calculate
the number of m x n letter representations modulo D, symmetry. The number of
m X n letter representations only provides a lower bound for the basis size of the
transition matrix. In order to find an upper bound for the cardinality of the basis,
it is necessary to extrapolate the results of this paper to the case of m x n arrays of
circled letters (i.e. word representations of Section 1). Currently, we are formulating
the generating functions used in the enumeration of m x n arrays of circled letters.

Another promising avenue of research involves square arrays, where m = n. Since a
square array has D4 symmetry, the formula to enumerate m xm letter representations
modulo symmetry will be more complicated than the formula provided by Theorem
2.1. We are in the process of calculating the generating functions necessary in the
enumeration of m x m letter representations. The ultimate goal will be to adapt the
geometric constructions used in the enumeration of m x m letter representations to
the case of m x m word representations. Once this is accomplished, an upper bound
for the basis size of the associated transition matrix will be completely determined
for all integers m and n.

Finally, a different type of research would involve exploring the connections between
m X n X p proper arrays and percolation theory. At the present time, we have not
explored the connection in any depth but realize that the stochastic and probabilisitic
techniques of percolation theory could, when applied to the representation of an
m X n X p proper array as a bond percolation on Z* with an open cluster at the
origin (see Section 0.3), give rise to a whole new category of results.
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Appendix A: Numerical Data

The following table provides, for small integer values of m and n, numerical values
for Hpn, Vinns R, and Sp, 5. All the values came from the generating functions
given by Theorems 3.1, 3.2, 4.1, 5.1, 5.2, and 5.3 and were verified by a short Maple
program the author created.

MmXn | Hyn | Vs Rypn | Smn
2x3 31 12 31 13
2 x4 164 164 164 36
2x5 | 999 999 999 107
3 x2 12 31 31 13
3x4 | 339 | 6841 | 6841 | 469
3 x5 | 2210 | 51790 | 127643 | 3835

Table 2: Numerical Data for certain m x n letter representations

References

[1] J. Quaintance, “m X n Proper Arrays: Geometric and Algebraic Methods of
Classification”, Ph.D. Dissertation, University of Pittsburgh, August 2002.

[2] J. Quaintance, “n x m Proper Arrays: Geometric Constructions and the Asso-
ciated Linear Cellular Automata”, Maple Summer Workshop 2004 Proceedings.

[3] J. Quaintance, “Combinatoric Enumeration of the Geometric Classes Associated
with n x p Proper Arrays”, Discrete Math. (to appear).

[4] N.J.A. Sloane, “The On-Line Encyclopedia of Integer Sequences”,
http://www.research.att.com/~njas/sequences/

[6] S. Lo and M. Monagan, “A Modular Algorithm for Computing the Characteris-
tic Polynomial of an Integer Matrix in Maple”, Maple Summer Workshop 2005
Proceedings.

[6] R. Simion, “Noncrossing partitions ”, Discrete Math. 217 (2000), 367-409.

[7] K. Yoshinaga and M. Mori, “Note on an Exponential Generating Function of
Bell Numbers”, Bull. Kyushu Inst. Tech. 24 (1976), 23-27.

[8] D. Branson, “Stirling Numbers and Bell Numbers: Their Role in Combinatorics
and Probability”, Math. Scientist 25 (2000), 1-31.

[9] B. Cipra, “An Introduction to the Ising Model”, Amer. Math. Monthly 94
(1987), no. 10, 937-959.



308 JOCELYN QUAINTANCE

[10] G. Grimmett, Pecolation, Second Ed., Springer-Verlag, 1991.

[11] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Second Ed.,
Taylor and Francis, 1992.

[12] R. Stanley, Enumerative Combinatorics, Vol. 1., New York: Wadsworth and
Brook/Cole, 1986.

(Received 27 June 2006; revised 10 Feb 2007)



