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Abstract

A method is given to construct a Boolean function on (n + 2) variables
which is not weakly (k + 1)-normal given two Boolean functions on n
variables neither of which is weakly k-normal.

1 Introduction

A function from Fj into [F, is called a Boolean function on n variables. The set of all
such functions is denoted by B,. Let the cardinality of any set S be denoted by |S].
The function d : B, x B, — Z defined by d(f,g) = {z € F}|f(z) # g(z)}|, for all
f,9 € By, is called the Hamming distance between f and g. The inner product of two
vectors u,v € Fy is denoted by (u,v). A function [ € B, is affine if and only if there
exists u € Fy and ¢ € F, such that f(z) = (u,2) + €. Let A, denote the set of affine
functions in B,. The minimum Hamming distance of f € B,, from the set A, that is
min{d(f,1)|l € A,} is called the nonlinearity of f. A Boolean function f € B, is said
to be balanced if and only if [{z € F}|f(z) = 1}| = |{z € F}|f(z) = 0)}] = 2",

Boolean functions find extensive applications in designing stream ciphers and block
ciphers. High nonlinearity and balancedness are possibly the most important prop-
erties that a Boolean function which is being used in cipher systems must possess.
When n is odd finding functions with maximum nonlinearity for n > 7 is an open
problem. For n even the maximum nonlinearity attainable is 2%~ — 25! and func-
tions having this nonlinearity are called bent functions [6, 7, 9]. However bent func-
tions are never balanced, and so it is not possible to use a bent function directly as a
component of a cipher system. Carlet [2] proved that if a bent function on n variables
is constant over an ¢-dimensional flat then it is balanced on all the other flats of the
same subspace. Dobbertin [8] used this idea to construct highly nonlinear, balanced
Boolean functions. In the same paper he introduced the notion of non-normality, a
function is called non-normal (not weakly normal) if it is not constant (affine) over
any %-dimensional flat, otherwise the function is called normal (weakly normal).
Canteaut, Daum, Dobbertin and Leander [1] gave the first examples of bent func-
tions of n = 10 and n = 14 variables which are not normal and not weakly normal
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respectively. These functions were proved to be non-normal (not weakly normal)
computationally by using an algorithm developed by Canteaut, Daum, Dobbertin
and Leander [1].

Charpin [5] introduced the notion of k-normality and extended the notion of nor-
mality to odd n. For any n, a Boolean function on n variables is called k-normal
if it is constant on a k-dimensional flat and weakly k-normal if it is affine on a k-
dimensional flat. A function is called normal if it is [4]-normal, and weakly normal
if it is weakly [ ]-normal.

It is proved in [1] that if f is a non-normal (not weakly normal) Boolean function,
then its direct sum with yz, the Boolean function g defined by g(z,v,z) = f(z)+yz,
is non-normal (not weakly normal). Carlet, Dobbertin and Leander [4] proved that
the direct sum of a non-normal (not weakly normal) bent and a normal bent results
in a non-normal (not weakly normal) bent. This proof is done by introducing the
notion of normal extension of a bent function and is restricted to the case when n
is even and the functions are bent. While Dobbertin [8] proved that for increasing
dimensions almost all Boolean functions are non-normal we know very few examples
of non-normal functions. In this paper we demonstrate that if f; and f, are two
Boolean functions on n variables which are not weakly k-normal then g(z,y,z) =
filz) +yz 4+ (v + 2)(fi(z) + fa(x)) is not a weakly (k + 1)-normal function. This
gives a new secondary construction of (n + 2)-variable Boolean functions which are
not weakly (k + 1)-normal from n-variable Boolean functions which are not weakly
k-normal. We prove this fact by using the same technique as given in Lemma 25

of [1].

2 Main result

In this section we present our main result.

Theorem 1 Let fi, fo : F} — Fy be two Boolean functions. The following state-
ments are equivalent:

1. f1 or fs is weakly k-normal.

2. The function
g: ) xFy xFy, — [y
defined by
g(z,y,2) = file) +yz + (y+2)(fi(z) + fo(z))

is weakly (k + 1)-normal.

Proof : Suppose g is weakly (k + 1)-normal. Therefore there exists a (k + 1)-
dimensional flat £, v € F3 and «, 8 € F, such that

h(z,y,z) = g(x,y,2) + ay + Bz + (v, )
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takes the same value, ¢, on E. We claim that either f; or f, is weakly normal. For
a,b € F, we define
Eu = {z € F}|(z,a,b) € E}.

Since E is a (k 4 1)-dimensional flat there exists an element v € F} x F, x I
and a (k + 1)-dimensional subspace H of F§ x F, x F, such that £ = v+ H. Let
m: By x Fy, x Fy — Ty be the projection map defined by n(z,a,b) = z for all
(z,a,b) € Fy x Fy x IF,.

It is to be noted that
Eu =m((F} x {a} x {b}) N E).

Consider the case E,; non-empty or equivalently

(B x {a} x {B}) N E # o.

Suppose (z,a,b), (y,a,b) € (Fy x {a} x {b}) N E. Since E = v+ H, (z,a,b) —
(y,a,b) = (z —y,0,0) € (F} x {0} x {0}) N H. Again if (z,a,b) € (Fy x {a} x
{b})NE and (,0,0) € (Fy x {0} x {0}) N H then (z,a,b)+(2,0,0) = (z+2,a,b) €
(Fy x {a} x {b}) N E. Therefore (F} x {a} x {b}) N E is a coset of the subspace
(Fp x {0} x {0}) N H for any a,b € F,. Hence all non-empty E,;’s are flats of the
same subspace 7((F} x {0} x {0}) N H) and therefore have the same dimension.

Let p : F} x Fy x F, — F, x F, be the projection map p(z,a,b) = (a,b), then
((F3 x {0} x {0}) N H) is the kernel of p restricted to H. Thus

dim((F2 x {0} x {0}) N H) =k + 1 — dim(p(H)).
The dim(p(H)) € {0,1,2}. Because 7 restricted to Fy x {0} x {0} is bijective
dim(r((F} x {0} x {0}) N H)) = dim((F} x {0} x {0}) N H).
Hence the dimension of 7((F} x {0} x {0}) N H) is either k+ 1 or k or k — 1.
Suppose z € E,p, then
¢ = h(z,a,0) = fi(z) + ab+ (a + 0)(fi(2) + fo(2)) + aa + Bb+ (v, )
ie.,
fi(z) + (a+0)(fi(z) + fo(z)) = c+ ab+ aa+ B+ (7, ).
Note that

H(@) + (a+b)(fi(x) + fa(x)) :{ ﬁgg ﬁjiii?

Therefore if E,, # ¢, either f; or fs is affine on E,;.

If one of the flats F,; has dimension > k then we are done. If this is not true
then for any a,b € F, the number of elements in E, |E.s| € {0,2%71}. Since
|Eal = [{(z,a,D)[x € Eg}|, we have |E| = Y ,cx, D oer, |1 Basl = 2k+1  This is
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possible if and only if |Eg| = 2571, for all a,b € F,. Suppose E,5 = Egp, so that for
any element (x,@, 8) € E the element (z, a,B) € E, where for any € € [y, € denotes
the complement of €, i.e., 0 = 1 and T = 0. If we consider two elements (z,@, ) and
(2',, ) in E, we find that,

(z,@,8) + (z,a, B) + (2',a, B) = (¢, @, B)

belongs to E, implying that h(z', o, 8) = h(z',@, 5). But,
ha',@,B) = fa) +aB8 + @+ B)(f(2) + f(2) +a@ + BB+ (1,7')
= A@) +af+(a+B)([i(a) + L(d) +a+ B+ (1,2]) +1
= ha@,a,0)+1
which contradicts h constant on E. Since E 5 and Egp are distinct parallel flats of

dimension k£ — 1 in an Fs-vector space the set E,5U Egp is a flat of dimension k.
Moreover we deduce the following:

For alleEaE
c=h(z,a,8) = fi(z) +aB + (a+ B)(fi(z) + fo(z)) + ac+ BB + (7,2)
e, filz)+ (a+B+1)(fi(z) + folz)) =c+aB+ (7, 7).

Similarly for all z € Egp
c=h(z,a@ fB) = filz) +aB + @+ B)(fulz) + fo(z)) + aa@ + BB + (7, z)

e, filz) +(a+B+1)(filx) + falz)) = c+ b+ (7, 2).
Therefore when x € E zU Egg,

fi@) + (a4 B+ 1)(fil2) + fo(2)) = ¢+ af + (y,2).

Thus either f; or fo is weakly normal.

Conversely suppose f; or f, is weakly normal. Suppose first f; is weakly normal, that
is there is a k-dimensional flat E on which f; is affine. Suppose fi(z) = (v,z) + ¢
on E, where v € F} and ¢ € F,. Consider the (k + 1)-dimensional flat

= (E x {0} x {0}) U (E x {1} x {1}).
It is to be noted that if E is a coset of the subspace H then E'is a coset of the
subspace H' = (H x {0} x {0})U(H x {1} x {1}). It can be checked that for « € E,

9(2,0,0) = fi(z) = {(y,2) + ¢
and
g(x,1,1) = fi(z) + 1= (y,z) + c+ 1.
Therefore g(z,y,z) = (v, z) + y + ¢ for all (z,y,z) € E".

Suppose second that f5 is weakly k-normal, that is that there is a k-dimensional flat
E on which f, is affine. Suppose fao(z) = (7y,2) + c on E, where v € F} and c € ;.
Consider the (k4 1)-dimensional flat

— (B x {0} x {1}) U (E x {1} x {0}).
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The flat E' constructed as above is a coset of the subspace H' = (H x {0} x {0})U
(H x {1} x {1}). As above we check that when « € E,

g(l‘,o, 1) = f2(1‘) = <771‘> +c

and
9(z,1,0) = fo(z) = (7,2) +c.
Therefore
g9(z,y,2) = (7,2) + ¢ for all (z,y,z) € E'. Thus g is weakly (k + 1)-normal. L]

By using the above theorem we can conclude that if f;, f, € B, are not weakly
k-normal functions then the function g € B, . as constructed above is not a weakly
(k + 1)-normal function. In case the deg(f; + f2) = max{deg(f1),deg(f2)} then
deg(g) = max{deg(f1),deg(f2)} + 1, whereas in case of direct sum with the function
yz the algebraic degree of the resulting function does not increase.

Remark 1 [t is to be noted that if fi and fs are bent functions, then by Proposi-
tion 8, [4], it can be proved that if one of them is non-normal (not weakly normal)
bent, then g is a non-normal (not weakly normal) bent. This result is proved by using
the notion of normal extension of bent functions and therefore is not applicable when
the functions are not bent. Our result on the other hand is applicable to k-normal
functions on n variables, n even or odd.

3 Conclusion

In this paper we demonstrate that techniques used in [1] can be used for secondary
constructions which are not the direct sum of a function f with yz. Carlet [3] has
studied secondary constructions of bent and resilient functions of the following type:

g(z,y) = filz) + 91(y) + (91 + 92) (W) (fr + f2)(2)

where z € Fy and y € Fj*. Our construction is a special case of this construction.
It is an interesting open problem to find relationships between non-normality of f;
and f, and properties of g1, gs.
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