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Abstract

Let A be an abelian group with non-identity elements A*. A graph is A-
magic if there exists an edge-labeling using elements of A*, which induces
a constant vertex labeling of the graph. In Low and Lee (Australas. J.
Combin. 34 (2006), 195-210), the Z;-magic property for certain classes
of triominoes and polyominoes was studied. In this paper, we resolve
an open question involving the Z;-magic property for pyramid graphs.
Furthermore, for certain classes of honeycomb graphs, we determine for
which values of k > 2 the graphs are Z;-magic.

1 Introduction

Let G = (V, E) be a connected simple graph. For any non-trivial abelian group A
(written additively), let A* = A—{0}. A function f : E(G) — A* is called a labeling
of G. Any such labeling induces a map f+ : V(G) — A, defined by f*(v) = Zf(u,v),
where the sum is over all (u,v) € E(G). If there exists a labeling f whose induced
map on V(@) is a constant map, we say that f is an A-magic labeling of G and that
G is an A-magic graph. The corresponding constant is called an A-magic value. The
integer-magic spectrum of a graph G is the set IM(G) = {k : G is Z;-magic and k >
2}. By convention, Z-magic graphs are considered to be Z;-magic.
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Z-magic graphs were considered by Stanley [21, 22], where he pointed out that
the theory of magic labelings could be studied in the general context of linear ho-
mogeneous diophantine equations. Doob [1, 2, 3] and others [7, 9, 15, 16, 19] have
studied A-magic graphs and Z,-magic graphs were investigated in [4, 6, 8, 10, 11,
12, 13, 14, 20].

Within the mathematical literature, various definitions of magic graphs have been
introduced. The original concept of an A-magic graph is due to J. Sedlacek [17, 18],
who defined it to be a graph with real-valued edge labeling such that (i) distinct
edges have distinct nonnegative labels, and (ii) the sum of the labels of the edges
incident to a particular vertex is the same for all vertices. Previously, Kotzig and
Rosa [5] had introduced yet another definition of a magic graph. Over the years,
there has been great research interest in graph labeling problems. The interested
reader is directed to Wallis’ [23] recent monograph on magic graphs.

2 Tessellation graphs

In [14], Low and Lee introduced the concept of a tessellation graph. For convenience,
we include the relevant definitions in this section.

A tessellation is a tiling of the plane, using polygons. If a tessellation consists
of congruent polygons, it is a regular tessellation. Thus, there are only three reg-
ular tessellations, utilizing equilateral triangles, squares, or regular hexagons. A
tessellation graph is a finite subgraph of a regular tessellation, consisting of a grid
of congruent polygons where each polygon shares at least one common edge with
another.

Definition 1 A region Q in the plane is n-connected if the complement of Q has
exactly n components.

Definition 2 For n > 2, an n-tessellation graph is a graph which tessellates an
n-connected region in the plane.

For example, a 1-tessellation graph tessellates a simply-connected, bounded region
in the plane. The reader should note the following remarks.

Remarks. Let G be an n-tessellation graph, n > 2.

1. In G, the boundaries of a hole and the outer boundary of G have no vertices
in common.

2. If G is an n-tessellation graph with n > 3, then the boundaries of any two holes
have no vertices in common.

Low and Lee [14] determined the entire integer-magic spectra of n-tessellation
graphs constructed from squares. In addition, the integer-magic spectra for certain
classes of n-tessellation graphs, constructed from equilateral triangles, were analyzed.
In this paper, we continue to study the integer-magic spectra of triominoes and begin
the study of honeycomb graphs.
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3 Triominoes

Consider a tessellation of the plane, using congruent equilateral triangles. Two tri-
angles are connected if they share a common edge. Let T be a connected collection
of triangles. Then, T is a connected planar graph, consisting of a grid of C3’s with
each (3 sharing at least one common edge with another. A connected collection
of triangles is called a triomino. T is called an n-triomino if it is an n-tessellation
graph.

In [14], the integer-magic spectra for various classes of 1-triominoes were analyzed,
one of which was the class of pyramid graphs (see Figure 1).
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Figure 1: Pyramids of heights 3 and 4, respectively.

In particular, Low and Lee [14] used an intricate argument to establish the following
result.

Theorem A Let P be a pyramid of height n, n > 3. If n = 0 or 3 (mod 4), then
IM(P) =N — {1}. Otherwise, {2,4,5,6,...} CIM(P).

It remained unresolved as to whether 3 was contained in the integer-magic spectrum
of a pyramid of height n, when n =1 or 2 (mod 4). We now give a complete answer
for these remaining cases and thus, establish the integer-magic spectra of pyramids.

Theorem 2 Let P be a pyramid of height n, where n =1 (mod 4). Then, IM(P) =
N - {1}.

Proof. 1t is clear that if P is a pyramid of height 1, then IM(P) = N — {1}. First,
we give a Zgs-magic labeling for a pyramid of height 5.

Now, every pyramid P of height n where n = 1 (mod 4) and n > 5, has n edges
at the bottom of the pyramid. In particular, n is odd. Thus, the Zzmagic labeling
illustrated in Figure 2 can be extended to give a Zjs-magic labeling for any pyramid
P of height n, where n =1 (mod 4) and n > 5. That is, all diagonal edges of P are
labeled 2, all horizontal edges in the first n — 1 layers of P are labeled 1, and the
horizontal edges on the bottom of the last layer of P are labeled 2,1,2,1,...,1,2,
respectively. This, along with Theorem A, establishes the result. a

In [6], it was shown that if P is a pyramid of height 2, then IM(P) =N — {1, 3}.
The next theorem finishes the analysis of the integer-magic spectra of P.
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Figure 2: Zsmagic labeling of a pyramid of height 5.

Theorem 3 Let P be a pyramid of height n, where n = 2 (mod 4) andn > 6. Then,
IM(P) =N - {1}.

Proof. Figure 3 illustrates a Zszmagic labeling for a pyramid of height 6. This
particular labeling has Zjs-magic value 1. We now construct Zs-magic labelings for
pyramids of height n, where n = 2 (mod 4) and n > 10. This is accomplished by
successively adding the labeled block illustrated in Figure 4 to the bottom of the
pyramid in Figure 3. At each stage, we identify the vertices at the bottom of the
pyramid with the vertices at the top of the block. Hence, we obtain a Zsmagic
labeling of P, with Zsmagic value 1. This, along with Theorem A, establishes the
result.

Figure 3: Zsmagic labeling of a pyramid of height 6.

4 Honeycomb graphs

Consider a tessellation of the plane, using congruent hexagons. Two hexagons are
connected if they share a common edge. Let H be a connected collection of hexagons.
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Figure 4: Labeled block.

Then, H is a connected planar graph, consisting of a grid of Cg’s with each Cg sharing
at least one common edge with another. A connected collection of hexagons is called
a honeycomb graph. H is called an n-honeycomb if it is an n-tessellation graph made
up of hexagons.
Observations.

1. Every regular graph is Zj-magic, for & > 2. Thus, if H = Cs, then IM(H) =
N —{1}.

2. A graph is Zymagic if and only if all of its vertices are of the same parity.
Thus, if H is a 1-honeycomb graph made up of two or more hexagons, then H
is not Zy-magic.

Theorem 4 Let H be a 1-honeycomb graph which can be constructed by successively
adjoining hexagons, via the identification of at most two pairs of edges (and their
corresponding vertices) at each step. Then, {4,5,6,7,..} CIM(H).

Proof. Let k € Z and k > 4. To obtain a Zj-magic labeling of H, we use the two
labelings of a hexagon illustrated in Figure 5.

1 2
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Figure 5: Z;-magic labelings of a hexagon, with Z;-magic value 0.

We proceed by induction on the number of hexagons used to form H. If H = Cj,
we obtain a Z-magic labeling with Z;-magic value 0, by using either of the labelings
found in Figure 5. Now, assume that every 1-honeycomb graph H' made up of n
hexagons (and constructed as described in the hypothesis of the theorem) has a Z;-
magic labeling with Z;-magic value 0. Let H be a 1-honeycomb graph (consisting of
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n + 1 hexagons) which is constructed by adjoining a hexagon (via identification of
at most two pairs of edges) to H'.

CASE 1. H is constructed by identifying one edge of a hexagon to an edge of
H'. By the induction hypothesis, H' has a Z;-magic labeling with Z;-magic value 0.
Since all of the exterior edges of H' are 1, k — 1, 2, or k — 2, we use the appropriate
labeling of a hexagon from Figure 5 so that the identified edge has a non-zero value.
This yields a Z;-magic labeling of H, with Z;-magic value 0.

CASE 2. H is constructed by identifying two edges of a hexagon to two edges
of H'. In this case, there are only ten possible situations which can occur. Figure 6
below gives Z-magic labelings (k > 4) with Z;-magic value 0, for H.

2

1

k-1

B R

Figure 6: [CASE 2.] Z;-magic labelings of H (k > 4), with Z;-magic value 0.

An example illustrating Theorem 4 is given in Figure 7.

Figure 7: A Zj;-magic labeling of a honeycomb graph, with Z;-magic value 0, for
k>4

We now analyze the integer-magic spectra for the class of hexagonal pyramids
(see Figure 8). Each layer of a hexagonal pyramid is called a hezagonal snake. A
hexagonal snake consisting of n hexagons is of length n.

Lemma 1 Let S be a hexagonal snake. Then, for k > 4, there exists a Z-magic
labeling of S with Z-magic value 0, where the exterior edges of S are labeled 1, k—1,
2, ork—2.
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Figure 8: Hexagonal pyramids of heights 2 and 3, respectively.

Proof. To construct the required Z;-magic labeling of S with Z;-magic value 0, we
will use the two labelings of Cg as described in Figure 5. Each hexagon of S will be
labeled using one of these labelings and a labeling of S will be obtained by identifying
pairs of edges. For a snake S of length n, we use the notation L, = (21,22, ..., T2)
to denote the labeling in Figure 9.

Figure 9:

For k > 4, a Z;-magic labeling (with Z;-magic value 0) of S can be obtained
using the recursive construction described in Table 1. Let n be the length of S.
Then:

n L,

1 (2,k—2)

2 (1,k—1,k—1,1)

3 (k—1,1,2k—2,1,k—1

4 (2,k—2,1,k—1,k—1,1,k—2,2)

5 (Lk-1,k-1,1,2,k-2,1,k—1,k-1,1)

6 (k—1,1,2k—2,1,k—1,k—-1,1,k—2,2,1,k - 1)

7 2,k—-2,1,k—1,k-1,1,2)k—-2,1,k -1,k - 1,1,k —2,2)

8 (Lk—1,k—1,1,2k—2,1,k—1k—1,1,k—2,21,k—1,k—1,1)

Table 1: Recursive construction of Z;-magic labelings of S, for £ > 4.

Formally, the construction is described in the following way: Let Ly = (2,k — 2),
Ly, = (1,k — 1,k — 1,1) and [L,]; denote the sth entry of L,. Then for n > 3,
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L, = (x1,29,...,%e,) is defined by

& = [Lpg]i o, for3<i<2n-2,

].7 lf [Lnfl}l = ].
L9 = Top—1 — k — ]., lf [Lnfl}l =2
k=2, if [Lyo]i=k—1,

and ©; = @9, = k — 9. For example, Figure 10 gives a Z;-magic labeling (with
Z-magic value 0) for a hexagonal snake of length 5, where k > 4.

Figure 10: Ls = (1,k — 1,k —1,1,2 k — 2,1,k — 1,k — 1,1).

b

Since the labelings of Cg (in Figure 5) have Z,-magic value 0, the L, labelings of
S described in Table 1 have Z;-magic value 0. Furthermore for k& > 4, the only time
that an interior edge is labeled 0 is if L,, is of one of the following forms:

o Ly=(...,2k=22k—2,..)
o Ly=(. k—22k=-22 )
o Ly=(..Lk=1,1k—1,...)
o Ly=(.. k—=1,1k=11,..).

In our recursive construction of L,,, this can never occur. Thus for a hexagonal snake
S of length n and k > 4, L, is a Z;-magic labeling with Z;-magic value 0. d

Theorem 5 Let G be a hexagonal pyramid of height n > 2. Then, {4,5,6,7,...} C
IM(G).

Proof. Let k > 4 and suppose that G is a hexagonal pyramid of height n > 2. Using
Lemma 1, we first consider the hexagonal snakes of length 1, 2,...,n, along with
their respective Ly, Lo, ..., L, labels. The labeled hexagonal snakes are then layered
to form G, by the appropriate identification of vertices and edges. Note that when
two edges are identified with each other, the resulting edge is labeled with the sum of
the two original labels. Since each L, has Zj-magic value 0, the resulting labeling of
G has Zj-magic value 0. Furthermore, every pair of edges which are identified with
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each other forms an edge which is labeled with a non-zero number (mod k). This is
easily seen since for n > 2 and &k > 4,

[Lu)i + [Ln-1]i-1 # 0, (mod k),

where 2 <7 < 2n — 1. a

For example, Figure 11 gives a Z;-magic labeling (with Z;magic value 0) for a
hexagonal pyramid of height 4, where k& > 4.

k-1 | 2| | k1
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Figure 11: A Z;-magic labeling of a hexagonal pyramid of height 4, where £ > 4.

Using Theorem 5, we easily obtain Zj-magic labelings (k > 4) for the class of
hezagonal diamonds (see Figure 12).

\o/

Figure 12: A hexagonal diamond of length 5.
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Theorem 6 Let D be a hexagonal diamond of length 2n + 1, where n > 1. Then,
{4,5,6,7,..} CIM(D).

Proof. Let k > 4 and D be a hexagonal diamond of length 2n + 1, where n > 1.
Using Theorem 5, obtain Zg-magic labelings (with Z;-magic value 0) for pyramids
P of height n + 1 and P’ of height n, respectively. Form the labeled hexagonal
diamond D by identifying the appropriate (bottom) vertices and edges of P with the
corresponding (bottom) vertices and edges of P'. Each identified pair of edges forms
a new single edge which is labeled with the sum of the original labels. This gives a
Z-magic labeling of D, for k > 4. d

Figure 13 illustrates a Z;-magic labeling (k > 4) of a hexagonal diamond, using
Theorem 6.

Figure 13: A Z,-magic labeling of a hexagonal diamond of length 5, where £ > 4.
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