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Abstract

In this paper we study reversible cyclic codes of an arbitrary length n over
the ring Z4. First, we find a set of generators for cyclic codes over Z, with
no restrictions on the length n. A classification of reversible cyclic codes
with respect to their generators will follow. We also study the minimum
Hamming distance of cyclic codes over Z;. Examples of reversible cyclic
codes of lengths 5-10 with their minimum Hamming distance will be
studied as well.

1 Introduction

Let Z, = {0,1,2,3} represent the ring of integers modulo four. A linear code C of
length n over Z, is defined to be an additive submodule of the Z,—module Z}. A
cyclic code of length n over Z, is a linear code which is invariant under the shift opera-
tor that maps the element (cy, . . ., ¢,—1) of Z} to the element (¢,_1,cg, - .., cp2). For
each element (cy, . ..,c, 1) of ZF we associate a polynomial ¢+ ¢z +. .. c, 12"} in
the ring R, = Zy[z]/ (2™ — 1). Under this identification, cyclic codes can be viewed
as ideals in R,. A code C is called reversible if it is invariant under a reversal of
its entries in all its codewords. i.e., a cyclic code C' is called reversible if for each

codeword u = (ug,us, -+ ,up—1) € C then the reverse of u, u" = (Up_1,Up—2, - ,ug),
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is also in C. The Hamming distance between codewords u and v, denoted by H (u,v),
is simply the number of coordinates in which these two codewords differ. The Ham-
ming weight of a codeword u = (ug, u1,- - ,Up—1), w(u) is the number of nonzero
entries in u. The Hamming distance of a linear code C' is given by

d(C) =min{w(u) : v € C and u # 0}.

For each polynomial p(z) = po+p1z+-- -+ p,2" with p, # 0, we define the reciprocal
of p(x) to be the polynomial p*(z) = 2"p(1/z) = p, + pr_12™ ' + -+ + poa”. Note
that (p*(x))" = p(z), deg p*(z) < deg p(x) and if py # 0, then p(z) and p*(x) always
have the same degree. p(x) is called self-reciprocal if and only if p(z) = p*(z).

Reversible cyclic codes over finite fields were studied first in [8]. It was shown that
C = (f(z)) is reversible if and only if f(z) is a self-reciprocal polynomial.

In this paper, we study reversible cyclic codes over Z; of an arbitrary length n.
Such codes have applications in the subject of DNA computing. In DNA computing
researchers are interested in designing a new set of sequences (codewords) for each
experiment depending on various design constraints. One particular common con-
straint for preventing errors is to minimize the similarity between sequences (code-
words) under some distance measure, such as the Hamming distance. Reversible
cyclic codes will satisfy the following two constraints.

e The Hamming constraint: For any two different codewords u, v € C,
H(u, v) > d.

e The reverse-constraint: For any two codewords u,v € C, H(u,v") > d.

These two constraints will minimize the similarity between codewords and the reverse
of codewords.

Also, this class of codes have some applications in constructing certain data storage
and retrieval systems. We note that we put no restrictions on the length n.

The rest of the paper is organized as follows. In section 2, we study cyclic codes
of length n over Z; and we find a unique set of generators for them. In section 3,
we study reversible cyclic codes over Z, and we put a set of constraints on their
generator polynomials. In section 4, we study the minimum Hamming distance of
cyclic codes over Z. This section will provide some results that make computing the
minimum Hamming distance of these codes easily by hand. Section 5 includes a list
of reversible cyclic codes of lengths 5 — 10 with their minimum Hamming distance.
Section 6 concludes the paper.

2 Generators for Cyclic Codes

A cyclic code C'in R,, = Zy[z]/ (2" — 1) is an ideal in R,,. Our goal in this section is
to find a set of generators for C' for an arbitrary length n. Most of the previous work
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on cyclic codes in R,, was restricted to the case where n is odd [5,7,9]. Little work
was done on cyclic codes in R, for even length [1-4]. [3] has studied cyclic codes of
length n = 2°. It was shown that the ring R, is not a principal ideal ring. In [4],
the case where n = 2¢ and ged (e,n) = 1 are studied and the fact that R, is not
a principal ideal ring is also shown. Our approach in studying these codes will be
more general and doesn’t depend on the length n.

Let C be a cyclic code in R,,. Define ¢ : C — Zy[z]/ (z™ — 1) by ¢(z) =z mod 2.

As in Theorem 14 in [6], ¢ is a ring homomorphism with the kernel:
ker ¢ = {2r(x) : r(x) is a binary polynomial in C'} .

Now, we define J = {r(z):2r(z) € kerp}. It is clear that J is an ideal in
Zo[z]/ (z™ — 1) and hence a cyclic code in Zy[z]/ (2™ —1). So J = (a(z)) where
a(z) | (™ — 1). This implies that ker ¢ = (2a(z)) with a(z)| (¢™ — 1) mod 2. The im-
age of ¢ is also an ideal and hence a binary cyclic code that has a generator g(z) with
g(z) | (2™ — 1) mod 2. This implies that we can write C'as C = (g(z) + 2p(z), 2a(z))
where p(x) is a binary polynomial and g(z)|(z™ — 1) mod 4, a(z)|(z™ — 1) mod 2.

Note that under this construction the polynomial a(z) might be considered a divisor
of (z" — 1)mod 4 or a divisor of (z" — 1) mod 2.
We will abbreviate a for a(z) when the context is clear.

Lemma 1 In the setting above, dega(z) > degp(z), and a(z) |g(z) mod 2.

Proof. Since

29(z) € kerp = (2a(x)),

then a(z) |g(x). If g(z) = a(z), then C = (g(z) + 2p(z)). m

Lemma 2 a(z)[p(z) (9“; (;)1> mod 2.

Proof. Consider

v (mng_ Lo+ 2p]> =y (2pmng_ 1) = 0.

n n

-1
So, <2pw ) € ker p = (2a) and hence, a | (pw
g

-1
>m0d2. [ ]
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Lemma 3 If gcd(a(z), g(z)) = 1, then C = (g(z), 2).

Proof. Suppose ged(a(z),g(z)) = 1. Then, t(z)a(z) + s(z)g(z) = 1 + 21 implies
2t(z)a(z) + 2s(z)g(z) = 2 € C. Therefore C' = (g(z), 2). m

Lemma 4 Suppose n is odd. Then C = (g(z),2a(z)) = (g9(z) + 2a(z)) .

Proof. Suppose a(z)|g(z)mod2 and a(z)|p(z) <$m—;)1> mod2. Then g(z) =

n—1

a(z)mi(z) and p(z) (%) = a(x)my(x). Since n is odd then (z" — 1) factors
g(z

uniquely as a product of distinct irreducible polynomials. This implies that a(z)

must be a factor of p(z). But p(z) has degree less than a(z). Hence p(z) = 0 and
C = (9(z),2a(z)). Let h(z) = g(z) + 2a(z). 2h(z) = 29(z) € (9(z) + 2a(z)).

Also, (””n - 1) h(z) = 2 (xn -

! a(z) € (g(z) +2a(z)). Since n is odd then

\ g(x) 9(z)
ged xg(—;), g(z) | =1, and hence, there exist some binary polynomials f(z), fa(z)
such that
" -1
2 = (S52) Ao+ el Ao
2a(z) = 2 <%> a(z)fr +2g(x)a(z) f2 € (g +2a).

Therefore, g(z) € (g + 2a) and
C = (g(2), 20()) = (9(z) + 20(z)).

Lemma 5 If C = (g(z) + 2p(z), 2a(x))

= (h(z) +2¢(z), 2b(z)), then degg =
degh, g(z) = h(z) mod a(z) and p(z) = ¢(x).

Proof. From the construction of C' we have J = {r(z) : 2r(z) € ker ¢} = (a(z)) =
(b(z)) . Hence a(z) = b(x).

Suppose C' = (g(z) + 2p(z), 2a(x)) = (h(z) + 2¢(z), 2a(z)). Since a|g and a|h then
g = hmoda. Also h(z)mod2 € ¢(C) = (g(z)). Hence h = g(x)a(z)mod2 and
deg h(z) > deg g(z). By the same means

g(z)mod 2 = h(z)B(z) = g(x)a(x)s(x) mod 2
and deg g(z) > degh(z). Since g and h are monic divisors of (" — 1) mod 2 we get
that g(z) = h(z). Since h(z) + 2¢q(x) € C, then h(z) + 2¢(z) = [g9(z) + 2p(x)] +
2a(z)m(x). This implies
2lg(z) = p(x)] = (9(z) = h(z)) + 2a(z)m(z)
= a(z)l(z).
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Since degp(z) and degq(z) are less than dega(z) we get that 2[g(z) — p(z)] and
hence ¢(z) = p(z). m

We can summarize the above by the following theorem.
Theorem 1 Let C be a cyclic code in R, = Zy[z]/ (" — 1).

1. Ifn is odd, then R, is a principal ideal ring and

C = (g(x),2a(z)) = (9(2) + 2a(z))
where g(x), a(z) are polynomials with a(x) |g(x) |(z™ — 1) mod 4.
2. Assume n is even; then either

(a) C is a free module of generator
O = (g(z) +2p(2)) ,
where g(z)| (2™ — 1)mod 2 and (g(x) + 2p(z)) |(z™ — 1) mod 4, or,
(b) C = (g(z) + 2p(z), 2a(x)) where g(z), a(z), and p(z) are pilynomials
with g(z)|(z™ — 1) mod 2, a(z)|g(z)mod 2, a(z)|p(z) (%) mod 2,

and deg a(x) > deg p(z).

3 Reversible Cyclic Codes

Definition 1 A cyclic code of length n over Z, will be called reversible if u € C
implies u” € C.

Lemma 6 Let f(x), g(x) be any two polynomials in Zy, with deg f(x) > deg g(z).
Then, (see [3] for the proof)

1. [f(z)9(x)]" = f(2)"g(2)", and
2. [f(2) +g(2)]" = f(z)" +ate/~d89g* (z).
Theorem 2 Let C = (fo+2f1) = (fo, 2f1) be a linear cyclic code of odd length

n over Zy. Then C 1is a reversible cyclic code if and only if fo and fi are both
self-reciprocal.

Proof. If C is a reversible cyclic code, then the binary cyclic codes (fo(z))mod2
and (f1(x)) mod 2 are reversible and hence fo, and f; mod 2 are both self-reciprocal.
Since n is odd, (2™ — 1)mod 4 factors uniquely as a product of distinct irreducible
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polynomials. If f§ # fomod4 then (2" — 1) will have multiple factors mod2; a
contradiction. Therefore fy, and f; are both self-reciprocal.

Conversely, suppose fo, and f; are both self-reciprocal. Let ¢(z) be an element in C.
Then ¢(z) = fol1 +2f1l» for some polynomials [y, I, where deg(ly ) <n- deg(fo) -1,
and deg(ly) < deg(fo) — deg (f1) — 1. We may assume deg (c(z)) =

) = 2" te(l)z) = 2" I (1/2) fo(1/z) + 212(1/2) f1(1/z))]
[z" 487 (1)) f5 ()]
+ [2am 70 (1/2) fi (2)']
= (@) fo(x) + 205(x) fi(2).

So ¢*(z) € (f1(z), 2fi(2z)) and hence C is reversible. m

Lemma 7 Let C = (aa(z)) a =1 or 2 be a cyclic code of even length n. Then C' is
reversible if and only if a(z) is self-reciprocal.

Proof. The proof is similar to the case of finite fields as in [8]. m

4 Minimum Hamming Distance

In this section we give some facts that will help to find the minimum Hamming
distance of linear quaternary codes.

Lemma 8 Let C be a linear code over Zy of length n. Let Cy = {c € Z} | 2c € C}.
Then, Cy is a binary code of length n and

d(C) = d(Cy).

Proof. It is clear that Cs is a binary code of length n. Further, if ¢ is a binary word,
then w(c) = w(2c). Let w(c) = d(C). If 2¢ # 0, then ¢ (mod 2) is a nonzero codeword
in Cy and w(c ) > w(c(mod 2)). Hence d(C) > d(Cs). Otherwise, ¢ = 2¢’ for some
c e Z2"7 with ¢ € Cy and w(c) = w(c') > d(CZ) Hence, d(C') > d(C5). Conversely,
let ¢ € Cy such that w(¢’) = d(Cy). Since ¢ is a binary word we have w(¢') = w(2¢)
and 2¢ € C. Also, d(C) < w(2d) = w(c') = d(Cy). Thus d(C) = d(C3). m

Lemma 9 Let C = (g(z) + 2p(z), 2a(z)) where a(z)|g(z). Then,

Csy = (a(x)).

Proof. Since 2a(z) € C then (a(z)) C C,. Conversely, assume that ¢ € Cy such that
2¢ € C. Then 2¢ € ker p and hence ¢ € J = (a(z)). So Cz C (a(z)). =
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Example 1 Consider the cyclic code C = ((z° + z* + z + 1) + 2,2(z* + 1)) of length
n = 8. By Lemma 9 we have Cy = (22 +1). So d(Cy) = 2. By Lemma 8, we know
that d(C) = d(Cs); hence d(C) = 2.

Definition 2 [1] Let s = b,_1267 1 +b,_92¢72+- - - +b;21 +5y2° be the 2-adic expansion
of s. Let be_1 =beg =+~ =be_q =1 wheree —q >0 and be_q_1 = 0.

1. Ifbe—; =0 for alli € {g+2,9+3,...,e — L, e}, then s is said to have a 2-adic
length q zero expansion.

2. If be—y # 0 for somei € {¢g+2,q+3,...,e —1,e}, then s is said to have a
2-adic length q nonzero expansion.

If e = q then, s is said to have 2-adic length e expansion or 2-adic full expansion.

Example 2 5 = 22 + 2° and hence ¢ = 1, and 5 has a 2-adic length 1 nonzero
expansion. 6 = 22 + 2! has a 2-adic length 2 zero expansion. 7 = 22 + 2 4+ 2° and
hence ¢ = 3, and 7 has a 2-adic full expansion.

Lemma 10 [1] Let C be a binary cyclic of length 2¢ where e is a positive integer.
Assume that C = (a(z)) where a(x) = (> —1)h(z) for some h(x). If h(x) generates
a cyclic code of length 2°7' and minimum distance d, then d(C) = 2d.

Theorem 3 Let C' be a cyclic code over Zy of length 2¢ where e is a positive integer.
Then C = (g(z) + 2p(z), 2a(z)) where g(z) = (x — 1)' and a(z) = (x — 1)* for some
t>s>0.

Further, if s < 2°71, then d(C) = 2. Otherwise, s has 2-adic length ¢ > 1 expansion.

1. If s has a 2-adic length q zero expansion or full expansion (e = q), then d(C) =
29,

2. If s has a 2-adic length q nonzero expansion, then d(C) = 271,
Proof. A similar proof given for codes over Z, +uZ, in [1] can be adapted easily. m

Example 3 Consider the cyclic codes (af?) i = 1,2...,7 in Table 3. Here, again
n =8 = 2% and the minimum distances of these cyclic codes with the generators o f?
where f = ©+ 1 can be computed by Theorem 3. If 1 < i < 4 = 22, then d(C) = 2.
If i =5, then i has a 2-adic length 1 nonzero expansion; hence d(C) = 4. If i = 6,
then i has a 2-adic length 2 zero expansion, hence d(C) = 4. Finally, if i =7, then i
has a 2-adic length 3 zero expansion, and hence d(C) = 8.
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Example 4 A List of Reversible Cyclic Codes

We will list all reversible cyclic codes of odd lengths 5, 7, 9 and all free module
reversible cyclic codes of length 6,8, and 10 with their minimum Hamming distance
d. This can be done by using Theorems 2, 3, and Lemma 7.

e Length n =5.
(2 +1)=(z-1) (z* +2° + 2> + 2 + 1) over Z,.

Since the length n = 5 is odd and all the factors above are self-reciprocal
polynomials then by Theorem 2, all 9 cyclic codes of this length are reversible.

e Length n = 6. To get all factorization of (2° — 1) mod 4 we will factor (x® —
1)mod 2 and then get all factors (f + 2p) where f|(z® — 1)mod2 and (f +
2p)|(2® — 1) mod 4.

(:ve + 1) =(z+ 1)2 (:102 +x+ 1) over Zs.

From Lemma 7, the only nonzero free module, or single generator reversible
cyclic codes of length 6 are given below in Table 1:

Non-Zero Generator Polynomial(s):
1,2
CESNCES)

(2> +z+1), (22 —z+1)

2(x +1), 2(x2 +z + 1)
(z2+1+2)

(z-1), (z+ 1) (2> +z+1)
(x+1)(2? —a +1)
(*+z+1)(z° —xz+1)

20— 1)(z+ 1), 2z — D(2* + 2+ 1)
200 +z+1)(z° —xz+ 1)
-1+ +2+1), (v -+ (2 —z+1)
(z+1)(z*+z+1)(z> —z+1)

(@ — 1)@ +az+1)(2?—2+1)
20z - D(z+1)(z2* +z+ 1)

20 — 1)(2® + o+ (22 — 2z +1)

u
@%@m.&wmwmmmmmm»—\a
-

Table 1: Reversible free module or single generator cyclic codes of length 6 over Zj.

e Length n = 7. The only self-reciprocal factors of (z” — 1) are

z—1land (2°+2° +2' +2° + 2> + 2+ 1)
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From Theorem 2 the only nonzero reversible cyclic codes of length 7 are given
below in Table 2:

Non-Zero Generator Polynomial(s) of C'
lor2
(- 1)
BT 1)
(z —1,2)
(S +2°+at+ a3+ 22+ +1)
(228 +2°+a' + a2 +a? + 2+ 1))
(@S +a®+at+ 22+ +2+1,2)

=
l—\\]\]l—‘l\Dl\')l—\Q
—

Table 2: Reversible cyclic codes of length 7 over Zj.

e Length n = 8. Note that the factorization of (® — 1)mod 4 is not unique. To
get all factorization we will factor (z® — 1) mod 2 and then get all factors f+ 2p
where f|(z® — 1)mod 2 and (f + 2p)|(z® — 1) mod 4.

®—1=(z+1)° = f® over Zy

From Lemma 7, the only nonzero free module or single generator reversible
cyclic codes of length 8 are given below in Table 3:

Non-zero Generator polynomial (s) of C'
1,0r2
(aff) wherea =1, 2and 1 <i <4
(af’) wherea =1, 2and 5 <i <6
(af") where a =1, 2
72
(f*+2), (f*+22)
(f*+2+ 2z)
(f* + 2z + 22°)
(f° +2+22%)
(f*+2+2z2)
(f* +22%)
(f*+2)
(f*+ 2z + 2a3)
(f*+ 223 + 222 + 21)
(f4+2x3+2x+2)
(f*+ 223 + 222 + 22+ 2)

U
IR I I N R R S R I Rl Q)
—

(f*+2 + 22?) 2
(f°+ 242z + 22° 4 22°) 4
(f® + 2z + 22°) 4

Table 3: Reversible free module or single generator cyclic codes
over Z, of length 8.
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e Length n =9. We know that
(2 +1) = (2°+2*+1) (¢ +z+ 1) (x4 1) over Zs.

Since the length n is odd and all the factors above are self-reciprocal then all
factors of (¢° — 1) mod 4 are self reciprocal polynomials. By Theorem 2, all the
27 cyclic codes of this length are reversible.

e Length n = 10.

(" +1)=(z-1)(z+1)(z* +2®+2° +2+1) (2" —2* +2° — 2 + 1) mod 4.

From Lemma 7 the only nonzero free module or single generator reversible
cyclic codes of length 10 are given below in Table 4:

Non-Zero Generator Polynomial(s) of C'
1, 0r 2
(x_l)’ (x+1)7
2z +1)
=)
el - 1)
(@' + 23+ 2t + 2 +1)
(2'—2® -2 -2+ 1)
(2 +2% —a? + a2 +1)
(' — 23+ 2t -2 +1)
2(xt + a3 :—x +a+1)
(z°+1)
(2° + 2% + 227 + 1)
(2% + 22" + 22 + 1)
=), B =1)
(x® +22* 4+ 2z + 1)
(2° + 22 + 22° + 222 + 22 + 1)
(2° + 22 + 227 — 1)
(2® + 2% + 220 — 1)
(2° + 22 + 22° + 227 + 22 — 1)
(2% — 2%+ 2 —1)
(25 —2®+ 22t + 2227 + 2 — 1)
(2 +a° —a2—1)
(28 +2° + 22" + 227 — 2 - 1)
2025 + 2%+ o+ 1)
(@8 +af+at+22+1), (2®+a%+a2t+22+1))
(@ +28+...4+1), 2 +28+...+1))
(@ —a¥+a"—af +a° —at+a® —a? +a - 1)

<9
=l

Q
N

s s s s R S NN NN N[NNI NN NN NN NN NN N

—_
o

[
(en}

Table 4: Reversible free module or single generator cyclic codes
over Z, of length 10.
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5 Conclusion

In this paper we studied reversible cyclic codes of length n over Z;. We found a
unique set of generators for these codes as ideals in the ring R, = Zy[z]/(z" —1).
We also studied the minimum Hamming distance of these codes over Z;. A list of
reversible cyclic codes of lengths 5 — 10 is included. Open problems include the study
of reversible negacyclic codes over Z;. Also it will be interesting to study these codes
over Zae.

We would like to thank the referee(s) for their valuable remarks.
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