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Abstract

Let G be a graph with vertex set V(G) and edge set E(G), and let
g, f be two nonnegative integer-valued functions defined on V(G) such
that g(z) < f(z) for every vertex x of V(G). A (g, f)-factor of G is
a spanning subgraph F of G such that g(z) < dp(z) < f(z) for every
vertex = of V(F); a (g, f)-factorization of G is a partition of E(G) into
edge-disjoint (g, f)-factors. Let F = {F}, Fs,..., F,} be a factorization
of G and let H be a subgraph of G with mr edges. If F;, 1 < i < m,
has exactly r edges in common with H, we say that F is r-orthogonal
to H. In this paper it is proved that every (0,mf — m + 1)-graph has
(0, f)-factorizations randomly r-orthogonal to any given subgraph with
mr edges if 4r — 1 < f(z) for any z € V(G).

1 Introduction

In this paper we consider finite undirected simple graphs. Let G be a graph with
vertex set V(G) and edge set E(G). The degree of a vertex z is denoted by dg(z).
Let g and f be two non-negative integer-valued functions defined on V(G) such that
g(z) < f(x) for every vertex x of V(G). Then a (g, f)-factor of G is a spanning
subgraph F of G satistying g(z) < dp(z) < f(x) for every vertex x of V(F). In
particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A subgraph H of
G is called an m-subgraph if H has m edges in total. A (g, f)-factorization F =
{F1,F,,...,F,} of a graph G is a partition of E(G) into edge-disjoint (g, f)-factors
Fi,F,...,F,. If g(r) = a and f(z) = b, where a and b are non-negative integers,
then a (g, f)-factorization of G is called an [a, b]-factorization of G. Let H be an mr-
subgraph of a graph G. A (g, f)-factorization F = {F}, Fs,..., F,,} is r-orthogonal
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to H it |[E(H) N E(F;)| =r for 1 <¢ < m. If for any partition {4, A,,..., A;,} of
E(H) with |A;] = r there is a (g, f)-factorization F = {F, Fy, ..., F,} of G such
that A; C E(F;), 1 <14 < m, then we say that G has (g, f)-factorizations randomly
r-orthogonal to H. Other definitions and terminologies can be found in [1].

Recently, Xu et al. [2] studied the connected factors in K ,-free graphs containing
a (g, f)-factor. Kano [3] obtained some sufficient conditions for a graph to have
[a, b]-factorizations. Liu [4,5] proved that every (mg + m — 1,mf — m + 1)-graph
has a (g, f)-factorization orthogonal to a star or a matching. Lam [6] showed that
every (mg +m —1,mf —m+ 1)-graph has a (g, f)-factorization orthogonal to km-
subgraphs. Liu [7] showed that every bipartite (mg +m — 1,mf —m + 1)-graph has
(g, f)-factorizations randomly k-orthogonal to any km-subgraph. Feng [8] proved
that every (0, mf — m + 1)-graph has a (0, f)-factorization orthogonal to any given
m-subgraph. Now we consider the r-orthogonal factorizations of graphs. The purpose
of this paper is to prove that for any rmr-subgraph H of an (0,mf —m+1)-graph G,
there exist (0, f)-factorizations of G which are randomly r-orthogonal to H, where
f(z) > 4r — 1 for every « € V(G). We shall use a different technique from [4-8].

2 Preliminary results

Let S and T be two disjoint subsets of V' (G). We denote by Eg(S,T) the set of edges
with one end in S and the other in T', and by eg(S,T') the cardinality of Eg(S,T).
For S C V(G) and A C E(G), G — S is a subgraph obtained from G by deleting
the vertices in S together with the edges to which the vertices in S are incident,
and G — A is a subgraph obtained from G by deleting the edges in A, and G[S]
(respectively, G[A]) is a subgraph of G induced by S (respectively, A). For a subset
X of V(G), we write f(X) =) . f(z) for any function f defined on V(G), and
define f() = 0. In particular, dg(X) =3 ¢ ¢ da(®).

Let g and f be two non-negative integer-valued functions defined on V(G), and C
a component (i.e. a maximal connected subgraph) of G — (S UT). If there is a
vertex € V(C) such that g(z) # f(z), we call C' a neutral component; otherwise,
g(z) = f(z) for all z € V(C), in which case we call C' an even or odd component
according to whether eq(T,V(C)) + f(C) is even or odd. We denote by he(S,T)
the number of the odd components of G — (S U T). In 1970 Lovdsz [9] used the
symbol 6¢(S,T; g, f) to denote the number dg_s(T) — g(T) — ha(S,T) + f(S), and
found that 6¢(S,T; 9, f) = de—s(T) — 9(T) — ha(S,T) + f(S) > 0 is a necessary and
sufficient condition for a graph G to have a (g, f)-factor.

Lemma 2.1 (Lovész [9]) Let G be a graph, and g and f be two integer-valued
functions defined on V(G) such that g(x) < f(x) for v € V(G). Then G has a

(g, f)-factor if and only if
96(S,T;9,f) 20

for any two disjoint subsets S and T of V(G).
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Note that if g(z) < f(z) for all z € V(G) then all components of G — (SUT)
are neutral. Hence for any two disjoint subsets S and T of V(G), hg(S,T) = 0
provided g(z) < f(z) for all z € V(G). Thus in the following 6¢(S,T; g, f) =
de-s(T) — g(T) + f(S) for any two disjoint subsets S and T of V(G).

Let S and T be two disjoint subsets of V(G), and E; and E, be two disjoint subsets
of E(G). Let D=V (G) - (SUT), and

ES)={zy€ E(G):z,ye S}, ET)={zye€ EG):z,yeT},

E,=E,NE(S), E,=E NEyS,D),
E,=E,NE(T), E,=E,nEgT,D),
rs(Ey) = 2|E)| + |Eyl,  rr(Ey) = 2|By| + |B,|.
It is easily seen that r5(E;) < dg_7(S), rr(Es) < dg-s(T).
The following lemma has been obtained independently by Yuan [10] and Li [11].
Lemma 2.2 (Yuan [10]; Li [11]) Let G be a graph, and g and f be two non-negative
integer-valued functions defined on V(G) such that 0 < g(z) < f(z) for allz € V(G),

and let Ey and Ey be two disjoint subsets of E(G). Then G has a (g, f)-factor F
such that Ey C E(F) and E; N E(F) =0 if and only if

6G(SaT;g7 f) 2 TS(EI) + TT(E2)

for any two disjoint subsets S and T of V(G).

Lemma 2.3 (Feng [8]) Let G be a (0,mf — m + 1)-graph. Let f be an integer-
valued function defined on V(G) such that f(x) >0, and let H be an m-subgraph of
G. Then G has a (0, f)-factorization orthogonal to H.

In the following, we always assume that G is a (0,mf — m + 1)-graph, where m > 1
is an integer. Define

9(2) = max{0, de(z) — ((m — 1 f() ~ (m — 1) + D},

From the definition of g(z), Ay (z) and A, (z), we have the following lemma.

Lemma 2.4 For all z € V(G), the following inequalities hold:
(1) If m > 2, then 0 < g(z) < f(z).

(2) If 9(x) = dg(z) = ((m = 1) f(2) = (m = 1) + 1), then &, (z) 2
(3) A2 (2) 2 =25

1
ponl
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Proof (1) Note that G is a (0,mf — m + 1)-graph, where m > 2 is an integer.
Then 0 < mf(z) —m+ 1 implies that f(z) > 2=, Note that f(z) is a non-negative
integer-valued function. Thus f(z) > 1.

If g(z) =0, then 0 < g(z) < f(z).

If g(z) =dg(z) — ((m = 1)f(z) — (m — 1) + 1), then

@) —g(x) = [fz)—de(z)+(m—-1)f(z) —(m—-1)+1
= mf(z) —m+2—dg(z)
> mf(z)=m+2—(mf(z) —m+1)=1

Hence we find
0 < g(z) < f(a).

(2) If g(z) =dg(z) — ((m —1)f(z) — (m — 1) 4+ 1), then

81(2) = =dae) = g(a)

(3) We have

= Jle) = —do(e) 2 (&) = —(mf(x) = m+1)
= fe) - S T

m

>
no
—

&
N

This completes the proof.
Let S and T be two disjoint subsets of V/(G); then
So={z[zeS flz)=1}, S =5\5%.

To={z|zeT,g(x) =0}, T1=T\T,.

Hence we get that
S:S()U»sl, 5005120.

T:T()UTl, Tomlew
rs(Br) =15 (Er) + 75, (E1),  r7(E2) =11y (Es) + 1oy (Ba).
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Lemma 2.5 Let E, and E, be two disjoint subsets of E(G), let S and T be two
disjoint subsets of V(G), and let S; and Sy be defined as in Section 2. If

0c(S1, 1139, f) = da_s, (T1) — g(Th) + f(S1) > 75, (Er) + 71, (E2),

then
66(5, T g, f) = dg-s(T') — g(T) + f(S) = rs(E1) + ro(E2).

Proof Note that dg_s(To) — 9(To) = dg-s(To) > rry(E»), and 0 < dg(z) < mf(z)—
m+ 1, and for all © € Sy, dg(z) = 0 or dg(x) = 1. Hence we get that

1So| 2 da(So) = da-7(So) + €6(S0, T) > 15,(E1) + ec(So, Th).

If ¢(S1,T1; 9, ) > 75,(E1) + 71,(E2), then

6c(5,Ts 9, f) f(8) +de-s(T) = g(T)
= f(51) + 50| + da-s(T1) + da-s(To) — g(T1)
> f(S1) +1s,(Br) +ec(So, Th) + da-s(Th) + 1y (E2) — 9(Th)
= f(S1) +rs(Er) +da-s,(Th) + rry(E2) — 9(Th)
= 0c(S1, 1159, f) + 15, (Er) + 77y (E2)
> rg(Er) + 11 (Es) 4 rso (Er) + rp(Eo)

= Ts(El) + TT(E2)7

completing the proof.

3 Main result and proof

In this section, we are going to prove our main theorem.

Theorem 1 Let m > 3 and r > 1 be integers, and let G be a (0,mf —m+1)-graph,
and let f be an integer-valued function defined on V(G) such that 4r — 1 < f(z),
and let H be an mr-subgraph of G. Then G has (0, f)-factorizations randomly -
orthogonal to H.

Proof According to Lemma 2.3, the theorem holds for » = 1. In the following,
we consider # > 2. Let E; be an arbitrary subset of E(H) with |E;| = r. Put
Ey = E(H)\E,. Then |Es| = (m — 1)r. For any two disjoint subsets S C V(G) and
T CV(G),let g(z), E}, E], Ey, Ey, rs(E1), rr(E,), So, S, To and Ty be defined as
in Section 2. It follows instantly from the definitions of r5(FE;) and r7(Es) that

rs,(E1) < min{2r,r|S;|},

rry (E2) < min{2(m — 1)r, (m — 1)r|Th|}.
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For S; and T}, we find that

d¢(51,Ti;9. f) = dg-s,(T1) — g(T1) + f(S1)
= S do(T) - 9(Ty) + £(S)) — do(S1)

m—1
+

1
dg-s,(T1) + EdG—Tl(Sl)
m—1

1
= A1 (T)+ b2 (51) + dg-s,(T1) + EdG—Tl(Sl)-

By Lemma 2.4, we have

da-s,(Th) — g(T1) + f(S1)

1 -1 -1

—|Th| + m |S1] + o dg-s,(Th)
m m m

d¢(S1, T3 g, f)

v

+%dc—n(51)- (3.1)

Now we prove that the following inequality holds:
66(S1, 1159, f) 2 s, (E1) + 71y (E2).

Now let us distinguish among four cases.
Case 1. If S, =0, Ty =0, then r5,(E;) = 0 and rr, (E,) = 0.

It is easily seen that
5G(SlaTI;gaf) Z 0= s, (El) + TTI(EZ)'

Case 2. It S; =0, Ty # 0, then rg, (E;) = 0.

By the definition of T}, it is easy to see that g(z) > 1 for all z € T.

Note that g(z) = max{0,dg(z) — ((m —1)f(z) — (m — 1) + 1)}. For all & € T}, we
have

9(w) = do(@) — ((m = 1)f() = (m—1) +1) > 1.

Thus, we get

dg(z) (m—=1)f(z) = (m—-1)+2
(m—-1)4r—-1)—(m—-1)+2

dmr —4r —2m + 4 (3.2)

vV IV

for all x € T;.
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By (3.1) and (3.2), we get that

da(S1, 1159, f)

m—1

de(Th)

~1
D= (dmr — 2m — 47 + 4)| T3
m

\Y

-1
(m — L)r|Th| + mT((?)m — 4)r — 2m + 4)|T}|

\Y

-1

(m — V)r|Ty| + == (6m — 8 — 2m + 4)| T3
m

(m = Dr|Ty| > r1y(Es) = 75,(Er) + 11y (E2).

\Y

Case 3. If S; £ 0, Ty = 0, then rr, (Es) = 0.

Thus, we have

0c(S1, T1;9, f) = dg—s,(Th) — g(Th) + f(S1)

Case 4. S; #0, Ty # 0.
Note that dg_7,(S1) > rs,(E1). In view of (3.1) and (3.2), we get that

0c(S1, 1139, f)

Case 4.1. |T}| = 1.

v

v

v

= f(S1) 2 (4r = 1)|S]
7|S1| > 15, (E1) = 75, (Ev) + 71, (E2).

v

1 m—1 m—1 1
—|Th| + |S1] + dg-s,(T1) + —dg-1,(S1)
m m m m

1 m—1 1
E|T1| + T(dc—sl(Tl) + [S1]) + EdG—Tl(Sl)

1 1 m—1
— |11+ —dg-1,(51) +
m m

1 1
—ITl+ —d-1,(51)

1
+ 7 (i — 4r - 2m + 4). (3.3)
m

dg(z) (zeT)

Thus we have 71, (E2) < min{2(m — 1)r, (m — 1)r|T1|} = (m — 1)r. By (3.3), we get

that

1 1 -1
da(S1, 139, f) > —|Ti| + —da_1,(S1) + T (dmr —4r —2m +4)
m m m
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1
T3] + —de-1,(51) + (m = 1)r
(m —1)(3mr —4r — 2m +4)

m

1
EdG—Tl (S1)

2r(m
+ - @z

-1 1
)+(m— 1)T‘+E|T1|

+(m — 1)(3mr — 6r —2m +4)

> %Tsl(El) + mnr—jlrsl(El) + 17, (Es)
L (m = 1)((Bm = 6)r —2m 1 4) 12
> B oo () + O 42
> 15 (B + 1 (B2) + (m - 1)(4;? —4)+2
> 15, (Ey) 4 rr,(Bs).

Case 4.2. |T| > 2.

Thus we have rp, (E2) < min{2(m — 1)r, (m

—1)r|T1|} = 2(m —1)r. By (3.3), we get

that
1 1 m—1
0a(S1, 19, f) 2 T+ —do-n,(5) + ———ds(x) (¢ €T)
2 1 —1)(dmr —4r — 2 4
> —+—7‘51(E1)+(m Y(dmr — 4r — 2m + 4)
mom m
1 2 -1
= —rs,(By) + A YA
+(m —1)(dmr —4r —2m+4) 2r(m-1)
m m
2( r+ 2
m T+
1 m—1
> —rs(E1) + r51(E1) + 11y (E2)
+(m—1)(2mr—6r—2m+4)+2
m
m—1)(2(2m —6) —2m +4) +2
> ra(By) 4y () + L HOEM O )
m—1)2m —8) +2
= TSI(E1)+7‘T1(E2)+( X )
m
2
> rs,(Ey) +rp(Ey) — 3 (since m > 3 is an integer)
> rs,(E1) +rpy(Ey) — 1

According to the integrity of dg(S1,Th; 9, f), we get that
6a(S1,Ths 9, f) > s, (B1) + 11y (EBa).
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For S; and T, we always have
66(S1, 1159, f) > s, (E1) + 11y (E2).
By Lemma 2.5, for any two disjoint subsets S and T of V(G), we have
6¢(S,T; 9, f) > rs(Er) +rr(Es).

In view of Lemma 2.2, G has a (g, f)-factor F; such that E; C E(F)) and
EyN E(F,) = 0. By the definition of g(z), clearly, F; is also a (0, f)-factor of
G. Set G' = G — E(F}). By the definition of g(z), we have

0<do(e) = do(e) - dn(2) < da(x) - g(2)
(m—1)f(z) — (m—1)+1.

IN

Hence G'is a (0,(m — 1)f — (m — 1) + 1)-graph. Let H' = G[E,]. By the induction
hypothesis, G has (0, f)-factorizations randomly r-orthogonal to H’. Thus G has
(0, f)-factorizations randomly r-orthogonal to H. This completes the proof.

Remark 3.1 In the proof of Theorem 1, it is required that f(z) > 4r — 1 for all
xz € V(G). We do not know whether the condition can be improved.
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