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Abstract

The Loebl-Koml6s-Sés conjecture says that any graph G on n vertices
with at least half of its vertices of degree at least k contains every tree
with & edges. We prove that the conjecture is true for trees of diameter
at most 4 and for spiders of diameter at most 5.

1 Introduction

The graphs considered in this paper are finite, undirected, and simple (no loops
or multiple edges). The sets of vertices and edges of a graph G are denoted by V(G)
and E(G), respectively. If zy € E(G), we say that x is joined to y and that y is a
neighbor of z. For a subgraph H of G, Ny(z) is the set of the neighbors of z which
are in H, and dy(z) = |Ng(z)| is the degree of x in H. When no confusion can
occur, we shall write N(z) and d(z), instead of Ng(z) and dg(z). For A, B C V(G),
E(A, B) denotes the set, and e(A, B) the number, of edges with one end in A and the
other end in B. For simplicity, we write e(A) for e(A, A) and e(G) for e(V(G), V(G))
(=|E(G)|). When A = {a}, we simplify the notation to e(a, B) (= dg(a)).

A spideris a tree with at most one vertex of degree more than 2. The vertex of
degree more than 2 is called the S-center of the spider (if no vertex is of degree more
than two, then any vertex can be the center). A leg of a spider is a path from the
center to a vertex of degree 1. Thus, a star with £ edges is a spider of k legs, each
of length 1, and a path is a spider of 1 or 2 legs. A k-edge spider is a spider with &
edges. An (-leg of a spider is a leg with length ¢.

A center of G is a vertex u such that max d(u,v) is as small as possible. Note

that when G is a spider, the S-center and the center of G may not be the same vertex.
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If there exists a subgraph S of G which is isomorphic to T', then we say that T
can be embedded into G.

The conjecture below was first formulated by Loebl in 1994 in the case k = n/2
and next generalized by Komlds and Sés (see [4]).

Loebl-Komlés-S6s Conjecture: If at least half of the vertices of a graph G have
degree at least k, then G contains every tree with k edges.

The Loebl-Koml6s-Sés conjecture has some similarity with the well-known Erdos-
Sés conjecture (see [3]).

Erdos-Sés Conjecture: If G is a graph on n vertices with e(G) > (k — 1)n/2, then
G contains every tree with k edges.

As remarked in [5], the condition that the average degree of the graph G is
greater than & — 1 from the Erdos-Sés Conjecture is replaced in the Loebl-Komlés-
Sés conjecture by the condition that the medium degree of G is at least k.

The Loebl-Komlés-Sés conjecture seems to be very difficult. There are only a
few partial results known, mainly in two directions. One is to pose conditions on
the graph G, such as graphs of girth 7, by Soffer [6]. The other is to pose conditions
on the tree, such as stars, double stars, paths and trees with k£ > n — 3, by Bazgan,
Li and Wozniak [1]. Since stars and double stars are trees of diameter at most 3,
it seems natural to consider trees of diameter at most 4. In this paper we prove
that the conjecture is true for trees of diameter at most 4, and also for spiders of
diameter 5.

2 Main results

For a graph satisfying the hypothesis of the Loebl-Komlds-Sés conjecture, we
define B = {v € V(G) | dg(v) > k} and S =V(G) — B.

Theorem 2.1. If G is a graph on n vertices and it has at least n/2 vertices with
degree at least k, then G contains every tree with k edges and diameter at most 4.

Proof. Let G be a counterexample with as few vertices as possible. Without
loss of generality, we can choose the graph GG with the number of edges as small as
possible. By the minimality, we have that
(1) G is connected,;

(2) S is independent (otherwise the graph obtained by deleting the edges of G[S]
also satisfies the condition with fewer edges);

(3) each vertex of B has at most one neighbor with degree one (if there exists b € B
with two 1-degree neighbors vy, vs, consider G' = G — {v, v }; then G’ satisfies the
condition with fewer vertices).

Let T be a tree with £ edges and diameter at most 4, and let z be the center
of T. Let Yy = {v € N(z) | d(v) =1}, Y2 = {v € N(z) | d(v) > 1}, y1 = |Y1| and
ya = |Y3]. Since the diameter of T is at most 4, we have that T = {2 }UY; UY,UN(Y3)
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and Y7, Ya, N(Y3) are pairwise disjoint. Above all, we have that

k-
Y2 < Tyl

Note that dr(z) = y1 +ya. If there exists a vertex v € S such that d(v) > y1+y»,
since N(S) C B (S is an independent set) and d(u) > k for any u € B, it follows
that we can embed 7" into G with v as the center. So we have

(1.1)  d(v) < y1+y2 — 1 for any vertex v € S.

Similarly, if there exists u € B such that dg(u) > y, since d(u) > k and
d(z) > k for any & € Np(u), then we can embed T into G with u as the center. So
we have

(1.2) dp(u) <y; — 1 for any vertex u € B.

By (1.2), we have ds(u) > k— (y2 — 1) for any vertex u € B. Therefore, we have
e(B,S) 2 |B|[k = (y2 = 1)] 2 5[k — (2 — 1)].

On the other hand, by (1.1), we have e(B,S) < [S|(y1+y2—1) < §(y1 +y2—1).
k—w

So we have y, > + 1, contradiction. This completes the proof. B

Proposition 2.2. ([1]) Let n and k be two integers, k < n —1 and let G be a graph
on n wvertices with at least n/2 vertices of degree at least k. For any three integers
D, ¢, such that p+ g+ r = k, denote by T(p,q,r) the tree obtained from the path
P=y,- - ,&p, Tpt1, " , Lprq Of length p+q by adding r new vertices y1,--- ,yr and
r new edges x,y;, 1 = 1,--- ,r. Then G contains T(p,q, 7).

Theorem 2.3. If G is a graph on n vertices and it has at least n/2 vertices with
degree at least k, then G contains every spider with k edges and diameter at most 5.

Proof. Let G be a counterexample with the fewest vertices. Without loss
of generality, we can choose the graph G with the fewest edges as well. By the
minimality, as seen in the proof of Theorem 2.1, we have
(1) @ is connected;

(2) S is independent;
(3) each vertex of B has at most one neighbor with degree one.

Let T be a spider with k edges and diameter at most 5, and let  be the S-center.
Let P be a longest leg of T and ¢ = ¢(P). We have that 1 < ¢ < 4.

By Theorem 2.1, we only need to consider 3 < ¢ < 4. We divide the proof into
two cases, according to the values of (.

Case 1. ( = 3.

Let P = zvivyvs. Since the diameter of T is at most 5, we have that P is the
only leg of length 3. Let T = T — {vau3} + {wv3}. Since the diameter of 7" is at
most 4, by Theorem 2.1, G contains a copy T* of 1T". For simplicity, we use the
same notation for the vertices of T* and 7". We denote all the 2-legs of T* to be
TU; U, 1 <1 <t and all the 1-legs to be zw;, 1 < j <'s, 2t + s = k. We first prove
claims (3.1)-(3.3).
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(32) e(0 {3}, U o) = 0 and dogrofun) < = Ldagr(uy) < b =2 (1 <
i<t,1< ] < s).

Otherwise if there exists wju;; € E(G), then T* — {zu; } + {wju; } is a copy of
T. If there exists wju;s € E(G), then T* — {zw;} + {w;u;} is a copy of T

Since j > 1 (v3 = w; for some j), we have uyw; ¢ E(G), so dgpr)(uin) <
k—1,1<i<t.

Since i > 1 (viv2 = uaup for some i), we have wjup, wjuyn ¢ E(G), so
dG[T*](w]’) <k-2,1<j<s.

(3.2) wupeSl<i<t,andsou; € B,1<i<t.

Otherwise we may assume that there exists a 2-leg xu; u;» with u;» € B. Since
Uz € B, by (3.1), we have that upw; & E(G), so dgir+(ui) < k—1, i.e., there exists
a vertex y such that y € N(u;2) \ V(7). Then T* + {yulz} — {zw,} is a copy of T

(3.3)  N(up) C V(T*) and we may assume d(uz) > 2,1 <i <t

We have N(u;) C V(T*),1 < i < t. Otherwise, if there exists a vertex z
and some u; such that z € N(up) \ V(T*), then T* + {zu;p} — {zw,} is a copy
of T. Furthermore, we may assume d(u;) > 2,1 < i < ¢. Since upn € S, we
have that u; € B. By (3.1), we have that dgir+j(uin) < k — 1, so there exists
uly € N(un)\ V(T*). Since every vertex of B has at most one neighbor with degree
one, we can choose u;y such that d(u;z) > 2.

Now we have two subcases by z.

If + € S, then w; € B. By (3.1), we have that dgjz- (wl) k — 2, so
there exists a vertex wj such that w} € N(w;)\ V(T*). By (3. 1) and (3.3),
e(urz, {uar, ust, - .., wpr, usz, uge, ..., up}) > 0. By (3.2), {uﬂ,l S i <t} CSis
an independent set. So we have that N(uj2) N {ug1,ua1, ..., un} # 0. Without loss
of generality, we may assume that uisu;; € E(G),2 < i < t, then T* — {zu;, upuin}+
{u1aus, wiw} } is a copy of T'.

Otherwise x € B.

If uipx € E(G), since uy; € B, by (3.1) we have that dgr(ui1) < k — 1, so
there exists uj, € N(uyy) \ V(T™), then T* — {zuyy, 2w } + {mu12,u11u12} is a copy
of T.

Otherwise uysx ¢ E(G), then dgpr+(x) < k — 1, so there exists w,q € N(z) \
V(T*). We may adjust the sequence {wy,ws, ..., ws, ws+1} such that d(w;) > d(w;)
when ¢ < j. Since every vertex of B has at most one neighbor with degree one, by
(3.1), we have that wyw € E(G), wherew = w, (2 <r < s+1) or w E N(w)\V(T*U

{ws41}). Similar to the proof of (3.1), we have that e(U {w,}, U{Umun}) = 0.

j=
By (3.2) and (3.3), we have that N(uis) N {uar,us, ... Um} 7é (I) Without loss
of generality, we may assume that ujpu; € E(G),2 < i <t Ifw=w (2 <
r < s+ 1), then T* — {zu;1, upnup, 2w} + {u1aus, wiw, rwsi1 } is a copy of T. If
w € N(wy) \ V(T%), then T* — {zus, uinui} + {u1aun, wiw} is a copy of T
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Case 2. ( =4.

In this case, we have that 7" has only one 4-leg and all other legs are 1-legs,
which is a special case of Proposition 2.2 with p =4 and ¢ = 1. This completes the
proof. W
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