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Abstract

A simple acyclic graphoidal cover of a graph G is a collection ¥ of paths
in G such that every path in ¢ has at least two vertices, every vertex of
G is an internal vertex of at most one path in v, every edge of G is in
exactly one path in ¢ and any two paths in ¢ have at most one vertex in
common. The minimum cardinality of a simple acyclic graphoidal cover
of GG is called the simple acyclic graphoidal covering number of G and is
denoted by 7,5(G) or simply 7,s. In this paper we determine the value of
7as for several families of graphs. We also obtain several bounds for 7,
and characterize graphs attaining the bounds.

1 Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor
multiple edges. The order and size of G are denoted by p and ¢ respectively. For
graph theoretic terminology we refer to Harary [6]. All graphs in this paper are
assumed to be connected and non-trivial.

If P = (vg,v1,02,...,0,) is a path or a cycle in a graph G, then vy,vs,...,v5_1
are called internal vertices of P and wg,v, are called external vertices of P. If
P = (vg,v1,02,...,0,) and Q = (v, = wp, w1, Ws, ..., Wws,) are two paths in G, then

the walk obtained by concatenating P and @) at v, is denoted by P o () and the path
(Vs Un—1, - - -, V9,V1,0g) is denoted by P~!. For any subset V; of V, the subgraph of
G induced by V; is denoted by (V). For a unicyclic graph G with cycle C, if w is
a vertex of degree greater than 2 on C with deg w = k, let ej,ey...,ex_o be the
edges of E(G) — E(C) incident with w. Let T;, 1 < i < k — 2, be the maximal
subtree of G such that T; contains the edge e; and w is a pendant vertex of 7;. Then
T1,T,...,T,_o are called the branches of G at w. Also the maximal subtree T of G
such that V(T') N V(C) = {w} is called the subtree rooted at w.

The concepts of graphoidal cover and acyclic graphoidal cover were introduced
by Acharya et al. [1] and Arumugam et al. [4].
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Definition 1.1. [1] A graphoidal cover of a graph G is a collection v of (not
necessarily open) paths in G satisfying the following conditions.

(i) Every path in v has at least two vertices.
(it) Every vertex of G is an internal vertex of at most one path in 1.
(i1i) Every edge of G is in exactly one path in 1.

If further no member of ¥ is a cycle in G, then ¥ is called an acyclic graphoidal
cover of G. The minimum cardinality of a graphoidal cover of G is called the
graphoidal covering number of G and is denoted by n(G). Similarly we define the
acyclic graphoidal covering number n,(G).

An elaborate review of results in graphoidal covers with several interesting ap-
plications and a large collection of unsolved problems is given in Arumugam et al.
[2]. Pakkiam and Arumugam [7, 8] determined the graphoidal covering number of
several families of graphs.

Theorem 1.2. [7] Let T be a tree with n pendant vertices. Then n(T) =mn — 1.

Definition 1.3.  Let ¢ be a collection of internally disjoint paths in G. A vertex
of G is said to be an interior vertex of v if it is an internal vertex of some path in
W, otherwise it is said to be an exterior vertex of 1.

Theorem 1.4. [8] For any graphoidal cover ¢ of G, let ty denote the number
of extertor vertices of 1. Let t = min ty, where the minimum s taken over all
graphoidal covers i of G. Thenn=q —p+t.

Corollary 1.5. For any graph G, n > q—p. Moreover, the following are equivalent.
(i) n=q-p.
(ii) There exists a graphoidal cover without exterior vertices.

(iii) There exists a set of internally disjoint and edge disjoint paths without exterior
vertices. (From such a set of paths required graphoidal cover can be obtained
by adding the edges which are not covered by the paths of this set.)

Corollary 1.6.  If there exists a graphoidal cover 1 of G such that every vertex
v of G with deg v > 1 is an internal vertex of a path in v, then ¥ is a minimum
graphoidal cover of G and n(G) = g—p+n, where n is the number of pendant vertices
of G.

Remark 1.7. It has been proved in [{] that the results analogous to Theorems 1.2,
1.4, Corollaries 1.5 and 1.6 are true for the acyclic graphoidal covering number 1,
also.

Theorem 1.8. [4] For any graph G with 6 > 3, we have 1, = ¢ — p.
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Theorem 1.9. [4] Let G be a unicyclic graph with n pendant vertices. Let C be
the unique cycle in G and m denote the number of vertices of degree greater than 2
on C. Then

2 ifm=0
N(G)=< n+1 ifm=1
n otherwise.

Theorem 1.10. [4] 1,(K,,) =n—1ifn > 3 and 1,(K,,,) = mn —m —n if
m,n > 2.

Remark 1.11. [4] For any acyclic graphoidal cover i of G, || > A—1 and hence
e >A-1

Definition 1.12. A family {A; : i € I} of subsets of a set A is said to satisfy the
Helly property if whenever J C I and A;NA; # ¢ for everyi,j € J, then [ A; # ¢.

jeJ
Theorem 1.13. ([5], page 80) Ewvery family of subtrees of a tree satisfies the Helly
property.

If G = (V,E) is a graph, then ¢ = E(G) is trivially a graphoidal cover and has
the interesting property that any two paths in ¥ have at most one vertex in common.
Motivated by this observation we introduced the concept of simple graphoidal covers
in a graph [3].

Definition 1.14. [3] A simple graphoidal cover of a graph G is a graphoidal cover
of G such that any two paths in ¢ have at most one vertex in common. The minimum
cardinality of a simple graphoidal cover of G is called the simple graphoidal covering
number of G and is denoted by n5(G) or simply 1.

In this paper we introduce the concept of simple acyclic graphoidal cover and
simple acyclic graphoidal covering number 7, of a graph G and initiate a study of
this parameter.

3 Main Results

Definition 3.1. A simple acyclic graphoidal cover of a graph G is an acyclic
graphoidal cover 1 of G such that any two paths in ¢ have at most one vertex in
common. The minimum cardinality of a simple acyclic graphoidal cover of G is
called the simple acyclic graphoidal covering number of G and is denoted by 1,5(G)
or simply 1gs.

Remark 3.2.  We observe that every path in a simple acyclic graphoidal cover of
a graph is an induced path. Hence 1,s(G) = q if and only if G is complete.

We first prove that results analogous to Theorem 1.4 and its Corollaries 1.5 and
1.6 are true for 7,5 as well.
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Theorem 3.3.  For any simple acyclic graphoidal cover v of a graph G, let ty
denote the number of exterior vertices of 1. Let t = min ty, where the minimum is
taken over all simple acyclic graphoidal covers ¢ of G. Then n,5(G) = q —p +t.

Proof.  For any simple acyclic graphoidal cover ¢ of G, we have

q= > |E(P)|
Pey

= > ({(P)+1) (t(P) denotes the number of internal vertices of P)
Pey

2 HP)+ ¥

Pey
=p—ty+[¢].
Hence |¢)| = ¢ — p + ty so that 1,,(G) = ¢ —p + . O

Corollary 3.4.  For any graph G, 14s(G) > q — p. Moreover, the following are
equivalent.

(l) nas(G) =q—D-
(i) There exists a simple acyclic graphoidal cover of G without exterior vertices.

(ii5) There exists a set P of internally disjoint and edge disjoint induced paths with-
out exterior vertices such that any two paths in P have at most one vertex in
common. (From such a set P of paths the required simple acyclic graphoidal
cover can be obtained by adding the edges which are not covered by the paths in

P).

Corollary 3.5.  If there exists a simple acyclic graphoidal cover ¥ of a graph G
such that every vertex of G with degree at least two is interior to v, then ¥ is a
minimum simple acyclic graphoidal cover of G and 1,s(G) = ¢ — p + n, where n is
the number of pendant vertices of G.

Obviously for any tree T, we have = 1, = s = 145 = n — 1, where n is the
number of pendant vertices of 7. Also there exist graphs which are not trees for
which the above equations are valid as shown in the following lemma.

Lemma 3.6. Let G be a graph of order p and size q. Then n(G') = n,(G") =
Ns(G") = 1as(G') = p+ q, where G' is the graph obtained from G by attaching two
pendant edges to every vertex of G.

Proof. Let V(G) = {v1,v2,...,0p}.

Let u; and w;,1 < i < p, be the pendant vertices of G' adjacent to v;. Then
¥ = {(us,v;,w;) : 1 <4 < p}UE(G) is a graphoidal cover of G’ which is simple
as well as acyclic and every vertex of degree greater than 1 is interior to ¢). Hence

(G") =1a(G") = 15(G") = 0as(G') = Y| = p + ¢. O

The above lemma leads to the following problem.
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Problem 3.7.  Characterize the class of graphs for which n =1, = 05 = Nys.

In the following theorems we determine the value of 7,s for unicyclic graphs,
wheels and complete bipartite graphs.

Theorem 3.8. Let G be a unicyclic graph with n pendant vertices. Let C be the
unique cycle in G and let m denote the number of vertices of degree greater than 2
on C. Then

3 ifm=0
n+2 ifm=1
n+1 ifm=2
n ifm>3

nas(G) -

Proof.  Let C = (vy,v2,...,0,01).
Case 1. m=0

Then G = C and 7,4(G) = 3.
Case 2. m=1.

Let v; be the unique vertex of degree greater than 2 on C. Let T;,1 < ¢ <
(deg v1) — 2, be the branches of G at v;. Let ¢;, be a minimum simple acyclic
graphoidal cover of the branch 7;. Let P, be the path in ¢, having v; as a terminal
vertex. Let

Q1 =Po (01,7}2)
Q2 = (v, v3,...,v;) and
Q3 = (vg,v1). Then

Y= { <(degLle)_2 ¢z‘> - {Pl}} U{Q1, @2, Qs}

is a simple acyclic graphoidal cover of G and the number of vertices exterior to ¥ is
n + 2. Hence 1,5(G) < n + 2. Further, for any simple acyclic graphoidal cover 1 of
G, the n pendant vertices of G and at least two vertices on C are exterior to ¥ so
that ¢ > n 4 2. Hence 7,5(G) > n + 2. Thus 7,5(G) =n + 2.
Case 3. m = 2.

Let vy and v,, where 1 < r < k, be the vertices of degree greater than 2 on C. Let
S and Sy denote respectively the (vy,v,)-section and (v,, v;)-section of the cycle C
and let v be an internal vertex of Sy(say). Let R; and R, denote the (v;, v,)-section
of Sy and (v, v, )-section of S) respectively. Let t); and ¢}, where 1 <i < (deg v;) -2,
1 < j < (deg v,) — 2, be minimum simple acyclic graphoidal covers of the branches
T; and T]’- of G at v; and v, respectively . Let P, and P; denote respectively the
paths in ¢ and ] having the vertices v; and v, as terminal vertices. Let

Q1=PokR

Qs = P/ o Ry" and

@3 = S5. Then

(deg v1)—2 (deg vr)—2
¢_{< U 1/11)U< U %‘)_{Plvpf}}U{QthQs}
Jj=1

i=1
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is a simple acyclic graphoidal cover of G and the number of vertices exterior to 1 is
n + 1. Hence 1,5(G) < n + 1. Further, for any simple acyclic graphoidal cover 1 of
G, the n pendant vertices of G and at least one vertex on C' are exterior to ¥ so that
t > n+ 1. Hence 1,5(G) > n+ 1. Thus 7,4(G) = n + 1.

Case 4. m > 3.

Let v, viy, ..., v;,, where 1 <4y < iy < ...,< 1, <k, be the vertices of degree
greater than 2 on C. Let ¢;,,1 < j <7 and 1 < s < (deg v;;) — 2, be minimum
simple acyclic graphoidal covers of the branches Tj, of G at v;;. Let Py, P, and P;
respectively denote the paths in 94,, 9, and 3, having v;,,v;, and v;, as terminal
vertices. Let

Ql - Pl o (Uilvvi1+17 DR 7Ui2)
Q2 = P2 o (Uiz,vi2+1, - an3) and
Qg = P3 (e} (Uia,vi3+1, - 7Ui1)' Then

r [ (deg vi;)—2
Y= {(U1 ( Lle %‘s)) - {P17P27P3}} U{Q1,Q2,Qs}

is a simple acyclic graphoidal cover of G such that every vertex of degree greater
than 1 is interior to ¢ and hence 7,5(G) = n. O

Corollary 3.9. Let G be as in Theorem 2.8. Then 1,5(G) = na(G) if and only if
m > 3.

Proof.  Follows from Theorem 1.9 and Theorem 2.8. |
Theorem 3.10.  For the wheel W, = K; + C,,_1, we have

[6 ifn =4

Proof.  Let V(W,) = {vo,v1,v2,...,0,-1} and E(W,,) = {vov; : 1 <i<n—-1}U
{Uﬂ)ﬂ_l 01 S ) S n — 2} @] {Uﬂ}n_l}.

If n = 4, then W, = K, and hence 7,,(W,) = 6. Now, suppose n > 5. Let
Py = (v1, va,..., Up_a) and Py = (vy_3,00,0n—1). Then ¢ = {P;, P,}US, where S is
the set of edges of W, not covered by P; and P; is a simple acyclic graphoidal cover of
W, and || = n+1. Hence 7,5(G) < n+1. Further, for any simple acyclic graphoidal
cover 9 of W,, at least three vertices on C' = (v, vs,...,Vp-1,v1) are exterior to ¥
so that ¢ > 3. Hence 7,s(W,) > ¢ —p+3 =n+ 1. Thus n,(W,) =n + 1. O

Corollary 3.11.  1,,(W,,) # n,(W,,) for all n > 4.

Proof. It follows from Theorem 1.8 that 7,(W,) = ¢ —p = n — 2 and hence
Nas(Wn) 7# 1a(Wa). O

Theorem 3.12.

(9) Nas(K1n) =n—1, for alln > 2.
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(i)
3 ifn=2
nas(KZn) = 4 an =3
2n — 3 ifn>4

_[5 ifn=3
Nas(K3n) = { 3(n —2) ifn>4

(iv) Let m and n be integers with n > m > 4. Then

mn—m-—n zfng(gl)
Nas(Kmn) = .
mn—m-—n-+r ifn=(3)+rr>0

Proof. ~ We observe that, for any simple acyclic graphoidal cover ¢ of K, , any
path in 9 is either a path of length 2 or an edge.
(1) Since K3, is a tree with n pendant vertices, we have 7,5(K;,) =n — 1.

(ii) Since Kys = Cy, we have 1ys(Ks0) = 3.

Now, let X = {21, z2} and Y = {91, 92, ..., y,} be the bipartition of K.

If n = 3, then ¥ = {(y1,21,92), (Y1, T2, Y3), (y2,22), (y3,21)} is a simple acyclic
graphoidal cover of Ky 3, so that 7,5(Ks3) < 4. Further, for any simple acyclic graph-
oidal cover ¥ of Kj 3, the number of vertices interior to 1 is at most 2 so that ¢ > 3.
Hence ny5(K33) =q—p+ 3 =4.

Now, suppose n > 4. Let Py = (@1, 41,22), Po = (Y2,21,y3) and Py = (y2, T3, Ys).
Then ¢ = {P;, P, P} U S, where S is the set of edges of K,, not covered by
Py, P, and P is a simple acyclic graphoidal cover of K,, and |¢)| = 2n — 3. Hence
Nas(Ka,,) < 2n—3. Further, for any simple acyclic graphoidal cover ¢ of K, , at most
one vertex in Y is interior to ¢ so that t > n — 1. Hence nys(Ks,) > ¢—p+n—1=
2n — 3. Thus 7,,(Ks,) = 2n — 3.

(iii) By a similar argument we can prove that 7,s(K33) = ¢—p+2 = 5 and 1,5(K3,,) =
g—p+(n—-3)=3(n-2)foraln>4

(iv) Let m and n be integers with n > m > 4. Let X = {z1,22,...,2n,} and
Y ={y1,y2,..,yn} be the bipartition of K, .

If m =n = 4, then ¥ = {(1,y1,22), (21,92, 23), (¥2, Y3, a), (T3, Y, Ta),
(s, @1, ya), (Y2, @2, x4),(y1, 3, y3), (y1,2s,92)} is a simple acyclic graphoidal
cover of K, 4 without exterior vertices and hence 7,(K44) = ¢ —p = 8.

Suppose m > 4 and n > 5.

Case 1. n < (7;)

Let J = {{i,j} : 1 <i < j<m}. Clearly |J| = (7). We define a relation “ <~
on J by (i,7) < (k,1) if either ¢ < k or ¢ = k and j < I. We now index the elements
of Y by the set I of the first n elements of J. Thus Y = {yg ;3 : {i,7} € I}.

Let P, ; = (4, yqi 3. ¢;), for all {i,j} € I.
= (3/{2,3}7331,3/{2,4})
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Q2 = (Yr1,3), T2, Yq1,4))
Qi = (Y(1,2)> Tis Y{1,41} ), for all 4, where 3 < i <m — 1.

Qm = (y{1,2}7$m7y{2,3})- Then

¢ :{'PZ,] i1 SZSTTL_].,]. SjSm&Ildl<J}U{Q17Q2,,Qm}US (1)
where S is the set of edges not covered by any path P;; or {Q1,Qa,...,Qn} is a
simple acyclic graphoidal cover of K, ,, without exterior vertices. Hence nys(K,, ) =
q—p=mn—m —n.
Case 2. n > (72”)

Let n = () + r, where r >0 .

Let Y = {y{z,]} : {Z,j} € J} U {21722, RN ,ZT}.

Then the collection 9 given in (1) with I = J is a simple acyclic graphoidal cover
of K,,, in which the vertices zi, z3,...,2, are exterior to ¥). Hence 1ys(Ky,,) <
q—p+r = mn—m—n+r. Further, for any simple acyclic graphoidal cover ¢ of K, ,
at least r vertices of Y are exterior to ¢ so that 1,5(K,,) > ¢—p+r = mn—m—n+r.

Hence 1,s(Kpn) =mn —m —n+r. O

Corollary 3.13.  Let1 < m <n. Thennes(Kpmn) = 1(Kma) if and only if m =1
andn>1orm>4andn < (7;)

Proof.  Follows from Theorem 1.10 and Theorem 2.12. |
Corollary 3.14.  1,4(K,, ) =q—p if and only if m >4 and m <n < (ZL)

For any graph G, 7,5 > ¢ — p. The above corollary gives an infinite family of
graphs for which this bound is attained. Hence we have the following.

Problem 3.15.  Characterize graphs for which n.s = q — p.

We now proceed to obtain bounds for 7,, and characterize graphs attaining the
bounds.

Theorem 3.16.  Let G be a graph with diameter d. Then 1,s(G) < ¢ —d + 1.
Further, equality holds if and only if for any diameter path P = (u = vq,vs, ...,
Vap1 = v) the following are satisfied.

1. Any two neighbours of each of u and v not on P are adjacent.
2. For any vertex w not on P,

(i) d(w,P) = 1.

(i) |N(w) NV (P)| < 3.

(it1) If N(w) N V(P) = {v;,vj,v}, where i < j < k, then j = i+ 1 and
E=i+2.

() If N(w) NV (P) = {v;,v;}, where i < j, then j =i+ 1 or j =i+ 2.
3. Every component of (V(G) — V(P)) is complete.

4. If v and y are two adjacent vertices not on P, then N(z)NV(P) = N(y) N V(P).
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5. Suppose x and y are two non-adjacent vertices not on P. Then

(1) If N(z) N V(P) = {v;, viq2} or {vi,vit1,vi40} and N(y) N V(P) = {v;}
with 1 < j, then j #1+ 1.
(1t) If N(z)NV (P) = {vs, viga} or {vs, vig1, viga} and N(y)NV (P) = {vj,vj41}
with © < j, then j > 1+ 2.
(it1) If N(z)NV (P) = {v;, viy2} or {v, vit1, Visa} and N(y)NV (P) = {v;,vj12}
with 1 < j, then j #1+ 1.
(iv) If N(z) NV (P) = {v;, viy1,Vip2} and N(y)NV(P) = {vj,vj41, vj1a} with
1< j, then j > i+ 2.

Proof.  Let u and v be two vertices in G with d(u,v) = d and let P be a shortest
u-v path in G . Then ¢ = {P} U(E(G) — E(P)) is a simple acyclic graphoidal cover
of G and [¢| = ¢ —d+ 1. Hence 1,4(G) < ¢—d + 1.

Now, let G be a graph with diameter d and 7,5(G) = ¢—d+1. Let P = (v, v, . ..
vg+1) be a diameter path in G.

Suppose there exists a vertex w not on P such that d(w,P) > 2. Let P, =
(vi,ug,ug,...,u, = w), where 1 < i < d+1 and n > 2 be a shortest v;~w path in
G. Then ¢ = {P,P1} U S, where S is the set of edges of G not covered by P and
P, is a simple acyclic graphoidal cover of G such that || < ¢ — d + 1, which is a
contradiction. Thus d(w, P) = 1. This proves 2(i) of the theorem. Since P is a
diameter path, conditions 2(ii), 2(iii) and 2(iv) follow immediately.

We now prove condition (1) of the theorem. Suppose there exist two non-adjacent
vertices « and y not on P which are adjacent to u. Then @ = (z,u,y) is an induced
path in G with |V(Q) N V(P)| = 1. Now, ¢ = {P,Q} U S, where S is the set of
edges of G not covered by P and @ is a simple acyclic graphoidal cover of G such
that || < ¢ — d + 1, which is a contradiction. Hence any two neighbours of u not
on P are adjacent. Similarly, any two neighbours of v not on P are adjacent. This
proves condition (1) of the theorem.

We now prove (3). Suppose there exists a component H of (V(G) - V(P))
having two non-adjacent vertices, say x and y. Let @ be a shortest z-y path in
H. Then v = {P,Q} U S, where S is the set of edges of G not covered by P and
@ is a simple acyclic graphoidal cover of G such that |¢)| < ¢ —d + 1, which is a
contradiction. Hence every component of (V(G) — V(P)) is complete. This proves
condition (3) of the theorem.

Now, let z and y be two adjacent vertices not on P. We claim that N(z)NV (P) =
N(y) N V(P). Suppose there exists a vertex v; on P such that v; € N(z) — N(y).
Then ¢ = {P,Q = (vi,z,y)} U S, where S is the set of edges of G not covered by
P and @ is a simple acyclic graphoidal cover of G such that |¢| < ¢ — d + 1, which
is a contradiction. Hence N(z) N V(P) C N(y) NV (P). Similarly, N(y) N V(P) C
N(z) NV (P). Thus N(z) N V(P) = N(y) N V(P). This proves condition (4) of the
theorem.

7

Now, let z and y be two non-adjacent vertices not on P. Suppose N(z)NV(P) =
{vs, viga} or {vi, Vi, viga}. I N(y) NV(P) = {v;} with i < jand j =i+ 1, let
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P1 = (U = V1,V2,... ,Ui,vi+1,y)7 P2 = (UZ‘+17UZ‘+2, vy Vg1 = U) and P3 = (Ui,x,UH_Z).
Then ¢ = {P;, Py, P3}US, where S is the set of edges of G not covered by P;, P, and
Pj is a simple acyclic graphoidal cover of G and || = ¢— d, which is a contradiction.
Hence j # i + 1. This proves condition 5(i) of the theorem. By a similar argument,
conditions 5(ii), 5(iii) and 5(iv) can be easily proved.

Conversely, suppose conditions (1),(2),(3),(4) and (5) of the theorem are satisfied
for any diameter path P = (v = vy,...,0441 = v). Let ¢ be a minimum simple
acyclic graphoidal cover of G.

Case 1. P €.

We claim that every vertex not on P is exterior to ¢. Let w be a vertex not on
P. Let H be the component of (V(G) — V(P)) containing the vertex w. If H = K7,
then N(w) C V(P) and hence w is exterior to 9. If [V(H)| > 2, then it follows from
conditions (3) and (4) that any path having w as an internal vertex is not an induced
path and hence w is exterior to ¥. Thus every vertex not on P is exterior to ¢). Hence
the number of vertices interior to ¢ is exactly d —1 so that t = p—(d—1) = p—d+1.
Thus 7,:(G) = ¢ —d+ 1.

Case 2. P ¢ .

We claim that if there exists a vertex x not on P which is interior to ¢, then
there exists a vertex v; on P, where 2 < j < d, which is exterior to 9. Let @ be the
path in % having x as an internal vertex. Then the two neighbours of  which are
on @ are of the form {v;, v;+2}, for some ¢, where 1 <i < d — 1. We now claim that
the vertex v,y is exterior to 1. This is obvious if deg v;y; = 2. Let deg vy > 3.
We now consider the following cases.

Subcase 2.1. |N(z)NV(P)|=2.

Then N(z) N V(P) = {v;,vi42}. Let y be a vertex not on P which is adjacent
to v;+1. Now by condition (4), the vertices z and y are not adjacent. Also it follows
from conditions 5(i)-5(iii) and the condition 2(ii) that |N(y) N V(P)| = 3. Now
it follows from 2(iii) that N(y) N V(P) is a set of three consecutive vertices of P.
Since vi41 € N(y) N V(P), it follows from 5(iii) that N(y) NV (P) = {vs, Vit1, Viga }-
Thus for any two neighbours y and z of v;4; not on P, we have N(y) N V(P) =
N(z) NV(P) = {v;,vi+1,vi12} and hence it follows from condition 5(iv) that y and
z are adjacent. Hence any path having v;;; as an internal vertex is not an induced
path. Thus v;y; is exterior to .

Subcase 2.2. |N(z)NV(P)| = 3.

Then N(z) N V(P) = {vi, Viy1,Vig2}. If deg viy1 = 3, then v;41 is exterior to .
Suppose deg v;+1 > 4. Let y # = be a vertex not on P which is adjacent to v;1. It
follows from conditions 5(i) to 5(iv) that the vertices  and y are adjacent and so by
condition (4), we have N(y) N V(P) = {v;, viy1,vit2}. Hence any path having v,
as an internal vertex is not an induced path. Thus v;4 is exterior to .

Thus for every vertex not on P which is interior to 1, there exists a vertex v;,
where 2 < j < d, on P which is exterior to ¥. Also it is clear that for any two
distinct vertices not on P which are interior to ¢, their corresponding vertices on P
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which are exterior to ¢ are also distinct. Hence it follows from condition (1) that the
number of vertices interior to ¢ is at most d — 1 sothat t > p— (d—1) =p—d+ L.
Hence 7,5(G) > ¢ — d + 1. Thus 7,5(G) = ¢ — d + 1. O

Theorem 3.17.  For any graph G, 1,5(G) > A — 1. Further, equality holds if and
only if G is homeomorphic to a star.

Proof.  Obviously 7,5(G) > A — 1. Suppose 7,5(G) = A — 1. Let v = {P,, Py, ...,
Pa_1} be a minimum simple acyclic graphoidal cover of G. Let v be a vertex of G
with deg v = A. Then v is interior to ¢/ and v lies on each P;. Since 1 is a simple
acyclic graphoidal cover of G, we have V(P;) NV (P;) = {v}, for all i # j. Hence G
is homeomorphic to a star. The converse is obvious. Ol

Theorem 3.18.  For any graph G, n.s(G) > (%), where w is the clique number of
G. Further, if 1,,(G) = (%), then the following are satisfied.

(i) There exists a unique mazimum cligue H in G.
(it) If v e V(H), then deg v =w or w — 1.
(i) Ifv e V(G) — V(H), then deg v < |%] + 1.

Proof.  Let H be a maximum clique in G so that |E(H)| = (%). Let ¥ be a simple
acyclic graphoidal cover of G. Since any path in ¢ covers at most one edge of H, it
follows that 17,s(G) > ().

Now, let G be a graph with 7,,(G) = (%). Let ¢ be a minimum simple acyclic
graphoidal cover of G.

Suppose there exists a vertex v € V(H) with deg v > w. Let z and y be two
vertices not on H which are adjacent to v. Let P and @ be paths in ¢ covering the
edges zv and yov respectively. Since 7,5(G) = (“2’), each of the paths P and Q covers
exactly one edge of H and both of them are induced paths. Hence it follows that
P # @ and v is interior to both P and @), which is a contradiction. Hence deg v = w
or deg v =w — 1. This proves condition (ii) of the theorem.

Now, let v € V(G) — V(H). Since any path in 1) which contains v covers exactly
two vertices of H and v is an internal vertex of at most one path in v, it follows that
deg v < |%] 4+ 1. This proves condition (iii) of the theorem. Now, it follows from
(iii) that H is the unique maximum clique in G. O

We now proceed to investigate the structure of graphs which admit a (minimum)
simple acyclic graphoidal cover satisfying the Helly property.

Theorem 3.19. A graph G has a simple acyclic graphoidal cover satisfying the
Helly property if and only if G is triangle-free.

Proof.  Suppose G is triangle-free. Then ¢ = E(G) is a simple acyclic graphoidal
cover of G satisfying the Helly property.

Conversely, suppose G has a triangle, say C = (u,v,w,u). Let ¥ be any simple
acyclic graphoidal cover of G. Then the edges uv,vw and ww lie on three different
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paths in v, say Py, P, and Pj respectively. Clearly {Py, P, P3} is a pairwise inter-
secting family of paths in 1. If there exists a vertex x which is common to the paths
Py, P, and Ps, then the vertices # and v are common to both P, and P,, which is a
contradiction. Hence V(P) NV (P,) NV (P;) = ¢. Thus ¢ does not satisfy the Helly
property. O

Theorem 3.20.  Every simple acyclic graphoidal cover of a graph G satisfies the
Helly property if and only if G is a tree.

Proof.  Suppose G is a graph in which every simple acyclic graphoidal cover satisfies
the Helly property. Suppose G contains a cycle, say C' = (v1,va, ..., U, v1), where
E > 3. Let P, = (v1,v9), P» = (va,vs,...,v;) and Py = (vg,v1). Then ¢ =
{P, P, P;} U (E(G) — E(C)) is a simple acyclic graphoidal cover of G. Clearly
{Py, Py, P3} is pairwise intersecting family of paths in 1, whereas there exists no
vertex in G common to the paths P, P» and Ps;. Hence ¥ does not satisfy the Helly
property, which is a contradiction. Hence G is a tree.

The converse follows from Theorem 1.13. |

We now construct some classes of graphs with a minimum simple acyclic graph-
oidal cover satisfying the Helly property.

Theorem 3.21. Let C be a cycle of length greater than 3. Then the graph G
obtained from C by attaching a pendant edge to every vertex of C' has a minimum
simple acyclic graphoidal cover satisfying the Helly property.

Proof. Let C' = (v1,vs,...,0n,v1), where n > 4. Let uy,us,...,u, be the pen-
dant vertices of G which are adjacent to wvy,vs,...,v, respectively. Then ¢ =
{(ui,vi,v501) : 1 <3 <n—1}U{(tn,Vn,v1)} is a minimum simple acyclic graphoidal
cover of G. Clearly any pairwise intersecting family of paths in ¢ contains at most
two paths and hence v satisfies the Helly property. a

Theorem 3.22.  Let G be a graph. Then the graph G' obtained from G by attaching
two pendant edges to every vertex of G has a minimum simple acyclic graphoidal cover
satisfying the Helly property.

Proof.  Let ¢ be the minimum simple acyclic graphoidal cover of G’ given in Lemma
2.6. Then any pairwise intersecting family of paths in ¢ has at most two paths and
hence 9 satisfies the Helly property. a

The above results lead to the following problems.

Problem 3.23. Characterize graphs which admit a minimum simple acyclic graph-
oidal cover satisfying the Helly property.

Problem 3.24. Characterize graphs in which every minimum simple acyclic graph-
oidal cover satisfies the Helly property.
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