The automorphism groups of the Laguerre near-planes of order four

GÜNTER F. STEINKE

Department of Mathematics and Statistics
University of Canterbury
Private Bag 4800
Christchurch 8020
New Zealand
G.Steinke@math.canterbury.ac.nz

Abstract

We determine the automorphism groups of the Laguerre near-planes of order 4 found in Steinke, *Australas. J. Combin.* 25 (2002), 145–166, and give characterisations of some of these planes in terms of their automorphism groups.

1 Introduction and result

A Laguerre near-plane of order 4 consists of a set P of $4^2 = 16$ points, a set C of $4^3 = 64$ circles and a set G of 4 generators (subsets of P) such that the following three axioms are satisfied:

- (G) \mathcal{G} partitions P and each generator contains 4 points.
- (C) Each circle intersects each generator in precisely one point.
- (J) Three points no two of which are on the same generator can be uniquely joined by a circle.

Labelling the generators from 1 to 4 and the points on each generator from 1 to 4 and identifying each circle with the 4-tuple (c_1, \ldots, c_4) where c_i is the unique point of the circle on generator i, we see that a Laguerre near-plane of order 4 corresponds to an orthogonal array of strength 3 on 4 symbols (levels), 4 constraints and index 1, cf. [1], or equivalently, a transversal design $\mathrm{TD}_3(4,4)$. Since we have a more geometric point of view we rather use the term Laguerre near-plane instead of orthogonal array or transversal design.

In [2] all Laguerre near-planes of order 4 were determined and a representation of such planes in terms of a single map was developed. It was shown that such a Laguerre near-plane is isomorphic to one of five Laguerre near-planes of order 4. The results from [2] can be summarized as follows.

THEOREM 1.1 Let $f: \mathbb{F}_4^3 \to \mathbb{F}_4$ where $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, $\omega^2 = \omega + 1$, denotes the Galois field of order 4 be a map such that for each $x_0, y_0, z_0 \in \mathbb{F}_4$ the functions $x \mapsto f(x, y_0, z_0)$, $y \mapsto f(x_0, y, z_0)$ and $z \mapsto f(x_0, y_0, z)$ are permutations of \mathbb{F}_4 . Such a map describes a Laguerre near-plane $\mathcal{L}(f)$ of order 4 as follows. The point set is $\mathbb{F}_4 \times \mathbb{F}_4$ and generators are the verticals $\{c\} \times \mathbb{F}_4$ for $c \in \mathbb{F}_4$. Circles are of the form

$$\{(1, x), (\omega, y), (\omega^2, z), (0, f(x, y, z))\}$$

for $x, y, z \in \mathbb{F}_4$. Conversely, every Laguerre near-plane of order 4 can be uniquely described in this way by such a map.

A Laguerre near-plane of order 4 is isomorphic to a plane described by one of the maps

$$\begin{array}{lll} f_0(x,y,z) & = & x+y+z, \\ f_1(x,y,z) & = & (x^2+x)(y^2+y)+(y^2+y)(z^2+z)+(x^2+x)(z^2+z)+x+y+z, \\ f_2(x,y,z) & = & (x^2+x)(z^2+z)+x+y+z, \\ f_3(x,y,z) & = & (x^2+x)(y^2+y)(z^2+z)+x+y+z, \\ f_4(x,y,z) & = & (x^2+\omega^2x)(y^2+\omega y)(z^2+\omega z)+(x^2+\omega^2x)(y^2+\omega^2y) \\ & & +(x^2+\omega^2x)(z^2+\omega^2z)+(y^2+\omega y)(z^2+\omega z)+x+y+z. \end{array}$$

Of these Laguerre near-planes only $\mathcal{L}(f_0)$ extends to a Laguerre plane of order 4.

In the language of transversal designs the last statement in the Theorem above means that of the corresponding transversal designs only the one associated with f_0 is resolvable and extends to a transversal design $TD_3(5,4)$.

In this paper we investigate the automorphism groups of these five Laguerre nearplanes of order 4 and show that they have different orders so that the planes are mutually non-isomorphic. We further determine transitivity properties of the automorphism groups on the point set, circle set and set of generators which in turn yields characterisations of some of the planes.

THEOREM 1.2 The automorphism group $\Gamma(f_i)$ of $\mathcal{L}(f_i)$ has order $2^{10} \cdot 3^2$, $2^{10} \cdot 3$, 2^9 , $2^7 \cdot 3$ and 2^7 for i = 0, 1, 2, 3, 4, respectively. In particular, the Laguerre nearplanes $\mathcal{L}(f_i)$, i = 0, 1, 2, 3, 4, are mutually non-isomorphic.

Moreover, $\Gamma(f_0)$ and $\Gamma(f_1)$ are transitive on the collection of all incident point-circle pairs; in particular, these groups act transitively on the point set, the set of circles and the set of generators. The automorphism groups of $\mathcal{L}(f_2)$ and $\mathcal{L}(f_4)$ are circle-transitive but not transitive on the sets of generators (and thus not point-transitive); $\Gamma(f_2)$ fixes no generator whereas $\Gamma(f_4)$ fixes two generators. $\Gamma(f_3)$ is neither point-nor circle-transitive but is transitive on the set of generators.

2 Isomorphisms and automorphisms of Laguerre near-planes

Let ω be a generator of the multiplicative group of \mathbb{F}_4 . Then the non-zero elements of \mathbb{F}_4 can be written in the form ω^i for i = 0, 1, 2. We use the notation $\omega^{\infty} = 0$ and

$$I = \{0, 1, 2, \infty\}.$$

Then

$$\mathbb{F}_4 = \{ \omega^i \mid i \in I \}.$$

We further denote by \mathbb{F}_2 the prime subfield of \mathbb{F}_4 consisting of 0 and 1. Each circle is described by some $(c_0, c_1, c_2, c_\infty) \in \mathbb{F}_4^4$ as

$$C_{c_0,c_1,c_2,c_\infty} = \{(1,c_0),(\omega,c_1)(\omega^2,c_2),(0,c_\infty)\} = \{(\omega^i,c_i) \mid i \in I\}.$$

Every isomorphism of a Laguerre near-plane of order 4 is of the form

$$\mathbb{F}_4 \times \mathbb{F}_4 \to \mathbb{F}_4 \times \mathbb{F}_4 : (u, v) \mapsto (\alpha(u), \beta_u(v))$$

where α and β_u are permutations of \mathbb{F}_4 for each $u \in \mathbb{F}_4$.

Note that the group of permutations of \mathbb{F}_4 is the symmetric group S_4 . Every even permutation can be written as $x \mapsto ax + b$ for some $a, b \in \mathbb{F}_4$, $a \neq 0$. The automorphism $x \mapsto x^2$ of \mathbb{F}_4 is an odd permutation of \mathbb{F}_4 —in fact, a transposition—and every odd permutation of \mathbb{F}_4 is of the form $x \mapsto ax^2 + b$ for some $a, b \in \mathbb{F}_4$. With this notation we obtained the following in [2], 3.1 and 4.1.

1. $(u,v) \mapsto (u,\beta_u(v))$ where the β_u are permutations of \mathbb{F}_4 for each $u \in \mathbb{F}_4$. These permutations take C_{c_0,c_1,c_2,c_∞} to $C_{\beta_1(c_0),\beta_\omega(c_1),\beta_{\omega^2}(c_2),\beta_0(c_\infty)}$. A Laguerre near-plane $\mathcal{L}(f)$ is taken to $\mathcal{L}(f')$ where

$$f'(x,y,z) = \beta_0(f(\beta_1^{-1}(x),\beta_\omega^{-1}(y),\beta_{\omega^2}^{-1}(z))$$

for $x, y, z \in \mathbb{F}_4$.

2. $(u,v)\mapsto (u+t,v)$ for $t\in \mathbb{F}_4$. These permutations take C_{c_0,c_1,c_2,c_∞} to C_{d_0,d_1,d_2,d_∞} where

$$(d_0,d_1,d_2,d_\infty) = egin{cases} (c_0,c_1,c_2,c_\infty), & ext{if } t=0, \ (c_\infty,c_2,c_1,c_0), & ext{if } t=1, \ (c_2,c_\infty,c_0,c_1), & ext{if } t=\omega, \ (c_1,c_0,c_\infty,c_2), & ext{if } t=\omega^2. \end{cases}$$

A Laguerre near-plane $\mathcal{L}(f)$ is taken to $\mathcal{L}(f')$ where f'=f for t=0 and f' is an inverse of a partial map of f with the other two variables interchanged given by f'(f(x,y,z),z,y)=x, f'(z,f(x,y,z),x)=y and f'(y,x,f(x,y,z))=z for t=1, ω and ω^2 , respectively, that is, the maps $(x,y,z)\mapsto f_{z,y}^{-1}(x)$, $(x,y,z)\mapsto f_{z,x}^{-1}(y)$ and $(x,y,z)\mapsto f_{y,x}^{-1}(z)$, respectively; compare [2], Corollary 2.6 and Examples 2.7, for finding these inverses.

3. $(u,v)\mapsto (ru,v)$ for $r\in \mathbb{F}_4$, $r\neq 0$. These permutations take a circle C_{c_0,c_1,c_2,c_∞} to $C_{c_{3-k},c_{1-k},c_{2-k},c_\infty}$ where $r=\omega^k$, k=0,1,2, and the indices 3-k, 1-k and 2-k are taken modulo 3. A Laguerre near-plane $\mathcal{L}(f)$ is taken to $\mathcal{L}(f')$ where

$$f'(x,y,z) = egin{cases} f(x,y,z), & ext{if } r=1, \\ f(y,z,x), & ext{if } r=\omega, \\ f(z,x,y), & ext{if } r=\omega^2. \end{cases}$$

4. $(u,v) \mapsto (u^2,v)$. This permutation takes C_{c_0,c_1,c_2,c_∞} to C_{c_0,c_2,c_1,c_∞} . A Laguerre near-plane $\mathcal{L}(f)$ is taken to $\mathcal{L}(f')$ where f'(x,y,z) = f(x,z,y).

More explicitly, the isomorphisms of type (1) are generated by the following permutations.

(1a)
$$(u, v) \mapsto \begin{cases} (u, v), & \text{if } u \neq s, \\ (u, v + t), & \text{if } u = s, \end{cases}$$
 for $s, t \in \mathbb{F}_4$ takes $\mathcal{L}(f)$ to $\mathcal{L}(f')$ where

$$f'(x, y, z) = \begin{cases} f(x, y, z) + t, & \text{if } s = 0, \\ f(x + t, y, z), & \text{if } s = 1, \\ f(x, y + t, z), & \text{if } s = \omega, \\ f(x, y, z + t), & \text{if } s = \omega^2; \end{cases}$$

(1b) $(u, v) \mapsto \begin{cases} (u, v), & \text{if } u \neq s, \\ (u, rv), & \text{if } u = s, \end{cases}$ for $r, s \in \mathbb{F}_4$, $r \neq 0$, takes $\mathcal{L}(f)$ to $\mathcal{L}(f')$ where

$$f'(x, y, z) = \begin{cases} rf(x, y, z), & \text{if } s = 0, \\ f(r^2x, y, z), & \text{if } s = 1, \\ f(x, r^2y, z), & \text{if } s = \omega, \\ f(x, y, r^2z), & \text{if } s = \omega^2; \end{cases}$$

(1c)
$$(u, v) \mapsto \begin{cases} (u, v), & \text{if } u \neq s, \\ (u, v^2), & \text{if } u = s, \end{cases}$$
 for $s \in \mathbb{F}_4$ takes $\mathcal{L}(f)$ to $\mathcal{L}(f')$ where

$$f'(x, y, z) = \begin{cases} f(x, y, z)^2, & \text{if } s = 0, \\ f(x^2, y, z), & \text{if } s = 1, \\ f(x, y^2, z), & \text{if } s = \omega, \\ f(x, y, z^2), & \text{if } s = \omega^2. \end{cases}$$

Note that each isomorphism

$$(u,v)\mapsto (u,v+t_u)$$

for $t_u \in \mathbb{F}_4$ can be written in the form

$$(u, v) \mapsto (u, v + s_3 u^3 + s_2 u^2 + s_1 u + s_0)$$

for $s_3, s_2, s_1, s_0 \in \mathbb{F}_4$ where

$$s_0 = t_0,$$

$$s_1 = \omega t_{\omega^2} + \omega^2 t_{\omega} + t_1,$$

$$s_2 = \omega^2 t_{\omega^2} + \omega t_{\omega} + t_1,$$

$$s_3 = t_{\omega^2} + t_{\omega} + t_1 + t_0.$$

We are using both forms whichever is more convenient at the time. An isomorphism

$$\mathbb{F}_4 \times \mathbb{F}_4 \to \mathbb{F}_4 \times \mathbb{F}_4 : (u, v) \mapsto (\alpha(u), \beta_u(v))$$

where α and β_u are permutations of \mathbb{F}_4 for each $u \in \mathbb{F}_4$ defines an automorphism of a Laguerre near-plane $\mathcal{L}(f)$ if and only is f' = f where f' is found as in the above lists. The collection of all permutations with $\alpha = id$ is a normal subgroup Δ . These are the permutations of type (1). We further denote by Δ^* the collection of all permutations in Δ whose accompanying field automorphisms on generators are the identity, i.e., permutations of the form $(u, v) \mapsto (u, a_u v + b_u)$ for $a_u, b_u \in \mathbb{F}_4$, $a_u \neq 0$. Clearly, Δ^* is a normal subgroup of Δ .

For automorphisms in Δ we have the following.

LEMMA 2.1 The transformation

$$(u,v)\mapsto (u,\beta_u(v))$$

where β_u are permutations of \mathbb{F}_4 for each $u \in \mathbb{F}_4$ is an automorphism of $\mathcal{L}(f)$ if and only if

$$f(\beta_1(x), \beta_{\omega}(y), \beta_{\omega^2}(z)) = \beta_0(f(x, y, z)).$$

3 Automorphism groups

In [2] we have established that a Laguerre near-plane of order 4 is isomorphic to one of the Laguerre near-planes $\mathcal{L}(f_i)$, i=0,1,2,3,4. In order to show that in fact the latter five planes are mutually non-isomorphic we investigate the automorphism groups $\Gamma(f_i)$ of these planes, that is, the collection of all permutations of $\mathbb{F}_4 \times \mathbb{F}_4$ that preserve the Laguerre near-plane.

3.1 The automorphism group of $\mathcal{L}(f_0)$

Since $\mathcal{L}(f_0)$ extends to the Miquelian Laguerre plane, every automorphism of the Miquelian Laguerre plane that fixes a distinguished generator induces an automorphism of the Laguerre near-plane obtained by removing the distinguished generator. It is well known that the automorphism group of the Miquelian Laguerre plane of order 4 has order $2^9 \cdot 3^2 \cdot 5$ and acts transitively on the set of all incident point-circle pairs. In particular, this group is transitive on the set of generators. Hence the stabilizer of a generator has order $2^9 \cdot 3^2$. In terms of the isomorphisms from section 2 the group induced by this stabilizer is generated by all permutations of types (2) and (3) and by the following permutations:

(i)
$$(u, v) \mapsto (u, v + t_u)$$
 for $t_0, t_1, t_\omega, t_{\omega^2} \in \mathbb{F}_4$, $t_0 + t_1 + t_\omega + t_{\omega^2} = 0$ (type (1a)),

(ii)
$$(u, v) \mapsto (u, rv)$$
 for $r \neq 0$ (type (1b)) and

(iii)
$$(u, v) \mapsto (u^2, v^2)$$
 (types (4) and (1c) combined).

However, $\mathcal{L}(f_0)$ also admits the permutation of type (4) as an automorphism. In fact, together they generate the entire automorphism group of $\mathcal{L}(f_0)$. From the transitivity properties of the automorphism group of the Miquelian Laguerre plane of order 4 we see that the group G_0 generated by the above automorphisms is transitive on the set of point-circles pairs ('flags') and induces the full symmetric group of degree 4 on the set of generators. Now let γ be an automorphism of $\mathcal{L}(f_0)$. Up to elements in G_0 we can assume that γ fixes each generator, i.e., $\gamma \in \Delta$, and that γ fixes the circle $\{(u,0) \mid u \in \mathbb{F}_4\}$. Then $\gamma(u,v) = (u,\beta_u(v))$ where $\beta_u(v) = a_u v^{m_u}$ with $a_u \in \mathbb{F}_4$, $a_u \neq 0$, and $m_u = 1, 2$. Using the automorphisms $(u,v) \mapsto (u,v^2)$ (types (4) and (iii) combined) and (ii) in Δ , if necessary, we may further assume that β_0 is the identity. By Lemma 2.1 we then must have $f_0(\beta_1(x), \beta_\omega(y), \beta_{\omega^2}(z))) = f_0(x, y, z)$, that is,

$$a_1 x^{m_1} + a_{\omega} y^{m_{\omega}} + a_{\omega^2} z^{m_{\omega^2}} = x + y + z$$

for all $x, y, z \in \mathbb{F}_4$. But this implies $a_1 = a_{\omega} = a_{\omega^2} = 1$ and $m_1 = m_{\omega} = m_{\omega^2} = 1$, that is, γ is the identity.

This shows that the automorphism group of $\mathcal{L}(f_0)$ is contained in G_0 . In summary we obtain the following.

PROPOSITION 3.1 The automorphism group $\Gamma(f_0)$ of the Laguerre near-plane $\mathcal{L}(f_0)$ has order $2^{10} \cdot 3^2$. Furthermore, $\Gamma(f_0)$ acts transitively on the set of point-circles pairs of $\mathcal{L}(f_0)$ and induces the full symmetric group S_4 of degree 4 on the set of generators. In particular, $\Gamma(f_0)$ is point-transitive and circle-transitive.

Although $\mathcal{L}(f_0)$ extends to the Miquelian Laguerre plane of order 4 not every automorphism of $\mathcal{L}(f_0)$ extends to an automorphism of the Laguerre plane.

3.2 The automorphism group of $\mathcal{L}(f_1)$

From the list in section 2 we find that the following permutations are automorphisms of $\mathcal{L}(f_1)$.

(i)
$$(u, v) \mapsto (u, v + t_u)$$
 for $t_0, t_1, t_\omega, t_{\omega^2} \in \mathbb{F}_2, t_0 + t_1 + t_\omega + t_{\omega^2} = 0$;

(ii)
$$(u, v) \mapsto (u, v^2)$$
;

$$(\mathrm{iii}) \ (u,v) \mapsto \begin{cases} (u,v+\omega), & \mathrm{if} \ u \in \{0,t\} \\ (u,v^2), & \mathrm{if} \ u \in \mathbb{F}_4 \setminus \{0,t\} \end{cases} \ \mathrm{for} \ t \in \mathbb{F}_4, \ t \neq 0;$$

(iv)
$$(u, v) \mapsto \begin{cases} (u + t, v), & \text{if } u \in \{0, t\} \\ (u + t, v^2), & \text{if } u \in \mathbb{F}_4 \setminus \{0, t\} \end{cases}$$
 for $t \in \mathbb{F}_4$, $t \neq 0$;

(v)
$$(u, v) \mapsto (ru, v)$$
 for $r \neq 0$;

(vi)
$$(u, v) \mapsto (u^2, v)$$
.

These automorphisms generate a group G_1 . By looking at the first coordinates we see that every permutation of the set of generators can be obtained by an element of G_1 .

Let γ be an automorphism of $\mathcal{L}(f_1)$. Up to elements in G_1 we can assume that γ fixes each generator, i.e., $\gamma \in \Delta$. Then $\gamma(u,v) = (u,\beta_u(v))$ where $\beta_u(v) = a_u v^{m_u} + b_u$ with $a_u, b_u \in \mathbb{F}_4$, $a \neq 0$, and $m_u = 1, 2$. Using the automorphisms (ii) and (iii) in G_1 , if necessary, we may further assume that $m_0 = m_{\omega^2} = 1$. By Lemma 2.1 we then must have $f_1(\beta_1(x), \beta_{\omega}(y), \beta_{\omega^2}(z))) = \beta_0(f_1(x, y, z))$, that is,

$$\begin{split} &(a_1^2x^{2m_1}+a_1x^{m_1}+b_1^2+b_1)(a_{\omega}^2y^{2m_{\omega}}+a_{\omega}y^{m_{\omega}}+b_{\omega}^2+b_{\omega})\\ &+(a_{\omega}^2y^{2m_{\omega}}+a_{\omega}y^{m_{\omega}}+b_{\omega}^2+b_{\omega})(a_{\omega^2}^2z^2+a_{\omega^2}z+b_{\omega^2}^2+b_{\omega^2})\\ &+(a_1^2x^{2m_1}+a_1x^{m_1}+b_1^2+b_1)(a_{\omega^2}^2z^2+a_{\omega^2}z+b_{\omega^2}^2+b_{\omega^2})\\ &+a_1x^{m_1}+a_{\omega}y^{m_{\omega}}+a_{\omega^2}z+b_1+b_{\omega}+b_{\omega^2}\\ &=a_0[(x^2+x)(y^2+y)+(y^2+y)(z^2+z)+(x^2+x)(z^2+z)+x+y+z]+b_0 \end{split}$$

for all $x, y, z \in \mathbb{F}_4$. Looking at terms x^2 and x in (1) we find

$$(b_{\omega}^2 + b_{\omega} + b_{\omega^2}^2 + b_{\omega^2})(a_1^2 x^{2m_1} + a_1 x^{m_1}) + a_1 x^{m_1} = a_0 x.$$

Since $b^2+b\in \mathbb{F}_2$ for each $b\in \mathbb{F}_4$, we obtain two cases. Either $b_\omega^2+b_\omega+b_{\omega+1}^2+b_{\omega^2}=1$ and then $m_1=2$, $a_1=a_0^2$, or $b_\omega^2+b_\omega+b_{\omega^2}^2+b_{\omega^2}=0$, and then $m_1=1$, $a_1=a_0$. In both cases we have $a_1=a_0^{m_1}$ and $a_1^2x^{2m_1}+a_1x^{m_1}=a_0^{2m_1}x^{2m_1}+a_0^{m_1}x^{m_1}=(a_0^2x^2+a_0x)^{m_1}=a_0^2x^2+a_0x$. One similarly finds that $a_\lambda=a_0^{m_\lambda}$ for $\lambda=\omega,\omega^2$ and $a_\omega^2y^{2m_\omega}+a_\omega y^{m_\omega}=a_0^2y^2+a_0y,\ a_\omega^2z^2+a_0z^2=a_0^2z^2+a_0z$. Comparing terms x^2y^2 in (1) yields $a_0=1$ and thus $a_\lambda=1$ for all $\lambda\in\mathbb{F}_4$. Let $d_\lambda=b_\lambda^2+b_\lambda$ for $\lambda=1,\omega,\omega^2$. Then (1) becomes

 $(x^2 + x + d_1)(y^2 + y + d_{\omega}) + (y^2 + y + d_{\omega})(z^2 + z + d_{\omega^2}) + (x^2 + x + d_1)(z^2 + z + d_{\omega^2}) + x^{m_1} + y^{m_{\omega}} + z + b_1 + b_{\omega} + b_{\omega^2}$

$$= (x^2 + x)(y^2 + y) + (y^2 + y)(z^2 + z) + (x^2 + x)(z^2 + z) + x + y + z + b_0.$$

Expanding the left-hand side, we see that

$$(d_{\omega} + d_{\omega^{2}})(x^{2} + x) + x^{m_{1}} = x$$

$$(d_{1} + d_{\omega^{2}})(y^{2} + y) + y^{m_{\omega}} = y$$

$$(d_{1} + d_{\omega})(z^{2} + z) + z = z$$

and

$$d_1 d_{\omega} + d_{\omega} d_{\omega^2} + d_1 d_{\omega^2} + b_0 + b_1 + b_{\omega} + b_{\omega^2} = 0.$$

Thus $d_{\omega}=d_1$ and, as before, either $d_{\omega^2}=d_1$, $m_1=1$ or $d_{\omega^2}=d_1+1$, $m_1=2$, and $b_0+b_1+b_{\omega}+b_{\omega^2}=d_1$. Hence, we have two cases.

Case 1: $d_{\omega^2} = d_{\omega} = d_1 \in \mathbb{F}_2$, $m_{\lambda} = 1$ for all $\lambda \in \mathbb{F}_4$.

If $d_1 = 0$, then γ is of the form (i) and thus $\gamma \in G_1$. For $d_1 = 1$ we use the composition of all three automorphisms (iii) for $t \in \mathbb{F}_4$, $t \neq 0$, in the list above. This

yields the automorphism

$$\gamma': (u,v) \mapsto \begin{cases} (u,v+\omega), & \text{if } u \in \mathbb{F}_4 \setminus \{\omega\}, \\ (u,v+\omega^2), & \text{if } u = \omega. \end{cases}$$

Then $\gamma' \circ \gamma$ is an automorphism as before and thus again $\gamma \in G_1$.

Case 2: $d_{\omega^2} = d_1 + 1$, $d_{\omega} = d_1 \in \mathbb{F}_2$, $m_0 = m_{\omega^2} = 1$, $m_1 = m_{\omega} = 2$.

In this case we use the automorphism (iii) for $t = \omega^2$ to obtain an automorphism as in the first case.

This shows that the automorphism group of $\mathcal{L}(f_1)$ is contained in G_1 . Furthermore, G_1 is of order $2^{10} \cdot 3$ since, from above, $G_1/\Delta \cong S_4$, $|\Delta/\Delta^*| = 8$ and $|\Delta^*| = 16$. Taking the first and last automorphisms in the list above one readily sees that G_1 is transitive on the generator $\{0\} \times \mathbb{F}_4$. Thus G_1 acts transitively on the point set $\mathbb{F}_4 \times \mathbb{F}_4$.

Using automorphisms (i) and (iii) above we see that Δ is transitive on the generator $\{0\} \times \mathbb{F}_4$. The stabilizer $\Delta_{(0,0)}$ of (0,0) has order 2^5 and is generated by the following automorphisms:

- $(u, v) \mapsto (u, v + t_u)$ for $t_u \in \mathbb{F}_2$, $t_0 = 0$, $t_1 + t_\omega + t_{\omega^2} = 0$;
- $(u, v) \mapsto (u, v^2);$

•
$$(u, v) \mapsto \begin{cases} (u, v), & \text{if } u \in \mathbb{F}_2, \\ (u, v^2 + u), & \text{if } u \in \mathbb{F}_4 \setminus \mathbb{F}_2; \end{cases}$$

$$\bullet \ (u,v) \mapsto \begin{cases} (u,v), & \text{if } u \in \{0,\omega\}, \\ (u,v^2+\omega^2), & \text{if } u = 1, \\ (u,v^2+\omega), & \text{if } u = \omega^2. \end{cases}$$

The last two automorphisms are obtained as a composition of two automorphisms of the form (iii) (for $t = \omega^2$, ω and $t = 1, \omega^2$, respectively). The first and last automorphisms then show that $\Delta_{(0,0)}$ is transitive on the generator $\{1\} \times \mathbb{F}_4$. Finally, the stabilizer $\Delta_{(0,0),(1,0)}$ of (0,0) and (1,0) has order 2^3 and is generated by $(u,v) \mapsto (u,y+u^2+u)$ and the second and third automorphisms in the list above. It now readily follows that $\Delta_{(0,0),(1,0)}$ is transitive on the generator $\{\omega\} \times \mathbb{F}_4$. Since each circle through (0,0) is uniquely determined by its intersection with the two generators $\{1\} \times \mathbb{F}_4$ and $\{\omega\} \times \mathbb{F}_4$, we see that $\Delta_{(0,0)}$ is transitive on the set of circles through (0,0). Hence, $(G_1)_{(0,0)}$ is transitive on the set of circles through (0,0), and because G_1 is point-transitive, we finally obtain that G_1 acts transitively on the set of point-circles pairs of $\mathcal{L}(f_1)$.

In summary we obtain the following.

PROPOSITION 3.2 The automorphism group $\Gamma(f_1)$ of the Laguerre near-plane $\mathcal{L}(f_1)$ has order $2^{10} \cdot 3$. Furthermore, $\Gamma(f_1)$ acts transitively on the set of point-circles pairs of $\mathcal{L}(f_1)$ and induces the full symmetric group S_4 on the set of generators. In particular, $\Gamma(f_1)$ is point-transitive and circle-transitive.

3.3 The automorphism group of $\mathcal{L}(f_2)$

From the list in section 2 we find that the following permutations are automorphisms of $\mathcal{L}(f_2)$.

(i)
$$(u, v) \mapsto (u, v + t_u)$$
 for $t_1, t_{\omega^2} \in \mathbb{F}_2$, $t_0, t_{\omega} \in \mathbb{F}_4$, $t_0 + t_1 + t_{\omega} + t_{\omega^2} = 0$;

(ii)
$$(u, v) \mapsto (u, v^2)$$
;

(iii)
$$(u, v) \mapsto \begin{cases} (u, v + \omega^2 u^2), & \text{if } u \in \mathbb{F}_4 \setminus \{\omega^2\}, \\ (u, v^2 + \omega^2 u^2), & \text{if } u = \omega^2; \end{cases}$$

(iv)
$$(u, v) \mapsto \begin{cases} (u, v + u), & \text{if } u \in \mathbb{F}_4 \setminus \{1\}, \\ (u, v^2 + u), & \text{if } u = 1; \end{cases}$$

(v)
$$(u, v) \mapsto (u + \omega, v)$$
;

(vi)
$$(u, v) \mapsto (\omega^2 u^2, v)$$
.

These automorphisms generate a group G_2 . By looking at the first coordinates we see that G_2 has two orbits $\{\{0\} \times \mathbb{F}_4, \{\omega\} \times \mathbb{F}_4\}$ and $\{\{1\} \times \mathbb{F}_4, \{\omega^2\} \times \mathbb{F}_4\}$ on the set of generators.

We first show that the automorphism group $\Gamma(f_2)$ of $\mathcal{L}(f_2)$ cannot be transitive on the set of generators. Otherwise there is an automorphism γ that takes the generator $\{0\} \times \mathbb{F}_4$ to the generator $\{1\} \times \mathbb{F}_4$. Using the automorphism (vi), if necessary, we may assume that γ is of the form $(u,v) \mapsto (au+1,\beta_u(v))$ for some $a \in \mathbb{F}_4$, $a \neq 0$, and permutations β_u of \mathbb{F}_4 . From section 2 we see that the permutation $(u,v) \mapsto (au+1,v)$ takes $\mathcal{L}(f_2)$ to $\mathcal{L}(f)$ where

$$f(x,y,z) = \begin{cases} (x^2 + x + z^2 + z)(y^2 + y) + x + y^2 + z, & \text{if } a = 1, \\ (x^2 + x + y^2 + y)(z^2 + z) + x + y + z^2, & \text{if } a = \omega, \\ (y^2 + y + z^2 + z)(x^2 + x) + x^2 + y + z, & \text{if } a = \omega^2. \end{cases}$$

But γ is a composition of this permutation and a permutation in Δ . Using Lemma 2.1 we now see that f_2 cannot be obtained in this way. This shows that $\Gamma(f_2)$ cannot be transitive on the set of generators. Hence, $\Gamma(f_2)$ has the same orbits as G_2 on the set of generators.

Let γ be an automorphism of $\mathcal{L}(f_2)$. Up to elements in G_2 we can assume that γ fixes each generator, i.e., $\gamma \in \Delta$. Then $\gamma(u,v) = (u,a_uv^{m_u} + b_u)$ where $a_u,b_u \in \mathbb{F}_4$, $a_u \neq 0$, and $m_u = 1, 2$. Using the automorphisms (ii), (iii) and (iv) in G_2 , if necessary, we may further assume that $m_0 = m_1 = m_{\omega^2} = 1$. By Lemma 2.1 we then must have

$$(a_1^2 x^2 + a_1 x + b_1^2 + b_1)(a_{\omega^2}^2 z^2 + a_{\omega^2} z + b_{\omega^2}^2 + b_{\omega^2})$$

$$+ a_1 x + a_{\omega} y^{m_{\omega}} + a_{\omega^2} z + b_1 + b_{\omega} + b_{\omega^2}$$

$$= a_0[(x^2 + x)(z^2 + z) + x + y + z] + b_0$$

for all $x, y, z \in \mathbb{F}_4$. As before in 3.3 we see that $m_{\omega} = 1$, $a_{\lambda} = 1$ for all $\lambda \in \mathbb{F}_4$, $b_1^2 + b_1 = b_{\omega^2}^2 + b_{\omega^2} = 0$, that is $b_1, b_{\omega^2} \in \mathbb{F}_2$ and $b_1 + b_{\omega} + b_{\omega^2} + b_0 = 0$. But then γ is of type (i) and thus in G_2 .

This shows that the automorphism group of $\mathcal{L}(f_2)$ is contained in G_2 . Furthermore, G_2 has order 2^9 since, from above, $|G_2/\Delta|=4$, $|\Delta/\Delta^*|=8$ and $|\Delta^*|=16$. Using the automorphisms (i) we see that Δ is transitive on the generator $\{0\}\times\mathbb{F}_4$. The stabilizer $\Delta_{(0,0)}$ of (0,0) has order 2^5 and is generated by the following automorphisms:

- $(u, v) \mapsto (u, v + t_u)$ for $t_1, t_\omega, t_{\omega^2} \in \mathbb{F}_2, t_0 = 0, t_1 + t_\omega + t_{\omega^2} = 0$;
- $(u, v) \mapsto (u, v^2)$;
- $(u, v) \mapsto \begin{cases} (u, v + \omega^2 u^2), & \text{if } u \in \mathbb{F}_4 \setminus \{\omega^2\}, \\ (u, v^2 + \omega^2 u^2), & \text{if } u = \omega^2; \end{cases}$
- $(u, v) \mapsto \begin{cases} (u, v + u), & \text{if } u \in \mathbb{F}_4 \setminus \{1\}, \\ (u, v^2 + u), & \text{if } u = 1. \end{cases}$

The first and third automorphisms then show that $\Delta_{(0,0)}$ is transitive on the generator $\{1\} \times \mathbb{F}_4$. Finally, the stabilizer $\Delta_{(0,0),(1,0)}$ of (0,0) and (1,0) has order 2^3 and is generated by $(u,v) \mapsto (u,v+s(u^2+u))$ for $s \in \mathbb{F}_4$ and $(u,v) \mapsto (u,v^2)$. It now readily follows that $\Delta_{(0,0),(1,0)}$ is transitive on the generator $\{\omega\} \times \mathbb{F}_4$. Since each circle is uniquely determined by its intersection with the three generators $\{0\} \times \mathbb{F}_4$, $\{1\} \times \mathbb{F}_4$ and $\{\omega\} \times \mathbb{F}_4$, we see that Δ is transitive on the set of circles. In summary we obtain the following.

PROPOSITION 3.3 The automorphism group $\Gamma(f_2)$ of the Laguerre near-plane $\mathcal{L}(f_2)$ has order 2^9 . Furthermore, $\Gamma(f_2)$ is circle-transitive and induces a group of order 4 (the non-cyclic group $\mathbb{Z}_2 \times \mathbb{Z}_2$ where \mathbb{Z}_2 is the cyclic group of order 2) on the set of generators and has precisely two orbits of length two each on this set. In particular, $\Gamma(f_2)$ is not point-transitive.

3.4 The automorphism group of $\mathcal{L}(f_3)$

From the list in section 2 we find that the following permutations are automorphisms of $\mathcal{L}(f_3)$.

(i)
$$(u, v) \mapsto (u, v + t_u)$$
 for $t_0, t_1, t_\omega, t_{\omega^2} \in \mathbb{F}_2, t_0 + t_1 + t_\omega + t_{\omega^2} = 0$;

- (ii) $(u, v) \mapsto (u, v^2)$;
- (iii) $(u, v) \mapsto (u + t, v)$ for all $t \in \mathbb{F}_4$;
- (iv) $(u, v) \mapsto (ru, v)$ for $r \neq 0$;
- (v) $(u, v) \mapsto (u^2, v)$.

These automorphisms generate a group G_3 of order $2^7 \cdot 3$. By looking at the first coordinates we see that every permutation of the set of generators can be obtained by an element of G_3 .

Let γ be an automorphism of $\mathcal{L}(f_3)$. Up to elements in G_3 we can assume that γ fixes each generator, i.e., $\gamma \in \Delta$. Then $\gamma(u,v) = (u,a_uv^{m_u} + b_u)$ where $a_u,b_u \in \mathbb{F}_4$, $a_u \neq 0$, and $m_u = 1,2$. Using the automorphism (ii) in G_3 , if necessary, we may further assume that $m_0 = 1$. By Lemma 2.1 we then must have

$$(a_1^2 x^{2m_1} + a_1 x^{m_1} + b_1^2 + b_1)(a_{\omega}^2 y^{2m_{\omega}} + a_{\omega} y^{m_{\omega}} + b_{\omega}^2 + b_{\omega})$$

$$\cdot (a_{\omega^2}^2 z^{2m_{\omega^2}} + a_{\omega^2} z^{m_{\omega^2}} + b_{\omega^2}^2 + b_{\omega^2})$$

$$+ a_1 x^{m_1} + a_{\omega} y^{m_{\omega}} + a_{\omega^2} z^{m_{\omega^2}} + b_1 + b_{\omega} + b_{\omega^2}$$

$$= a_0 [(x^2 + x)(y^2 + y)(z^2 + z) + x + y + z] + b_0$$
(2)

for all $x, y, z \in \mathbb{F}_4$. Looking at terms x^2 and x in (2) we find

$$(b_{\omega}^2 + b_{\omega})(b_{\omega^2}^2 + b_{\omega^2})(a_1^2 x^{2m_1} + a_1 x^{m_1}) + a_1 x^{m_1} = a_0 x.$$

Since $b^2+b\in\mathbb{F}_2$ for each $b\in\mathbb{F}_4$, we obtain two cases. Either $b_\omega^2+b_\omega=b_{\omega+1}^2+b_{\omega^2}=1$ and then $m_1=2,\ a_1=a_0^2,\ \text{or}\ (b_\omega^2+b_\omega)(b_{\omega^2}^2+b_{\omega^2})=0,\ \text{and then}\ m_1=1,\ a_1=a_0.$ In both cases we have $a_1=a_0^{m_1}$ and $a_1^2x^{2m_1}+a_1x^{m_1}=a_0^2x^2+a_0x$ as in 3.3. One similarly finds that $a_\lambda=a_0^{m_\lambda}$ for $\lambda=\omega,\omega^2$ and $a_\omega^2y^{2m_\omega}+a_\omega y^{m_\omega}=a_0^2y^2+a_0y,$ $a_{\omega^2}^2z^{2m_{\omega^2}}+a_{\omega^2}z^{m_\omega^2}=a_0^2z^2+a_0z.$ Comparing terms $x^2y^2z^2$ in (2) yields $a_0=1$ and thus $a_\lambda=1$ for all $\lambda\in\mathbb{F}_4$.

Now (2) becomes

$$(x^{2} + x + b_{1}^{2} + b_{1})(y^{2} + y + b_{\omega}^{2} + b_{\omega})(z^{2} + z + b_{\omega+1}^{2} + b_{\omega^{2}}) + x^{m_{1}} + y^{m_{\omega}} + z^{m_{\omega^{2}}} + b_{0} + b_{1} + b_{\omega} + b_{\omega^{2}} = (x^{2} + x)(y^{2} + y)(z^{2} + z) + x + y + z.$$

Expanding the left-hand side, we see that $b_1^2 + b_1 = b_{\omega}^2 + b_{\omega} = b_{\omega^2}^2 + b_{\omega^2} = 0$ and $b_0 + b_1 + b_{\omega} + b_{\omega^2} = 0$; in particular, $b_{\lambda} \in \mathbb{F}_2$ for all $\lambda \in \mathbb{F}_4$. Furthermore, $m_{\lambda} = 1$ for all $\lambda \in \mathbb{F}_4$. But this implies that γ is of the form (i), that is, $\gamma \in G_3$.

This shows that the automorphism group of $\mathcal{L}(f_3)$ is contained in G_3 . It readily follows that each of the generators of G_3 in the list above maps $\mathbb{F}_4 \times \mathbb{F}_2$ to itself. In fact, G_3 has the two orbits $\mathbb{F}_4 \times \mathbb{F}_2$ and $\mathbb{F}_4 \times \{\omega, \omega^2\}$ in the point set. In particular, G_3 is neither point-transitive not circle transitive (a circle entirely contained in $\mathbb{F}_4 \times \mathbb{F}_2$ cannot be mapped to one having a point in the other point-orbit). In summary we obtain the following.

PROPOSITION 3.4 The automorphism group $\Gamma(f_3)$ of the Laguerre near-plane $\mathcal{L}(f_3)$ has order $2^7 \cdot 3$. Furthermore, $\Gamma(f_3)$ is neither point- nor circle-transitive but induces the full symmetric group S_4 on the set of generators.

3.5 The automorphism group of $\mathcal{L}(f_4)$

From the list in section 2 we find that the following permutations are automorphisms of $\mathcal{L}(f_4)$.

(i) $(u, v) \mapsto (u, v + t_u)$ for $t_0, t_1, t_\omega, t_{\omega^2} \in \mathbb{F}_4$, such that $t_0 = t_1 \in \{0, \omega^2\}$, and $t_\omega = t_{\omega^2} \in \{0, \omega\}$;

(ii)
$$(u, v) \mapsto \begin{cases} (u, v + \omega^2), & \text{if } u \in \{0, \omega\}, \\ (u, v), & \text{if } u = 1, \\ (u, \omega v^2), & \text{if } u = \omega^2; \end{cases}$$

(iii)
$$(u, v) \mapsto \begin{cases} (u, v + \omega^2), & \text{if } u \in \{0, \omega^2\}, \\ (u, v), & \text{if } u = 1, \\ (u, \omega v^2), & \text{if } u = \omega; \end{cases}$$

$$(\mathrm{iv}) \ (u,v) \mapsto \begin{cases} (u,v+\omega), & \mathrm{if} \ u \in \{0,\omega\}, \\ (u,v), & \mathrm{if} \ u = \omega^2, \\ (u,\omega^2 v^2), & \mathrm{if} \ u = 1; \end{cases}$$

$$({\bf v}) \ (u,v) \mapsto \begin{cases} (u,\omega y^2), & \text{if } u = 0, \\ (u,v+u), & \text{if } u \in \{1,\omega\}, \\ (u,v), & \text{if } u = \omega^2; \end{cases}$$

(vi)
$$(u, v) \mapsto (u^2, v)$$
.

These automorphisms generate a group G_4 of order 2^7 .

Let γ be an automorphism of $\mathcal{L}(f_4)$. We first assume that γ fixes each generator, i.e., $\gamma \in \Delta$. Then $\gamma(u, v) = (u, a_u v^{m_u} + b_u)$ where $a_u, b_u \in \mathbb{F}_4$, $a_u \neq 0$, and $m_u = 1, 2$. Using the automorphisms (ii) to (v), if necessary, we may further assume that $m_0 = m_1 = m_\omega = m_{\omega^2} = 1$. By Lemma 2.1 we then obtain that

$$\begin{split} (a_1^2x^2 + \omega^2a_1x + b_1^2 + \omega^2b_1)(a_{\omega}^2y^2 + \omega a_{\omega}y + b_{\omega}^2 + \omega b_{\omega}) \\ \cdot (a_{\omega^2}^2z^2 + \omega a_{\omega^2}z + b_{\omega^2}^2 + \omega b_{\omega^2}) \\ + (a_1^2x^2 + \omega^2a_1x + b_1^2 + \omega^2b_1)(a_{\omega}^2y^2 + \omega^2a_{\omega}y + b_{\omega}^2 + \omega^2b_{\omega}) \\ + (a_1^2x^2 + \omega^2a_1x + b_1^2 + \omega^2b_1)(a_{\omega^2}^2z^2 + \omega^2a_{\omega^2}z + b_{\omega^2}^2 + \omega^2b_{\omega^2}) \\ + (a_{\omega}^2y^2 + \omega a_{\omega}y + b_{\omega}^2 + \omega b_{\omega})(a_{\omega^2}^2z^2 + \omega a_{\omega^2}z + b_{\omega^2}^2 + \omega b_{\omega^2}) \\ + a_1x + a_{\omega}y + a_{\omega^2}z + b_1 + b_{\omega} + b_{\omega^2} \\ = a_0[(x^2 + \omega^2x)(y^2 + \omega y)(z^2 + \omega z) + (x^2 + \omega^2x)(y^2 + \omega^2y) \\ + (x^2 + \omega^2x)(z^2 + \omega^2z) + (y^2 + \omega y)(z^2 + \omega z) + x + y + z] + b_0 \end{split}$$

for all $x, y, z \in \mathbb{F}_4$. Comparing terms in which each of x, y and z occurs, i.e.,

$$(a_1^2 x^2 + \omega^2 a_1 x)(a_{\omega}^2 y^2 + \omega a_{\omega} y)(a_{\omega^2}^2 z^2 + \omega a_{\omega^2} z)$$

= $a_0(x^2 + \omega^2 x)(y^2 + \omega y)(z^2 + \omega z)$.

we obtain

$$a_0 = a_1 = a_0 = a_{02} = 1.$$

Looking at terms involving both y and z but no x in (3) we find

$$b_1^2 + \omega^2 b_1 = 0$$
, i.e., $b_1 \in \{0, \omega^2\}$.

By looking at terms involving both y and x but no z and both x and z but no y, respectively, one similarly finds that

$$b_{\omega}^{2} + \omega b_{\omega} = 0$$
, i.e., $b_{\omega} \in \{0, \omega\}$,
 $b_{\omega^{2}}^{2} + \omega b_{\omega^{2}} = 0$, i.e., $b_{\omega^{2}} \in \{0, \omega\}$.

Then (3) becomes

$$(x^{2} + \omega^{2}x)(y^{2} + \omega^{2}y + b_{\omega}^{2} + \omega^{2}b_{\omega}) + (x^{2} + \omega^{2}x)(z^{2} + \omega^{2}z + b_{\omega^{2}}^{2} + \omega^{2}b_{\omega^{2}})$$
$$+b_{1} + b_{\omega} + b_{\omega^{2}}$$
$$= (x^{2} + \omega^{2}x)(y^{2} + \omega^{2}y) + (x^{2} + \omega^{2}x)(z^{2} + \omega^{2}z) + b_{0}$$

for all $x, y, z \in \mathbb{F}_4$.

Clearly, we see that $b_1 + b_{\omega} + b_{\omega^2} + b_0 = 0$, and by looking at the term x^2 one obtains

$$(b_{\omega} + b_{\omega^2})^2 + \omega^2(b_{\omega} + b_{\omega^2}) = 0$$
, i.e., $b_{\omega} + b_{\omega^2} \in \{0, \omega^2\}$.

Then

$$b_{\omega} = b_{\omega^2} \in \{0, \omega\}$$

and hence

$$b_0 = b_1 \in \{0, \omega^2\}.$$

But now γ is of the form (i) and thus belongs to G_4 .

Using the automorphisms (i) and (v) we see that Δ is transitive on the generator $\{1\} \times \mathbb{F}_4$. The automorphisms (iii) and (iv) then show that $\Delta_{(1,0)}$ is transitive on the generator $\{0\} \times \mathbb{F}_4$.

The stabilizer $\Delta_{(1,0),(0,0)}$ of (1,0) and (0,0) contains the following automorphisms:

• $(u, v) \mapsto (u, v + \omega(u^2 + u));$

•
$$(u, v) \mapsto \begin{cases} (u, v), & \text{if } u \in \mathbb{F}_2, \\ (u, \omega v^2 + \omega^2), & \text{if } u \in \mathbb{F}_4 \setminus \mathbb{F}_2. \end{cases}$$

(This is the composition of the involutory commuting automorphisms (ii) and (iii).)

It now readily follows that $\Delta_{(0,0),(1,0)}$ is transitive on the generator $\{\omega\} \times \mathbb{F}_4$. Since each circle is uniquely determined by its intersection with the three generators $\{0\} \times \mathbb{F}_4$, $\{1\} \times \mathbb{F}_4$ and $\{\omega\} \times \mathbb{F}_4$, we see that Δ is transitive on the set of circles.

We finally show that every automorphism of $\mathcal{L}(f_4)$ fixes the generators $\{0\} \times \mathbb{F}_4$ and $\{1\} \times \mathbb{F}_4$. Using the transitivity of Δ on the circle set and automorphism (vi), if

necessary, we may assume that we have an automorphism γ of the form $(u, v) \mapsto (su + t, a_u v^{m_u})$ where $s, a_u \in \mathbb{F}_4 \setminus \{0\}$ and $m_u \in \{1, 2\}$ for $u \in \mathbb{F}_4$. We now write γ as the composition of the permutations

$$\begin{array}{lll} \gamma_1: & (u,v) \mapsto & (u+t,v), \\ \gamma_2: & (u,v) \mapsto & (su,v), \\ \gamma_3: & (u,v) \mapsto & (u,a_uv^{m_u}), \end{array}$$

as $\gamma = \gamma_1 \circ \gamma_2 \circ \gamma_3$. Then γ_3 takes $\mathcal{L}(f_4)$ to the same Laguerre near-plane as $(\gamma_1 \circ \gamma_2)^{-1} = \gamma_2^{-1} \circ \gamma_1$.

For example, if t=1 and $s=\omega^2$, and using [2], Corollary 2.6, and (1), (2) and (3) from section 2 we find that

$$a_0f_4(a_1^{2m_1}x^{m_1},a_{\omega}^{2m_{\omega}}y^{m_{\omega}},a_{\omega^2}^{2m_{\omega^2}}z^{m_{\omega^2}})^{m_0}=g(y,z,x)$$

for all $x, y, z \in \mathbb{F}_4$, where g is the inverse of the partial map f_4 with respect to x, that is,

$$g(x, y, z) = (x^{2} + \omega^{2}x)(y^{2} + \omega y)(z^{2} + \omega z) + (x^{2} + \omega^{2}x)(y^{2} + \omega^{2}y) + (x^{2} + \omega^{2}x)(z^{2} + \omega^{2}z) + \omega^{2}(y^{2} + \omega y)(z^{2} + \omega z) + x + \omega y^{2} + \omega z^{2}$$

Explicitly one obtains

$$\begin{split} a_{0}[(a_{1}^{n_{1}}x^{2n_{1}}+\omega^{2}a_{1}^{2n_{1}}x^{n_{1}})(a_{\omega}^{n_{\omega}}y^{2n_{\omega}}+\omega a_{\omega}^{2n_{\omega}}y^{n_{\omega}})(a_{\omega}^{n_{\omega^{2}}}z^{2n_{\omega^{2}}}+\omega a_{\omega^{2}}^{2n_{\omega^{2}}}z^{n_{\omega^{2}}})\\ +(a_{1}^{n_{1}}x^{2n_{1}}+\omega^{2}a_{1}^{2n_{1}}x^{n_{1}})(a_{\omega}^{n_{\omega}}y^{2n_{\omega}}+\omega^{2}a_{\omega}^{2n_{\omega}}y^{n_{\omega}})\\ +(a_{1}^{n_{1}}x^{2n_{1}}+\omega^{2}a_{1}^{2n_{1}}x^{n_{1}})(a_{\omega^{2}}^{n_{\omega^{2}}}z^{2n_{\omega^{2}}}+\omega^{2}a_{\omega^{2}}^{2n_{\omega^{2}}}z^{n_{\omega^{2}}})\\ +(a_{\omega}^{n_{\omega}}y^{2n_{\omega}}+\omega a_{\omega}^{2n_{\omega}}y^{n_{\omega}})(a_{\omega^{2}}^{n_{\omega^{2}}}z^{2n_{\omega^{2}}}+\omega a_{\omega^{2}}^{2n_{\omega^{2}}}z^{n_{\omega^{2}}})\\ +a_{1}^{2n_{1}}x^{n_{1}}+a_{\omega}^{2n_{\omega}}y^{n_{\omega}}+a_{\omega^{2}}^{2n_{\omega^{2}}}z^{n_{\omega^{2}}}]\\ =(y^{2}+\omega^{2}y)(z^{2}+\omega z)(x^{2}+\omega x)+(y^{2}+\omega^{2}y)(z^{2}+\omega^{2}z)\\ +(y^{2}+\omega^{2}y)(x^{2}+\omega^{2}x)+\omega^{2}(z^{2}+\omega z)(x^{2}+\omega x)+y+\omega z^{2}+\omega x^{2} \end{split}$$

for all $x, y, z \in \mathbb{F}_4$ where $n_{\lambda} = m_0 m_{\lambda}$ for $\lambda = 1, \omega, \omega^2$. Comparing terms x^2 , y and z^2 in (4) we find that

$$n_{\omega} = 1, \ n_1 = n_{\omega^2} = 2,$$
 $a_{\omega} = a_0, \ a_1 = a_{\omega^2} = \omega a_0^2.$

But then the coefficient of $x^2y^2z^2$ on the left-hand side in (4) becomes ω^2 whereas on the right-hand side it is 1 - a contradiction. This shows that $t=1,\ s=\omega^2$ is not possible. Similar arguments yield that all the other combinations for s and t except $s=1,\ t=0$ are not possible. From the list of automorphisms at the beginning of this section we see that only the last automorphism moves some generators. In particular, the generators $\{0\} \times \mathbb{F}_4$ and $\{1\} \times \mathbb{F}_4$ are fixed and $\{\omega^2\} \times \mathbb{F}_4$ can be interchanged. In summary we obtain the following.

PROPOSITION 3.5 The automorphism group $\Gamma(f_4)$ of the Laguerre near-plane $\mathcal{L}(f_4)$ has order 2^7 . Furthermore, $\Gamma(f_4)$ is circle-transitive and induces on the set of generators a group of order 2 that fixes two generators.

Looking at the orders of the automorphism groups or their transitivity properties we obtain the following.

COROLLARY 3.6 The Laguerre near-planes $\mathcal{L}(f_i)$, i = 0, 1, 2, 3, 4, are mutually non-isomorphic.

References

- [1] R.C. Bose and K.A. Bush, Orthogonal arrays of strength two and three, *Ann. Math. Statistics* **23** (1952), 508–524.
- [2] G.F. Steinke, A classification of Laguerre near-planes of order four, Australas. J. Combin. 25 (2002), 145–166.

(Received 30 Aug 2005)