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Abstract

We determine the automorphism groups of the Laguerre near-planes of
order 4 found in Steinke, Australas. J. Combin. 25 (2002), 145-166, and
give characterisations of some of these planes in terms of their automor-
phism groups.

1 Introduction and result

A Laguerre near-plane of order 4 consists of a set P of 42 = 16 points, a set C of
4% = 64 circles and a set G of 4 generators (subsets of P) such that the following
three axioms are satisfied:

(G) G partitions P and each generator contains 4 points.
(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator can be uniquely joined
by a circle.

Labelling the generators from 1 to 4 and the points on each generator from 1 to 4
and identifying each circle with the 4-tuple (cy, . .., c4) where ¢; is the unique point of
the circle on generator i, we see that a Laguerre near-plane of order 4 corresponds to
an orthogonal array of strength 3 on 4 symbols (levels), 4 constraints and index 1, cf.
[1], or equivalently, a transversal design TD3(4,4). Since we have a more geometric
point of view we rather use the term Laguerre near-plane instead of orthogonal array
or transversal design.

In [2] all Laguerre near-planes of order 4 were determined and a representation of such
planes in terms of a single map was developed. It was shown that such a Laguerre
near-plane is isomorphic to one of five Laguerre near-planes of order 4. The results
from [2] can be summarized as follows.
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THEOREM 1.1 Let f : F3 — Fy where Fy = {0,1,w,w?}, w? = w+ 1, denotes
the Galois field of order 4 be a map such that for each xo,yo, 20 € Fy the functions
z V> f(x,90,20), ¥y — f(Z0,y,20) and z — f(zo,Y0,2) are permutations of Fy. Such
a map describes a Laguerre near-plane L(f) of order 4 as follows. The point set is
Fy x Fy and generators are the verticals {c} x Fy for ¢ € Fy. Circles are of the form

{(1,2), (w,9), (%, 2), (0, f(w,y,2))}

for x,y,z € Fy. Conversely, every Laguerre near-plane of order 4 can be uniquely
described in this way by such a map.

A Laguerre near-plane of order 4 is isomorphic to a plane described by one of the
maps

folz,y,2) = z+y+ 2z,

filz,y,2) = @@ +2) (P +y)+ P +y)(2+2)+ (@) (P +2) oty +z,
folz,y,2) = (*+z)(22+2)+z+y+z,

fa(z,y,2) = (@ +2) (Y’ +y)(Z*+2) +r+y+z

fulz,y,2) = (&% +w2)(y® + wy)(z* +wz) + (2° + w’z)(y" +w’y)

+(@? +w?z) (22 +w?2) + (P +wy) (2Pt w2) + T+ y+ 2.
Of these Laguerre near-planes only L(fo) extends to a Laguerre plane of order 4.

In the language of transversal designs the last statement in the Theorem above
means that of the corresponding transversal designs only the one associated with fy
is resolvable and extends to a transversal design TD3(5,4).

In this paper we investigate the automorphism groups of these five Laguerre near-
planes of order 4 and show that they have different orders so that the planes are
mutually non-isomorphic. We further determine transitivity properties of the au-
tomorphism groups on the point set, circle set and set of generators which in turn
yields characterisations of some of the planes.

THEOREM 1.2 The automorphism group U(f;) of L(f:) has order 2'°-3% 210.3
29,27 .3 and 27 for i = 0,1,2,3,4, respectively. In particular, the Laguerre near-
planes L(f;), i =10,1,2,3,4, are mutually non-isomorphic.

Moreover, T'(fy) and T'(f1) are transitive on the collection of all incident point-circle
pairs; in particular, these groups act transitively on the point set, the set of circles
and the set of generators. The automorphism groups of L(f2) and L(fy) are circle-
transitive but not transitive on the sets of generators (and thus not point-transitive);
[(f2) fizes no generator whereas I'(fy) fizes two generators. T(fs) is neither point-
nor circle-transitive but is transitive on the set of generators.

2 Isomorphisms and automorphisms of Laguerre near-planes

Let w be a generator of the multiplicative group of ;. Then the non-zero elements
of F, can be written in the form w?® for i = 0,1,2. We use the notation w™ = 0 and

I=1{0,1,2,00}.
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Then _

Fy, ={w'|i€el}
We further denote by F, the prime subfield of Iy consisting of 0 and 1.
Each circle is described by some (cg, ¢1, ¢a, Coo) € Fi as

060,61,62,Coo = {(17 CO)7 (wa Cl)(w27 62)7 (Ov COO)} = {(wia Ci) | S I}'
Every isomorphism of a Laguerre near-plane of order 4 is of the form
Fy x Fy — Fg x Fy @ (u,0) = (a(u), Bu(v))

where a and 3, are permutations of Fy for each u € Fy.

Note that the group of permutations of I, is the symmetric group S4. Every even
permutation can be written as x — ax + b for some a,b € Fy, a # 0. The auto-
morphism z — 2 of F, is an odd permutation of F,—in fact, a transposition—and
every odd permutation of Iy is of the form z + az?® + b for some a,b € Fy.

With this notation we obtained the following in [2], 3.1 and 4.1.

1. (u,v) — (u,Bu(v)) where the §, are permutations of F, for each u € F,.
These permutations take Cey ey ercon 50 CBi(co)fu(c1) B 2(ca) fo(con)- A Laguerre
near-plane L£(f) is taken to L(f') where

f'(@,y,2) = Bo(f(By(2), B, (y), B (2))
for z,y,z € Fy.

2. (u,v) = (u+t,v) for t € Fy. These permutations take Cpy ¢, c5.co0 t0 Cl dy dg.des
where
(co,c1,C2yC00), 1ft =0,
(o)) I ) ) ft == 17
(dosdy, d, duy) = 4 oo ep v )
(CZacooaCOacl)7 1ft:w7
(617607600362), ift:w2.
A Laguerre near-plane £(f) is taken to £(f’) where f' = f for t = 0 and f’ is

an inverse of a partial map of f with the other two variables interchanged given
by f'(f(z,y,2),2,9) =z, f'(z, f(z,y,2),2) = y and f'(y, =, f(z,y,2)) = 2 for
t =1, w and w? respectively, that is, the maps (z,y,2) — f.}(z), (z,y,2) —
foaly) and (z,y,z) = f,}(2), respectively; compare [2], Corollary 2.6 and
Examples 2.7, for finding these inverses.

3. (u,v) = (ru,v) for r € Fy, r # 0. These permutations take a circle Cy ¢, c5.c00
to C where 7 = w*, k = 0,1,2, and the indices 3 — k, 1 — k and

C€3—k1C1—kC2—k)Coo0
2 — k are taken modulo 3. A Laguerre near-plane £(f) is taken to L(f") where
flz,y,2), ifr=1,
[(@y,2) =< fly,z,2), ifr=uw,
flz,z,y), ifr=w’
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4. (u,v) — (u? v). This permutation takes Cpy e, cp.co0 10 Cepeaericns- A Laguerre

near-plane £(f) is taken to L(f') where f'(z,y,2) =

[z, 2,y).

More explicitly, the isomorphisms of type (1) are generated by the following permu-

tations.
if
(1a) (u,v) — (u, v), fusts 7fors t € Fy takes L£(f) to L(f') where
(w,v+1t), ifu=s,
fx,y,2) +t, ifs =0,
+t,y,2), ifs=1,
flayz) = {00 ) |
flz,y+tz), ifs=uw,
flz,y,z+1t), ifs=uw?
(1b) (u,v) (wv), ifus " for r,s € Fy, r # 0, takes L(f) to L(f') where
(u,mv), ifu=s,
Tf(x y7 ), ifs:o’
ifs=1
Flayz) = Lo ey oL
flz,r?y,2), ifs=w,
flz,y,r22), if s =w?
if
(1c) (u,v) v, Huts, for s € Fy takes L£(f) to L(f') where
u,v?), ifu=s,
f(x y7 )27 ifS:(),
, 22y, 2), ifs=1,
Flayz) = { 2 e
flz,y%2), ifs=w,
f(z,y,2%), if s =wk

Note that each isomorphism
(u,v) — (u,v+t,)
for t, € Fy can be written in the form
(u,v) = (u,v + s3u® + spu” + s1u + 59)

for ss, so, 1, S0 € Fy where

So = to,

S1 = wie2+ thw + 11,
Sy = thwz + wt, + 1y,
S3 = tg2+1,+ 1t + 1o
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We are using both forms whichever is more convenient at the time.
An isomorphism

Fy x By = Fy x Fy : (w,v) = (a(u), Bu(v))

where « and (3, are permutations of F; for each u € F; defines an automorphism
of a Laguerre near-plane L£(f) if and only is f' = f where f’ is found as in the
above lists. The collection of all permutations with a = id is a normal subgroup A.
These are the permutations of type (1). We further denote by A* the collection of all
permutations in A whose accompanying field automorphisms on generators are the
identity, i.e., permutations of the form (u,v) — (u,a,v +b,) for ay, b, € Fy, a, # 0.
Clearly, A* is a normal subgroup of A.

For automorphisms in A we have the following.

LEMMA 2.1 The transformation

(u,0) = (u, Bu(v))

where 8, are permutations of Fy for each u € Fy is an automorphism of L(f) if and
only if
f(Bi(z), Bu(y), B (2)) = Bo(f (2, y, 2)).

3 Automorphism groups

In [2] we have established that a Laguerre near-plane of order 4 is isomorphic to
one of the Laguerre near-planes £(fi), i = 0,1,2,3,4. In order to show that in fact
the latter five planes are mutually non-isomorphic we investigate the automorphism
groups I'(f;) of these planes, that is, the collection of all permutations of F, x F,
that preserve the Laguerre near-plane.

3.1 The automorphism group of L(f,)

Since L(fy) extends to the Miquelian Laguerre plane, every automorphism of the
Miquelian Laguerre plane that fixes a distinguished generator induces an automor-
phism of the Laguerre near-plane obtained by removing the distinguished generator.
It is well known that the automorphism group of the Miquelian Laguerre plane of
order 4 has order 2% -32-.5 and acts transitively on the set of all incident point-circle
pairs. In particular, this group is transitive on the set of generators. Hence the
stabilizer of a generator has order 2° - 32. In terms of the isomorphisms from section
2 the group induced by this stabilizer is generated by all permutations of types (2)
and (3) and by the following permutations:

(1) (u,v) = (u,v+t,) for to,t1,tw, twe € By, to +t1 + tu + t,2 = 0 (type (1a)),
(ii) (u,v) — (u,rv) for r # 0 (type (1b)) and

(iii) (u,v) — (u? v?) (types (4) and (1c) combined).
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However, L(fo) also admits the permutation of type (4) as an automorphism. In fact,
together they generate the entire automorphism group of £(fy). From the transitivity
properties of the automorphism group of the Miquelian Laguerre plane of order 4 we
see that the group Gy generated by the above automorphisms is transitive on the
set of point-circles pairs (‘flags’) and induces the full symmetric group of degree 4
on the set of generators. Now let v be an automorphism of £(fp). Up to elements
in Gy we can assume that y fixes each generator, i.e., v € A, and that ~ fixes the
circle {(u,0) | w € Fg}. Then y(u,v) = (u, By(v)) where £,(v) = a,v™* with a,, € Fy,
a, # 0, and m, = 1,2. Using the automorphisms (u,v) — (u,v?) (types (4) and (iii)
combined) and (ii) in A, if necessary, we may further assume that (3, is the identity.
By Lemma 2.1 we then must have fo(51(x), B,(y), Bu2(2))) = fo(z,y, z), that is,

™ 4 a,y™ + a2zt =+ y+ 2

for all z,y,z € F,. But this implies a; = a, = a,2 = 1 and m; = my, = my2 = 1,
that is, 7 is the identity.
This shows that the automorphism group of £L(fy) is contained in Gy. In summary
we obtain the following.

PROPOSITION 3.1 The automorphism group T'(fy) of the Laguerre near-plane
L(fo) has order 2'° - 32, Furthermore, I'(fo) acts transitively on the set of point-
circles pairs of L(fo) and induces the full symmetric group Sy of degree 4 on the set
of generators. In particular, I'(fo) is point-transitive and circle-transitive.

Although L(fo) extends to the Miquelian Laguerre plane of order 4 not every auto-
morphism of L(fo) extends to an automorphism of the Laguerre plane.

3.2 The automorphism group of L(f;)
From the list in section 2 we find that the following permutations are automorphisms
of L(f1).

(1) (u,v) = (u,v+t,) for to,t1, tw, twz € Fa, to + &1 + tu + t,2 = 0;

(i) (u,v) > (u,v?);

(u,v+w), ifue{0,t}

for t € Fy, t # 0;
(u,0%),  ifueFy)\{0,¢} w7

(iii) (u,v) {

(u+t,v), ifued{0t}

for t € Fy, t # 0;
(utt,0%), e\ {0,6) w7

(iv) (u,v) — {

(v) (u,v) — (ru,v) for r # 0;

(vi) (u,v) = (u?v).
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These automorphisms generate a group G;. By looking at the first coordinates we
see that every permutation of the set of generators can be obtained by an element
of G;.

Let y be an automorphism of £(f;). Up to elements in G; we can assume that -y
fixes each generator, i.e., v € A. Then y(u,v) = (u, B.(v)) where £,(v) = a,v™ + b,
with ay, b, € Fy, a # 0, and m, = 1,2. Using the automorphisms (ii) and (iii) in
G, if necessary, we may further assume that mg = m,2 = 1. By Lemma 2.1 we then

must have fl(ﬁl(x)aﬁw(y)aﬁzﬂ(z))) = ﬁﬂ(fl($7y7 Z))7 that iS,

(afz®™ + a1z™ + by + 1) (aZy™ + any™ + b}, + by)
+(aZy*™ + auy™ + b2 + b,) (222 + a2z + b2 + by2)
+(aiz®™ + ayz™ + b7 + by) (0222 + agez + b2s + by2) (1)
+ar1x™ + a,y™ + a2z + by + by, + b2

= ao[(z® +2) (4 +y) + (¥ + ) (2° +2) + (2® +2)(2° + 2) + z+y+ 2] + Do

for all z,y, 2 € Fy. Looking at terms z? and z in (1) we find
(bi + bw + biz + bwz)((ﬁw?ml + ala:ml) + O,lajml = QoZ.

Since b*+b € F, for each b € Fy, we obtain two cases. Either b2 +b, + b2, +b,2 =1
and then my = 2, a1 = af, or b2 + b, + b2, + b2 = 0, and then m; = 1, a; =
ap- In both cases we have a; = ag” and a?z’™ + a;2™ = a™x*™ + af"'z™ =
(a2z? + apz)™ = a2x? + apz. One similarly finds that ay = ag* for A = w,w? and
aZy™™ + a,y™ = ady® + apy, a’,2* + a2z = a3z? + apz. Comparing terms z*y? in
(1) yields ap = 1 and thus ay =1 for all A € F,.
Let dy = b% + by for A = 1,w,w?. Then (1) becomes

(P+z+d) P +y+do)+ Y +y+do) (2?42 +dye)

(@ +z+d) (2 + 2+ de2) +3™ + Y™ + 2+ by + by, + b2
=@ D)y + @Y @ a)( ) Fr byt 2t

Expanding the left-hand side, we see that

(dy + dy2) (2% + ) + 2™
(dh +du2)(y* +y) +y™
(dy+d,)(Z2+2)+2z = 2

and
dyd,, + d,d2 + did,2 + by + by + b, + b2 =0.

Thus d,, = d; and, as before, either d,2 = d;, m; =1 ord, =d; + 1, m; = 2, and
bo + by + b, + b2 = d;. Hence, we have two cases.
Case 1: d,2 =d, = d; € Fy, my =1 for all A € Fy.
If dy = 0, then « is of the form (i) and thus v € G;. For di = 1 we use the
composition of all three automorphisms (iii) for ¢t € Fy, ¢ # 0, in the list above. This
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yields the automorphism

v (u, ) = {(U’UJFW)’ %fu E )

(u,v 4+ w?), ifu=uw.
Then +' o 7 is an automorphism as before and thus again vy € G;.
Case 2: d2 =d1+1,d, =dy € Fo, mg=my2 =1, m; =m, = 2.
In this case we use the automorphism (iii) for ¢ = w? to obtain an automorphism as
in the first case.
This shows that the automorphism group of £(f1) is contained in G;. Furthermore,
G is of order 2'° - 3 since, from above, G;/A = Sy, |A/A*| = 8 and |A*| = 16.
Taking the first and last automorphisms in the list above one readily sees that G,
is transitive on the generator {0} x F,. Thus G; acts transitively on the point set
F4 X F4.
Using automorphisms (i) and (iii) above we see that A is transitive on the generator
{0} x Fy. The stabilizer A of (0,0) has order 2° and is generated by the following
automorphisms:

o (u,v) — (u,v+t,) for t, € Fay, tg =0, t; + ¢, + to2 = 0;

* (u,v) = (u,v?);

(u,v), if u € Ty,
* (u,v) .
(u,v® +u), ifueFy\Fy

(u,v), if u € {0,w},
o (u,v) = ¢ (u,v? +w?), ifu=1,

(u, v + w), ifu=w

The last two automorphisms are obtained as a composition of two automorphisms
of the form (iii) (for ¢ = w? w and ¢t = 1,w? respectively). The first and last
automorphisms then show that A ) is transitive on the generator {1} x F,. Finally,
the stabilizer Ag,0),1,0) of (0,0) and (1,0) has order 2° and is generated by (u,v) —
(u,y + u% + u) and the second and third automorphisms in the list above. It now
readily follows that A(gg)1,0) is transitive on the generator {w} x F,. Since each
circle through (0, 0) is uniquely determined by its intersection with the two generators
{1} x Fy and {w} x Fy, we see that Ay is transitive on the set of circles through
(0,0). Hence, (G1)(o,0) is transitive on the set of circles through (0,0), and because
G, is point-transitive, we finally obtain that G; acts transitively on the set of point-
circles pairs of L(f).

In summary we obtain the following.

PROPOSITION 3.2 The automorphism group I'(f1) of the Laguerre near-plane
L(f1) has order 2'°-3. Furthermore, I'(f1) acts transitively on the set of point-circles
pairs of L(f1) and induces the full symmetric group Sy on the set of generators. In
particular, U'(f1) is point-transitive and circle-transitive.
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3.3 The automorphism group of L(fs)

From the list in section 2 we find that the following permutations are automorphisms
of E(fz) .

(1) (U, U) = (U,U +tu) for t1,t.2 € ]F27 to,tw € ]F4a to+1t1 + 1ty + t,2 = 0;
(i) (u,v) > (u,v?);

(u,v +w?u?), ifu € Fy\ {w?},
iii) (u,v) — .

( ) ( ) {(u,v2 + w2u2)7 if u = w2;
(w,v+u), ifuelFy\ {1},
(u, v +u), ifu=1;

(iv) (u,v) — {

(v) (u,v) = (u+ w,v);
(vi) (u,v) — (Wu? v).

These automorphisms generate a group G,. By looking at the first coordinates we
see that Gy has two orbits {{0} x Fy, {w} x F,} and {{1} x Fy, {w?} x F,} on the
set of generators.

We first show that the automorphism group I'(fs) of £(f2) cannot be transitive on the
set of generators. Otherwise there is an automorphism + that takes the generator
{0} x F; to the generator {1} x F,. Using the automorphism (vi), if necessary,
we may assume that « is of the form (u,v) — (au + 1,8,(v)) for some a € Fy,
a # 0, and permutations S, of Fy. From section 2 we see that the permutation
(u,v) = (au+ 1,v) takes L(f2) to L(f) where

(@2+z+22+2) (Y +y)+r+yi+2z ifa=1,
fly,z) =< (@2 +z+y? +y)2%+2)+z+y+2% fa=uw,
(VP +y+22+2) (@2 +z)+ 22 +y+2 ifa=w’

But 7 is a composition of this permutation and a permutation in A. Using Lemma
2.1 we now see that f» cannot be obtained in this way. This shows that I'( f2) cannot
be transitive on the set of generators. Hence, I'(f3) has the same orbits as G5 on the
set of generators.

Let v be an automorphism of £(f). Up to elements in G5 we can assume that -y fixes
each generator, i.e., vy € A. Then y(u,v) = (u, a,v™* +b,) where a,, b, € Fy, a, # 0,
and m, = 1,2. Using the automorphisms (ii), (iii) and (iv) in Gs, if necessary, we
may further assume that mg = m; = m,2 = 1. By Lemma 2.1 we then must have

(@32 + ayx + b2+ b1)(a222° + ag22 + b2 + b2)
+a12 + a,y™ + a2z + by + b, + b,z
= aol(2® +2)(2* + 2) + o +y+ 2] + by
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for all z,y,z € Fy. As before in 3.3 we see that m, = 1, ay = 1 for all A € Fy,
by + by = b2y + b2 =0, that is by, b2 € Fy and by + by, + b2 + by = 0. But then v is
of type (i) and thus in Gb.

This shows that the automorphism group of £(fs) is contained in G5. Furthermore,
G has order 2° since, from above, |Gy /A| = 4, |A/A*| = 8 and |A*| = 16. Using the
automorphisms (i) we see that A is transitive on the generator {0} xIF,. The stabilizer
A,0) of (0,0) has order 2° and is generated by the following automorphisms:

o (u,v) = (u,v+t,) for t1,t,,t,2 € Fy, to =0, t1 + t, + t,2 = 0;

—~

u, v?);

{(u v+w?u?), ifuel;\{«?},

(u,v® + wu?), if u = w?

o (u,v) —

o (u,v) —

(u,v+u), ifuelFy\ {1},
* (u’v)'—}{(u,vz—&-u), ifu=1.

The first and third automorphisms then show that A ) is transitive on the generator
{1} x F4. Finally, the stabilizer A() 1,0 of (0,0) and (1,0) has order 2* and is
generated by (u,v) — (u,v + s(u? + u)) for s € Fy and (u,v) — (u,v?). It now
readily follows that Agg),0) is transitive on the generator {w} x Fy. Since each
circle is uniquely determined by its intersection with the three generators {0} x Fy,
{1} x Fy and {w} x F4, we see that A is transitive on the set of circles. In summary
we obtain the following.

PROPOSITION 3.3 The automorphism group I'(f2) of the Laguerre near-plane
L(f2) has order 2°. Furthermore, I'(fa) is circle-transitive and induces a group of
order 4 (the non-cyclic group Zs X Zs where Zy is the cyclic group of order 2) on
the set of generators and has precisely two orbits of length two each on this set. In
particular, T'(f2) is not point-transitive.

3.4 The automorphism group of L(f3)

From the list in section 2 we find that the following permutations are automorphisms

of £(f3).

U, v) > (u, v+ t,) for to, t1, b, tw2 € Fa, to +t1 + tw + t,2 = 0;

1) (u,0) = (

i) (u,v) = (u,v?);

(iil) (w,v) — (u+t,v) for all t € Fy;
) (u,0) = (
) (u,0) = (

u

ru,v) for r # 0;
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These automorphisms generate a group Gs of order 27 - 3. By looking at the first
coordinates we see that every permutation of the set of generators can be obtained
by an element of Gj.

Let v be an automorphism of £(f3). Up to elements in G3 we can assume that -y
fixes each generator, i.e., v € A. Then v(u,v) = (u, a,v™ + b,) where a,,b, € Fy,
a, # 0, and m, = 1,2. Using the automorphism (ii) in G, if necessary, we may
further assume that my = 1. By Lemma 2.1 we then must have

(@22®™ + @y x™ + b3 + by) (a2y®™ + a,y™ + b2 + by,)

(222%™ 4 a,22™9? + b2 + by2)

+a12™ + ay™ + ag22™? + by + by, + b2 (2)
= ao[(2® + 2)(y* +y)(2" + 2) +r +y+ 2] + by

for all z,y, 2z € Fy. Looking at terms % and z in (2) we find
(B2 + by) (022 + by2)(a32*™ + a12™) + a1 2™ = apx.

Since b? +b € I, for each b € Fy, we obtain two cases. Either b2 +b, = b2, +b,2 =1
and then m; = 2, a; = ad, or (b2 + b,)(b%: + b,2) = 0, and then my = 1, a; = ao.
In both cases we have a; = af* and a?z*™ + a;z™ = a2x? + apz as in 3.3. One
similarly finds that ay = aj” for A = w,w? and a2y®™ + a,y™ = ay® + apy,
a2, 2% + a2z™e? = afz? + apz. Comparing terms 2°y?z® in (2) yields ap = 1 and
thus a) = 1 for all A € Fy.

Now (2) becomes

(P +z+0+0) (Y +y+b2+b,)(2° + 2+, +be)
+x™ 4 Y™ 4 2™ + by + by + by, + b2
= (@ +a)(y* +y) (" +2) +r+y+ 2

Expanding the left-hand side, we see that b3 + by = b2 + b, = b2, + b2 = 0 and
bo + by + b, + b2 = 0; in particular, by € F, for all A € F;. Furthermore, my = 1 for
all A € Fy. But this implies that + is of the form (i), that is, v € Gj.

This shows that the automorphism group of L£(f3) is contained in Gs. It readily
follows that each of the generators of G in the list above maps Fy x Fy to itself. In
fact, G35 has the two orbits Fy x Fy and Fy x {w, w?} in the point set. In particular, G3
is neither point-transitive not circle transitive (a circle entirely contained in Fy x Fy
cannot be mapped to one having a point in the other point-orbit). In summary we
obtain the following.

PROPOSITION 3.4 The automorphism group I'(fs3) of the Laguerre near-plane
L(f3) has order 27 - 3. Furthermore, T'(f3) is neither point- nor circle-transitive but
induces the full symmetric group Sy on the set of generators.

3.5 The automorphism group of L(f,)

From the list in section 2 we find that the following permutations are automorphisms

of L(fa).
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(i) (u,v) = (u,v +t,) for to,t1,t,,t,2 € Fy, such that ¢, = t; € {0,w?}, and

tw =t,2 € {0,w};

(u,v +w?), ifue {0,w},
(i) (u,v)— ¢ (uw,v), ifu=1,
(u, wv?), if u=w?
(u,v +w?), ifue {0,w?},
(iii) (u,v) = < (u,v), ifu=1,
(u, wv?), if u=w;
(u,v +w), ifue{0,w},
(iv) (u,v) — < (u,v), if u=w?,
(u,w??), ifu=1;
(U, wy2)a ifu= 0,
(V) (wv) = S (w0 +u), ifue{l,w}
(u,v), if u = w?;

(vi) (u,v) = (u?,v).

These automorphisms generate a group G4 of order 27.

Let y be an automorphism of £(f;). We first assume that v fixes each generator,
i.e., v € A. Then v(u,v) = (u, a,v™ +b,) where a,,b, € Fs4, a, # 0, and m,, =1, 2.
Using the automorphisms (ii) to (v), if necessary, we may further assume that mgy =
my = my, = my2 = 1. By Lemma 2.1 we then obtain that

(a22® + wlayr + b} + w?’by) (a2y® + wa,y + b, + wb,,)
(a222° + wag2z + b2 + whye)
+(aiz® + wiarz + b2 + w?hy)(ay? + wiaLy + b2 + w?b,)
+(a32? + wlarx + b} + w?by)(a222% + wraez + b2 + w?b,e)
+H(a2y® + wayy + b2 + wb,)(a222% + wagez + b2 + why2)
+a12 + a,y + a2z + by + b, + b2

= ap[(2? + W’z)(y® + wy) (2 + w2) + (2 + w’z)(y* + w’y)
+(@® +wiz)(2® +w?2) + (VP +wy) (2Pt wz) T +y+ 2] + b

(3)

for all z,y, z € F;. Comparing terms in which each of z, y and z occurs, i.e.,

(a32® + wlay7)(aly® + wayy)(aZ:2® + way:2)
= ag(2? + ) (5 + wy) (2 + w2),
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we obtain
Qg = a1 = G, = Q2 = 1.

Looking at terms involving both y and z but no z in (3) we find
b2 +w?b, =0, ie., by € {0,w?}.

By looking at terms involving both y and x but no z and both z and z but no y,
respectively, one similarly finds that

b2 +wb, =0, ie., b,€{0,w},
b2o +wh,2 =0, ie., b, €{0,w}

Then (3) becomes

(2% + W) (¥ + Wy + B2 + w?b,) + (2 + wiz) (2 + WPz + b2 + wib,z)
by + by + by
= (2% 4+ w’7)(y* + W?y) + (2 + w?z)(2* + w?2) + by

for all z,y, z € Fy.
Clearly, we see that by + b, + b2 + by = 0, and by looking at the term x? one obtains

(b + by2)? + W?(by + by2) = 0, ice., by + by € {0,w?}.

Then
b, =b,2 € {O,W}

and hence
bo =10 € {O,wz}.

But now + is of the form (i) and thus belongs to Gy.

Using the automorphisms (i) and (v) we see that A is transitive on the generator
{1} x Fy. The automorphisms (iii) and (iv) then show that A g is transitive on the
generator {0} x Fy.

The stabilizer A g),0,0) of (1,0) and (0,0) contains the following automorphisms:

o (u,v) = (u,v +wu®+u));

(u,v), if u € Fy,
* (u,v) .
(u, wv?® + w?), ifu € Fy\F,.

(This is the composition of the involutory commuting automorphisms (ii) and
(iii).)
It now readily follows that A ) (1,0) is transitive on the generator {w} x Fy. Since
each circle is uniquely determined by its intersection with the three generators {0} x
Fy, {1} x Fy and {w} x Fy, we see that A is transitive on the set of circles.

We finally show that every automorphism of £(fy) fixes the generators {0} x F; and
{1} x Fy. Using the transitivity of A on the circle set and automorphism (vi), if
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necessary, we may assume that we have an automorphism v of the form (u,v) —
(su + t,a,v™) where s,a, € Fy \ {0} and m, € {1,2} for u € Fs. We now write ry
as the composition of the permutations

v (u,v) = (u+t,v),
Y2 i (u,v) = (su,v),
v (u,v) = (u,a,0™),

asy = 7;072073. Then 3 takes £(f4) to the same Laguerre near-plane as (y;07,) ! =

-1

Y2 © M1

For example, if ¢ = 1 and s = w?, and using [2], Corollary 2.6, and (1), (2) and (3)
from section 2 we find that

ag fa(aZ™M g™ a2y 2t )™ — g(y 2 )

for all z,y,z € Fy, where g is the inverse of the partial map f; with respect to z,
that is,

9(@,y.2) = (@ +0')(y* +wy)(2’ +w2) + (27 + W) (y* + wy)
+(@? + W) (2° + W'z) + WY + wy) (2P + w2) + 1+ wy 4+ w2?

Explicitly one obtains

n,2 2n2n2

ol(af*a™ +wlaa ) (™ +waly")(als 2 4 wa )
+(ap'e )(aZ Y+ wiay)
+(aPa®™ + wal" ™) (a8’ 2 + w aZ2 2 2ma?)
+(amy*™ + wai”“y"“)(aw 222 4 g’ 2 el Z?) (4)
+aiM ™ + aZy™ + af; ? M2

2 2,7(.2 2 22 N2, 2

= (y* + w’y)(2* + wz)(z® + wz) + (y° + wy)(z° + w'z)
+(* + W?y) (2% + w’z) + W(2? + w2) (2 + wr) + y + w2’ + wr?

ni,.2ny + w2a2n1x
"

for all z,y, z € Fy where ny = mom,, for A = 1,w, w?. Comparing terms z2, y and 22
in (4) we find that

N =1, ny =ng2 =2,
_ _ 2
Ay, = Qg, A1 = Q2 = Wag,.

But then the coefficient of z%y*22 on the left-hand side in (4) becomes w? whereas
on the right-hand side it is 1 - a contradiction. This shows that ¢t = 1, s = w? is not
possible. Similar arguments yield that all the other combinations for s and ¢ except

= 1, t = 0 are not possible. From the list of automorphisms at the beginning
of this section we see that only the last automorphism moves some generators. In
particular, the generators {0} x Fy and {1} x Iy are fixed and {w} x F; and {w?} x F,
can be interchanged. In summary we obtain the following.
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PROPOSITION 3.5 The automorphism group I'(f4) of the Laguerre near-plane
L(f1) has order 27. Furthermore, I'(fy) is circle-transitive and induces on the set of
generators a group of order 2 that fizes two generators.

Looking at the orders of the automorphism groups or their transitivity properties we
obtain the following.

COROLLARY 3.6 The Laguerre near-planes L(fi), 1 = 0,1,2,3,4, are mutually
non-isomorphic.
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