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Abstract

We generalise the definition of the characteristic of an integral triangle
to integral simplices and prove that each simplex in an integral point
set has the same characteristic. This theorem is used for an efficient
construction algorithm for integral point sets. Using this algorithm we
are able to provide new exact values for the minimum diameter of integral
point sets.

1 Introduction

Since the time of the Pythagoreans, mathematicians have considered geometrical
objects with integral sides. Here we study sets of points in the Euclidean space E™
where the pairwise distances are integers. Although there is a long history for integral
point sets, very little is known about integral point sets for dimension m > 3; see [3]
for an overview.

Due to Heron the area of a triangle with side lengths a, b, and c is given by

An = Ve+b+e)(a+b—rc)la—b+c)(—a+b+c)
A= 4 .

Thus we can write the area as Ay = ¢v/k with a rational number ¢ and a squarefree
integer k. If Apn # 0, the integer k is unique and is called the characteristic or
the index of the triangle. This invariant receives its relevance from the following
theorem [4].

Theorem 1  The triangles spanned by each three non collinear points in a plane
integral point set have the same characteristic.

This theorem can be utilised to develop an efficient algorithm for the genera-
tion of plane integral point sets [5, 6]. Here we will generalise the definition of the
characteristic of an integral triangle to integral simplices and prove an analogue to
Theorem 1. Later on we will use this theorem to develop a generation algorithm for
integral point sets in E™ and present some new numerical data.
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2 Characteristic of integral simplices

Since the definition of the characteristic of an integral triangle depends on the area
of a triangle, we consider the volume of an m-dimensional simplex for point sets in
E™. Therefore we need the Cayley-Menger matrix of a point set.

Definition 2 If P is a point set in E™ with vertices vy, vy, . .., vp_1 and C = (d; ;)
denotes the n x n matriz given by di; = |lv; — v;||3, the Cayley-Menger matriz C

is obtained from C by bordering C with a top row (0,1,1,...,1) and a left column
(0,1,1,..., 1)T.

We denote the determinant of C({vo, vy, ..., vn_1}) by CMD({vo,v1, ..., Un_1}).
If n = m+ 1, the m-dimensional volume V,,, of P is given by

(-1

Vin(P)? = W et(C) .

This allows us to define the characteristic of an m-dimensional integral simplex to be
the squarefree integer k in V,,(P) = ¢v/k whenever V,,(P) # 0 and ¢ € Q. In order
to prove the proposed theorem, we consider a special coordinate representation of
integral simplices.

Lemma 3  An integral m-dimensional simplex S = {v}, v}, ..., v} with distance
matric D = (d; j)o<ij<m and Vy,(S) # 0 can be transformed via an isometry into the
coordinates

Vo = (0303"'30)3
v = (Q1,1 klvovo"'vo)v
vy = (@21Vki, @22V k2 0,...,0),

Um = (qm,l kla qm,2 k2; teey Qm,m V km);

where k; is the squarefree part of VV(L”)W ¢,; € Q, and g;;,k; #0.

1(110,”1, 5

Proor. We can obviously set vy = (0,0,...,0) and since dp; € N we can fur-
thermore set v; = (do1vk1,0,0,...,0) where k; = % = 1. Now we assume
that we have already transformed wvj,v],...,v,_; into the stated coordinates. We
set v; = (x1,%a,...,%n,) with z; € R Since the points vy, vs,...,v; span an i-
dimensional hyperplane of E™ we can set z;.; = ... = ©,, = 0. For j < i we
have

J

& = |lv; —vill3 = > (gnVkn — za)? Z T,

h=1 h=j+1
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For 0 < j < i we consider
J
A3, —d2; =" a2} — (gnVkn — o)’
h=1

where we can set x5, = ¢; ki, for h < j by induction, yielding

j-1
dg’i — d?l = qu-’jkh +2g;;\/ kp; + Z 2¢; nqj pkn — q;,hkh .
h=1

Thus o
qJQ',jkh + hZ (q?,hkh — 2¢; ngjnkn) + d%)i — d?,i
—1
T: =
! 2q;,;V'kn

and we can write z; = ¢;;1/k; since 2g; vk, # 0 due to induction. With this we

have
i i—1
;= in =22+ Z @ nkn.
h=1 h=1
Thus
i—1
d; — Z ‘I?,hkh = (Iu\/]?z
h=1
We also have g;;v/k; # 0 since v}, v}, ..., v} cannot lie in an i — 1-dimensional hyper-
plane of E™ due to V,,(vp, v, ...,v,,) # 0. O

The k; are associated to the characteristic char(S) = k in the following way

char(S) = k = squarefree part of H kj.
j=1
Theorem 4 In an m-dimensional integral point set P all simplices S = {vy, vy, .. .,
Um } with V,,(S) # 0 have the same characteristic char(S) = k.

Proor. It suffices to prove that char(S;) = char(S,) for two integral simplices
81 = {1)0, Viy--- .Um}' and 82 = {1}0, N ,vm,l,v;n} with Vm(Sl), Vm(SQ) 7& 0. With
the notations from Lemma 3 we have for the distance between v,, and v/,

d(vm, U;n)z = Z(qm,i\/k_i - q:n,i \/I?:)2
i=1
= Z(Qm,i\/kji - qwln,i \/k71)2 + (@mm Vb — qvln,m V k;n)Q
i=1
m—1

= D (@mi — @) ki + Goibim = 20mm @i Koy, + G2

i=1

Thus +/km, k!, has to be an integer. Because ky,, and k, are squarefree integers # 0
we have k,, = k], and so char(S;) = char(S,). O
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3 Construction of integral point sets

The key principle for a recursive construction of integral point sets consisting of n
points is the combination of two integral point sets P; = {vo,...,Un—2} and Py =
{vo,...,Un—3,Vn_1} consisting of n— 1 points sharing n—2 points; see Figure 1. Here
we describe an integral point set by a symmetric matrix D = (d; ;)

P1 P2

Figure 1: Combination of two integral point sets.

representing the distances between the points. Because not all symmetric matrices
are realizable as distance matrices in E™ we need a generalisation of the triangle
inequalities.

Theorem 5 (Menger [9]) A set of vertices {vy, v1,...,Un_1} with pairwise dis-
tances d;; is realizable in the Euclidean space E™ if and only if for all subsets
{i0,%1,.-,tr1} C{0,1,...,n — 1} of cardinality r < m + 1,

(71)TCMD({UZ'03 Uiy ge - 7’Ui7‘—1}) > 0:
and for all subsets of cardinality m +2 <r <mn,
(—1)TCMD({’UZ'0, Viyy o - 7’Ui'r—1}) =0.

Fortunately we do not need to check all these equalities and inequalities. Because
the point sets P; and P are realizable due to our construction strategy it suffices to
check (—=1)"CMD({vo,v1,...,vn-1}) [5].

To solve the equivalence problem for integral point sets we use a variant of orderly
generation [1, 7, 8, 11]. For the required ordering we consider the upper right triangle
matrix of D leaving out the diagonal,

dO,l d0,2 s dO,n—l
d1,2 dl,n—l
)
dn72,n71

and read the entries column by column as a word

w(D) = (d0,1, do2;d12, - o1+ - -, dn—2,n—1) .
With a lexicographical ordering on the words w(D) we define

Dy > D, 4 ’U](Dl) > w(Dg)
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for distance matrices Dy, D,. We call a distance matrix D = (d; ;)o<; j<» Canonical
if

D = (drii) () VT € S
By D we denote the distance matrix consisting of the first n — 1 rows and columns
of D. With this we call a distance matrix D semi-canonical if

D =(dr@)25)) VT E S,

A canonical distance matrix is also semi-canonical. It is left to the reader to prove
that each semi-canonical distance matrix D can be obtained by combining a canonical
distance matrix D; and a semi-canonical distance matrix Ds; see Figure 1. Only the
distance dy_1,,—2 is not determined by the distances of D; and D,. Here we consider
two cases. If we combine two (m'—1)-dimensional simplices to get an m/-dimensional
simplex Theorem 5 yields a biquadratic inequality for d,_1,_2. In the other case we
can determine one or for n = m + 2 at most two different coordinate representations
of the n points similar to the proof of Lemma 3, calculate d,,_1 ,—2, and check whether
it is integral. We denote the sub routine doing this by combine(Dy, Dy). At first
we provide an algorithm to generate m-dimensional integral simplices. Therefore we
assume that for a given diameter A, this is the largest distance, we have two lists £,
L?, of the canonical and the semi-canonical (m — 1)-dimensional integral simplices
with diameter A which are ordered by —<, respectively. The following algorithm
determines the lists £; ,, and L; ; of the m-dimensional integral simplices with
diameter A ordered by <.

Algorithm 6
Input: LS, L3,
Output: L 1, Ly 1
begin
mtl = 0, M1 = 0
loop over z € L, do
loop over £}, 3 y Xz with |z =]y do
loop over z € combine(z,y) do
if z is canonical then L, +— z end
if z is semi-canonical then £;  , <— 2z end
end
end
end
end

Because an m-dimensional simplex is an m-dimensional point set consisting of n =
m + 1 points we can use Algorithm 6 to generate complete lists My, ,, M ., of
the canonical and semi-canonical m-dimensional integral point sets with diameter
A consisting of m + 1 points, respectively. An m-dimensional point set is in semi-
general position if no m+1 points are situated on an (m—1)-dimensional hyperplane.
Using Theorem 4 we can give an algorithm to determine the lists M¢ and M;, of
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the m-dimensional integral point sets in semi-general position consisting of n points
with diameter A.

Algorithm 7
Input: Mg_,, M;_,
Output: M¢, M
begin
Mg =0, M;=0
loop over z € M¢_, do
loop over M?_; 5 y < z with |z =y and char(z) = char(y) do
loop over z € combine(z,y) do
if z is canonical then Mg +— z end
if z is semi-canonical then M? +— z end
end
end
end
end

4 Improvements

To demonstrate the significance of Theorem 4 for an efficient enumeration algo-
rithm for integral point sets we compare in Table 1 the number ¥ (3, A) of calls of
combine(z, y) in Algorithm 7 for m = 3 and n = 5 to the number (3, A) of calls of
combine(x,y) without using Theorem 4. Additionally we give the number &(3,A)
of semi-canonical integral tetrahedrons with diameter A.

5 Minimum diameters

From the combinatorial point of view there is a natural interest in the minimum
diameter d(m,n) of m-dimensional integral point sets consisting of n points. By
d(m,n) we denote the minimum diameter of m-dimensional integral point sets in
semi-general position. If additionally no m + 2 points lie on an m-dimensional sphere
we denote the corresponding minimum diameter by d(m,n) and say the points are
in general position. To check semi-general position we can use the Cayley-Menger
matrix and test whether V,, = 0 or not. In the case of general position we have the

following theorem.

Theorem 8 Given m + 2 points in E™, with pairwise distances d; ; and no m + 1
points in an m — 1-dimensional plane, lie on an m-dimensional sphere if and only if

2 2
0 dO,l e dO,m+1
9 .
o 0 =0.
. . 9
. : dm,m+1
2 2
1o -+ Doiim 0
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Al 9B,A) B A) [aB,A) ] A I(3,A) | UE,A) | aB,A)
1 1 1 11 26 521610123 521589 | 356333
2 13 9 6 | 27 700065646 629939 | 428030
3 111 35 24 | 28 | 920480332 | 753113 | 510829
4 602 149 70 || 29| 1222613496 | 832969 | 605970
5 2592 305 176 || 30 | 1592477593 | 1038224 | 714505
6 8833 770 380 || 31 | 2059062666 | 1145517 | 838646
7 26564 1379 754 || 32 | 2638060710 | 1439990 | 978820
8 68800 2761 1368 || 33 | 3357319548 | 1568195 | 1137638
9 162330 4182 2333 || 34 | 4241882219 | 1804079 | 1316239
10| 353100 | 6660 | 3786 | 35 | 5323350205 | 2062374 | 1516567
11 719688 10254 5894 | 36 | 6638917601 | 2475320 | 1740591
12 1378977 16714 8839 || 37 | 8232016014 | 2613730 | 1990484
13 2526059 21902 12891 || 38 | 10148934902 | 3037708 | 2268149
14 4434103 30115 18289 || 39 | 12445587259 | 3430131 | 2575954
15 7490297 41250 25339 || 40 | 15183055989 | 4015829 | 2916089
16 | 12256818 | 59995 | 34436 | 41 | 18437914417 | 4224348 | 3201649
17| 19551320 | 72315 | 46054 | 42 | 22280569281 | 4966748 | 3704516
18 | 30264028 96502 60474 || 43 | 26818516374 | 5278577 | 4158686
19 | 45952871 | 119896 78406 || 44 | 32132601503 | 6213243 | 4655277
20 | 68191989 | 162600 | 100277 || 45 | 38348410933 | 6821671 | 5198318
21 | 99420707 | 196490 | 126838 || 46 | 45598443859 | 7428904 | 5791458
22 | 142558111 | 245591 | 158772 || 47 | 54019488362 | 8057637 | 6437526
23 | 201289670 | 289672 | 196799 | 48 | 63756807373 | 9675353 | 7139157
24 | 279728968 | 388051 | 241672 || 49 | 75019979427 | 10055859 | 7901871
25 | 384663513 | 440140 | 294681 || 50 | 87968187078 | 11262298 | 8727553

Table 1: Number of calls of combine(z, y).

See [2, 10] for a proof.

We have implemented Algorithm 6 and Algorithm 7 and received the following
values for minimum diameters; see also [3, 6, 10]. The values not previously known
in the literature are emphasised.

d(3, n)4§n§7 = d(3, n)4§n§7 = ]., 3, 16, 44.

d(4,n)5<n<s = 1,4,11,14.
d(4,n)5cn<s = 1,4,7,14.
3(5, n)ggngg = d(5, n)ﬁgngg = ]., 4, 5, 8.
To determine d(m,n) we have to modify Algorithm 7 because not every m + 1
points of an m-dimensional pointset span an m-dimensional simplex. So we have to
combine lower dimensional point sets with m-dimensional point sets. We leave the

details to the reader and give only the results,
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d(3,n)4<n<2s = 1,3,4,8,13,16,17,17,17,56, 65,77,
86,99, 112,133, 154,195, 212, 228.
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