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Abstract

This article describes a construction of a minimum cycle basis for the
direct product of two connected bipartite graphs, in terms of minimum
cycle bases of the factors.

1 Introduction

In the article Minimum Cycle Bases of Product Graphs [5], W. Imrich and P. Stadler
construct minimum cycle bases for Cartesian and strong products of graphs, in terms
of minimum cycle bases of the factors. In [1], F. Berger solves the same problem for
the lexicographical product. The corresponding construction for the direct product
appears to be elusive. The present article presents a step in this direction by ad-
dressing case in which the factors are bipartite. Though the general problem appears
to be even more involved, our approach offers some possible insights.

This introduction reviews the preliminaries.

The edge space £(G) of a simple graph G = (V(G), E(G)) is the power set of
its edges E(G) endowed with the structure of a vector space over the two-element
field F, = {0,1}. Addition in £(G) is symmetric difference of sets, and zero is the
empty set. Similarly, the vertex space V(G) of G is the power set of the vertices
V(G) viewed as a vector space over Fo. The set E(G) is a basis for £(G). To avoid
proliferation of notation, we blur the distinction between a subgraph K of G and
its edge set E(K) € £(G). Thus, if J and K are subgraphs, an expression such as
J + K means E(J) + E(K), with the operation taking place in £(G).

For any graph G, there is a linear incidence map Bg : £(G) — V(G) whose effect
on the basis E(G) is Bg(vw) = v + w. The kernel of this map is denoted denoted
C(G). Tt is called the cycle space of G, and consists exactly of the edge sets E(K) of
Eulerian subgraphs K of G, that is, subgraphs having no vertex of odd degree ([2],
Proposition 1.9.2). Elements of C(G) are called generalized cycles, or just cycles.
The dimension of C(G) is v(G) = |E(G)| — |V(G)| + ¢, where ¢ is the number of
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components of G ([2], Theorem 1.9.6). A graph homomorphism ¢ : G — H induces
a linear map ¢* : £(G) — £(H) defined on the basis E(G) as g*(vw) = g(v)g(w). It
is easy to check that g* restricts to a linear map g* : C(G) — C(H).

A basis B of C(G) is called a cycle basis of G, and its length is I(B) = Y45 |C|.
Among all cycle bases of G, one with smallest possible length is called a minimal
cycle basis, or MCB. A cycle in C(G) is called relevant if it belongs to some MCB of
G. Our first proposition is proved in [6].

Proposition 1. A cycle is relevant if and only if it is not the sum of shorter cycles.

Because C(G) is a weighted matriod where any cycle C has weight |C|, the Greedy
Algorithm [7] is guaranteed to terminate with an MCB. (Le. begin with M = 0;
then append shortest cycles to it, maintaining independence of M, until no further
shortest cycles can be appended; then append next-shortest cycles, maintaining in-
dependence, until no further next-shortest cycles can be appended; and so on, until
M is a maximal independent set.) Although Horton’s Algorithm [3] finds an MCB
in polynomial time, our goal here is a deeper, structural, understanding of MCB’s of
a direct product, in which an MCB of the product is expressed in terms of MCB’s
of the factors.

The direct product of graphs G and H is the graph G x H whose vertex set is the
cartesian product V(G) x V(H) and whose edges are (u,z)(v,y) where uv € E(G)
and zy € E(H). We quickly mention a few relevant facts; the reader requiring more
background is referred to Imrich and Klavzar [4].

The projections g : G x H — G and ny : G x H — H which project vertices
onto the first and second components, respectively, are graph homomorphisms, and
thus induce linear maps 7, : C(G x H) — C(G) and 7}, : C(G x H) — C(H).

Suppose G and H are connected and bipartite. Then G x H has exactly two
components, and, as it has |V (G)||V (H)| vertices and 2| E(G)||E(H)| edges, v(Gx H)
=2|E(G)||E(H)|—|V(G)||V(H)|+2. If e € E(G), then the subgraph e x H of G x H
consists of two components, each isomorphic to H, one in each component of G x H.
Restriction of wg to either component of e x H is an isomorphism. Likewise, if
f € E(H), then the subgraph G x f consists of two components, each isomorphic
to G, one in each component of G x H. Restriction of mg to either component is an
isomorphism.

2 A Direct Sum Decomposition

This section introduces a direct sum decomposition of the cycle space of the direct
product of two bipartite graphs, which, once established, leads readily to an MCB.
We begin with a description of one of the terms of this sum.

If P = tuv and @ = zyz are paths of length 2 in G and H, respectively, then PQ
denotes the 4-cycle in G x H induced on the edges (u, z)(v,y), (v,y)(u, 2), (u, 2)(t, y)
and (t,y)(u,z), as illustrated in the figure below. Such a subgraph PQ is called a
diamond in G x H. The subspace D(G x H) of C(G x H) spanned by all diamonds is



MINIMUM CYCLE BASES 215

called the diamond subspace of C(G x H). Since n&(PQ) = 0 = 75 (PQ), it follows
that D(G x H) C Null(ng) N Null(nyy).

Proposition 2. If G and H are connected bipartite graphs, with e € E(G) and
f € E(H), then there is a direct sum C(G x f) @ D(G x H) ®C(e x H) of subspaces
of C(G x H), and dim(D(G x H)) < v(G x H) — 2v(G) — 2v(H).

Proof. Suppose C' € C(Gx H) can be written as C = A+ D+Band C = A'+D'+B’,
with A, A" € C(G x f), D,D' € D(G x H), and B, B' € C(e x H). It must be shown
A=A, D=D"and B = B'. First assume C lies in a single component of G x H.
Applying 7% to both sides of A+ D + B = A" + D' + B’ gives w5(A) = w5 (A").
(Note ng(B) = 0 = w§(B') since these are mappings of even cycles onto a single
edge.) From this, A = A’, because 7§ restricts to an isomorphism on the cycle
space of a component of G x f. Likewise, applying 7} to both sides yields B = B/,
whence D = D'. If C lies in two components, write C' = C; + C5 as a sum of two
cycles in different components and apply the above reasoning to each cycle in the
sum. Since C(G x f) @ D(G x H) @ C(e x H) is a subspace of C(G x H), we have
dim(D(G x H)) < dim(C(G x H)) — dim(C(G x f))— dim(C(e x H)). Since G X f
and e X H consist of two isomorphic copies of G and H, respectively, dim(D(G x H))
<v(Gx H)-2v(G) — 2v(H). (]

Bipartiteness of factors is crucial for Proposition 2. Establishment of the direct
sum relied on the fact that n}, and 7}, restrict to isomorphisms on components of
G x f and e x H, and there are no such isomorphisms in the absence of bipartiteness.
Consider the case G = H = K3 where both G x f and e x H are hexagons on which
m¢; and 7y vanish. Indeed, in this case the direct sum of Proposition 2 fails to exist,
since (G x f)+ (e x H) € D(G x H), as the reader may check.

The main result of this paper will follow from a sharpening Proposition 2. We
will show dim(D(G x H)) = v(G x H) — 2v(G) — 2v(H), whence it follows C(G x H)
=C(Gx f)®D(G x H)®C(e x H). Achieving this sharpening involves examining
certain path spaces.

3 Space of Even Paths

We define the P»-space of a graph G as the subspace P(G) C £(G) spanned by the
edge sets of the paths of length two in G. (We call such a path a P in G.) Since any
even path is the sum of Py’s, it follows that P(G) is spanned by the even paths of G.
A basis for P(G) consisting entirely of Py’s is called a Py basis of P(G). Since any
pair of edges in the same component of G is the sum of the P’s on a path beginning
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and ending with an element of the pair, it follows that any element of £(G) that
has an even number of edges in each component of G is in P(G). Conversely, if
P € P(G), and X is a component of G, then P N E(X) is the sum of Py’s in X, so
|P N E(X)| is even. Therefore, P(G) is the set of all elements in £(G) having an
even number of edges in each component of G.

Consequently, if the nontrivial components of G are Gy, Ga, - - - G, then P(G) is
the kernel of the surjective linear map A : £(G) — Fy¢ defined as

A(P) = (IPNE(GY)], [P N E(G,)l,---, [P N E(G)]),

where the cardinalities are taken mod 2. From this, dim(P(G)) = dim(&E(G)) —
dim(F;¢) = |E(G)| —c.

Proposition 3. If G has ¢ nontrivial components, then dim(P(G)) = |E(G)| — c.

If z € V(G), the star at z, denoted S(z), is the subgraph of G induced on the edges
adjacent to z. The subspace Lg(z) = P(S(x)) of P(G) is called the local Py space
at z. If z is not isolated, Proposition 3 implies dim(Lg(z)) = degg(z) — 1. If the
neighbors of = are vy, vq, -+, vg, then {vizvs, V1TVs, V1ZVy, - -+, V12VL} is & basis for

[,(;(.Z')

Proposition 4. Suppose G is bipartite, with partite sets A and B. Let A and
B be the subspaces of P(G) spanned by P»’s whose middle vertices are in A or B,
respectively. Then:

1. A=EPLala)

acA
2. B=EPLab)
beB
3. P(G)=A+B
4. ANB=C(G)

Proof. By definition, A is the sum of the vector spaces L(a) with a € A. If A =
{a1,az, -, a,}, then since the stars S(a;) for 1 <4 < n are edge disjoint, it follows
(L(a1) + L(ag) + -+ + L(a;)) N L(a;41) =0 for 1 < i < n. Thus Statement 1 holds,
and identical reasoning for B gives Statement 2.

As P(G) is spanned by Py’s, and any such path is in A or B, we have statement 3.

If C € C(G), every vertex = of C has even degree, so C N E(S(z)) € Lg(z).
Since G is bipartite, all of its edges are incident with vertices of A (or B). We thus
have C = >, ,CNE(S(a)) € P,cnlcla) = Aand C = >, ;CNE(SDH) €
DBics Lc(d) = B, so C € ANB. On the other hand, suppose C € AN B. Apply
the incidence map. Since C' € A, Bg(C) C B, and since C € B, Bg(C) C A. As
ANB =0, Bg(C) =0, which means C € C(G). [

Proposition 5. If G is acyclic, P(G) = @ La(z).
zeV(G)
Proof. Immediate from 1, 2, 3 and 4 of Proposition 4, combined with C(G) =0. =
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Proposition 3 tells how to find a P, basis of P(G) when G is a forest. For each
z € V(G), select a P, basis B, of Lg(z). Then UzeV(G) B, is a P, basis for P(G).
The next proposition explains how to construct a P, basis for an arbitrary graph.

Construction 1. (For finding a P, basis of an arbitrary graph.)

Given a graph G with ¢ nontrivial components, let T be a maximal spanning
acyclic subgraph (i.e. each component of T is a spanning tree of a component
of G). Let X = E(G) — E(T) = {tiu1,tate, -, tu(c) U} Further, let
X = {t1urvy, tausvs, - - -, tu(e) Uu(G)Vu(G) }» With each u;v; in E(T). For each ¢ € V/(T),
let B, be a P, basis for Lr(z). Then B = (U,cy ) Bz) U X is a P, basis for P(G).

Proof. By Proposition 5, UzeV(T) B, is an independent set. Clearly X is indepen-
dent, for each of its elements contains an edge that is in no other of its elements. Any

nonzero element of span(X) must contain edges in E(G)— E(T), while no nonzero ele-
ment of span(U,cy(r) B:) has such elements. Therefore span({,cy(r) Bz) N span(X)
= 0, so B is an independent set. As |[B| = dim(P(T)) + v(G) = (|JE(T)| —¢) +
(IB(G) = V(G)+¢) = [E(@)] = (V(G)| = |E(T)]) = |[E(G)] - ¢ = dim(P(G)), it
follows B is indeed a basis. ]

The following lemma is needed in the next section.

Lemma 1. If B is an independent set of Py’s in P(G), then some edge of G belongs
to just one element of B.

Proof. Say the subgraph K of G induced on the edges | Jpz £(P) has ¢ (nontrivial)
components. Then |B| < dim(P(K)) = |E(K)| — c. Since each element of B3 has two
edges, then, on average, the number of elements of B that an edge of K intersects is

‘Efgf{l)‘ < 2“@5{%‘76) < 2. Thus some edge of K belongs to just one element of B. m

4 A Diamond-Space Basis

This section uses the P, spaces of the factors of a direct product to produce a basis
for its diamond space. The following proposition shows how P, bases can be used to
produce linearly independent sets of diamonds.

Proposition 6. If P and Q are linearly independent sets of Py’s in P(G) and P(H),
respectively, then C = {PQ|P € P,Q € Q} is an independent set of diamonds in
C(G x H).

Proof. Induction on [P|+]Q)| is employed. If |P|+|Q| = 2, then C consists of a single
(independent) diamond. Assume |P|+ |Q| > 2. There is no loss of generality in also
assuming |P| > 1. By Lemma 1, G has an edge ab belonging to just one element abc
of P. Now, C is the disjoint union of the two sets C; = {PQ|P € P — {abc},Q € O}
and C; = {(abc)Q|Q € Q}, and, by the inductive hypothesis, each of these sets is
independent. Suppose C' € span(C;)Nspan(Cy). Since C is in Cy, it has no edge of the
form (a,u)(b, v), by choice of ab. Then it follows that since C is in C,, every one of its
edges is of form (b, u)(c, v). Therefore C'is a cycle in C(be x H). Write C' = C1+C as
the sum of two cycles in different components of be x H, hence in different components
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of G x H. As C; and Cj are each sums of diamonds, 7};(Cy) = 0 = 7};(C2). But
m}; restricts to an isomorphism on each component of bc X H, so C; = 0 = C5. Thus
C =0, and the proof is complete. ]

Despite Proposition 6, if P and Q are maximal independent sets of P,’s, the set
C may still not be a maximal independent set in D(G x H). As an illustration,
the following construction gives a basis for D(G x H) that includes, as a proper
subset, all diamonds PQ where P and Q belong to certain bases of P(G) and P(H),
respectively.

Construction 2. (A basis of diamonds for D(G x H), where G and H are bipartite.)
Suppose G and H are connected graphs. Let T and U be spanning trees of G and
H, respectively. Let Br be a basis for P(T) (Construction 1) and let By be a basis
for P(U). Set E(G) — E(T) = {tiu,taus, ", tye)tu()}, and E(H) — E(U) =
{Z1y1, 222, -+ -, To(m)Yu(ay - For each 1 <i < v(G), select P, paths s;tyu; and tyu;v;
with s;t;,w;v; € E(T). For each 1 < j < v(H), select P, paths w;z;y; and z;y;z;
with wjz;,y;2; € E(U). Form the following sets:

D = {PQ|P <€ Br,Q € By}

T, = {PQ|P € Br,Q € {wjz;y;,zjy;z}} for1<j<v(H)

U, = {PQ|P € {sitiu;, tiuv;},Q € By} for 1 <i<v(G)

Sij {PQ|P = t;u;v;, Q € {wjz;y;, x;y;2;}} for 1 <i<v(G),1<j<v(H)

Then the following set is independent in D(G x H):

B=pu| U 7|uvl U u|u| U U s

1<j<v(H) 1<i<v(G) 1<i<v(G) \1<j<v(H)

Moreover, if G and H are bipartite, then B is a basis for D(G x H), and dim(D(G x
H))=v(G x H) —2v(G) — 2v(H).

Proof. The sets D, T;, U; and S;; (for 1 < i < v(G) and 1 < j < v(H)) are pairwise
disjoint, and each is independent by Proposition 6.

If C € span(D) N span(T7;), then since no element of D contains an edge in
75 (z191), it follows that C has no such edge either. Then, as C' € span(7;), the
definition of 77 implies the cycle C' is in the forest T' X (wyz1 Uy121), so C = 0. Thus
D U T; is an independent set.

By exactly the same reasoning, if C € span(D U T;) N Tz, then C = 0 and
DUT,UT; is an independent set. Continuing in this fashion, W = DU (Ulgjgu(H) 7;)
is independent.

Observe that no element of W contains an edge t;u; for 1 < i < v(G), so no cycle
in span(W) contains such an edge. Hence, by definition of Uy, if C' € span(W) NU,
then C is in the forest (sit; Uujvy) x U, so C = 0, and W U U, is an independent
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set. Continuing with this reasoning, we may append the remaining sets U; to obtain
the independent set X = D U (Ulgjgu(H) 7;) U (Ulgigu(c) Z/{,-).
Finally, note that any set S;; contains exactly two diamonds, call them Dilj and

the first containing the edge ej; = (t;, ;)(us, y;), and the second containing the
1

Dy,
edé‘e e;; = (ti,y;)(us, ;). Observe that D; is the only element of B containing ej;,
and Dizj is the only element of B containing e?j, so neither can be expressed as a linear
combination of the other elements in B. Therefore all the sets S;; can be appended to
X, resulting in B, with independence preserved. This completes the demonstration
that B is independent.

Say G has p vertices and q edges, and H has r vertices and s edges. Computing
cardinality, |B] = (p — 2)(r — 2) + 2v(H)(p — 2) + 2v(G)(r — 2) + 2v(G)v(H) =
2p — 2+ 1(G))(r — 2+ v(H)) = (p— 2)(r — 2) = 2(g — 1)(s = 1) — (p— 2)(r - 2)
=(2¢gs—pr+2)—2(q—p+1)—2(s—r+1) =v(G x H) - 2v(G) — 2v(H). This,
combined with Proposition 2, implies that B is a basis for D(G x H) if G and H are
bipartite. ]

Construction 2 implies dim(D(G x H)) = v(G x H) — 2v(G) — 2v(H), and com-
bining this with Proposition 2 produces

Corollary 1. If G and H are connected bipartite graphs, e € E(G) and f € E(H),
then C(G x H) =C(Gx f)®D(Gx H)®C(e x H).

5 A Minimum Cycle Basis

For brevity, set A = C(G x f), A =D(G x H), and ® = C(e x H), so Corollary 1
saysC(Gx H)=A® A D.

Proposition 7. If C is a relevant cycle in C(G x H), then one of the following
holds.

CelMNorCelAorCed

C=L+DwithLeA, DeA, and |C|=|L|
C=D+FwithDeA, Fe?®, and |C| = |F|
C=L+D+FwithLeA DeA, Fe®and |C|=max{|L|,|F|}

Proof. Since C € A® A @ P, then either C =L, C =D, C =F,C =L+ D,
C=L+F, C=D+F,or C =L+ D+ F, for nonzero elements L € A, D € A,
and F € ®.

Note that if C is relevant, then it is impossible that C = L + F. Otherwise, by
definition of I" and ®, LNF C E(e x f). Since e x f consists of just two edges, one in
each component of G x H, and the relevant cycle C' must be in a single component,
it follows that |[L N F| < 1. Then C = L + F is the sum of two cycles shorter than
itself, contradicting relevancy.

Suppose C' = L + D is relevant. Regard mg as the projection of G x H onto the
component of G x f that contains C. Then 7%(C) = 7§ (L) + 7% (D) = L, from which
|C| > |L] is deduced. If |C| > |L| > 4, then as D is a sum of 4-cycles, C = L+ D is
the sum of cycles shorter than C'. Hence |C| = |L|, by Proposition 1. In an analogous
manner, if C = D + F is relevant, then |C| = |F|.

Ll
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Finally, it C = L+ D+ F is relevant, then, as above, 7§(C) = L and 75, (C) = F,
from which |C| > max{|L|, |F|}. But if the inequality were strict, then C' would be
a sum of shorter cycles, so |C| = max{|L|, |F|}. L]

Construction 3. (An MCB for G x H where G and H are connected bipartite
graphs.)

Let e and f be edges of G and H, respectively, so G X f consists of two isomorphic
copies of G, and ex H consists of two isomorphic copies of H. Let £, L' C A be MCB’s
for the two components of G x f, respectively. Let F, F' C ® be MCB’s for the two
components of e X H, respectively. Let B be the basis of diamonds for A = D(G x H),
as described in Construction 2. Then the set M =BULUL UFUF' is a MCB for
G x H. Moreover, the length of this basis is (G x H) = 4v(G x H) —8v(G) —8v(H)+
20(G) + 2l(H).

Proof. By Corollary 1, C(G x H) = A ® A @ ®. Using the Greedy Algorithm to
extract an MCB, we begin by finding a maximal independent set of 4-cycles. Start
with M = B C A. Next, append to M a maximal independent set of (relevant)
4-cycles in AU®, and for this it suffices to first take all the 4-cycles in LUL' UFUF".

We claim that, at this point, all other relevant 4-cycles are linear combinations
of those already in M. For, using the result and notation of Proposition 7, any
other relevant 4-cycle not in A U AU & is either of form C' = L + D with |C] = |L],
or C = D+ F with |C| = |F| or C = L+ D + F with |C] = max{|L|,|F|}. If
C = L+ D, the 4-cycle L € A must be a linear combination of 4-cycles already in M
(for otherwise it would have been previously appended to M), and certainly D is a
linear combination of elements of B C M. Similarly any C' = D+ F is a combination
of elements of M. If C = L+ D + F, with |C| = max{|L|,|F|} = 4, then, again,
4-cycles L € A and F' € ® must be linear combinations of those already in M. Thus
M contains a maximal independent set of relevant 4-cycles.

Next, we append relevant 6-cycles to M. Begin by appending the 6-cycles in
LULUFUF CT'UP. We claim that, at this point, all other relevant 6-cycles are
linear combinations of cycles already in M. For any such 6-cycle is either of form
C=L+D,orC=D+ForC=L+D+F.IfC=L+D,then6=|C|=|L|, and
the 6-cycle L € A must be a linear combination of 4- and 6-cycles already in M, and
certainly D is a linear combination of 4-cycles in B C M. Similarly any C = D + F
is a combination of elements of M. If C = L+ D + F, with 6 = |C| = max{|L|, |F|},
then since L € A and F' € ® are cycles of length no greater than 6, they must be
linear combinations of cycles already in M. Thus no further relevant 6-cycles may
be appended to M without destroying independence.

Applying this same reasoning to 8-cycles, then 10-cycles, and so on, M must
eventually become an MCB, and, by construction, it is M = BULUL' UFUF'.
Computing length, I(G x H) = 4|B| +2I(G) + 2I(H) = 4v(G x H) — 8v(G) — 8v(H)
+21(G) + 21(H). ]

The author thanks the referee for prompt and careful reading of the original
manuscript, and for suggesting several improvements.
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