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Abstract

We characterize the factorizations of finite or infinite hypercubes with
respect to the direct product in the class of unoriented simple graphs
with loops. The paper extends the corresponding result for finite graphs
(B. Bresar, W. Imrich, S. Klavzar and B. Zmazek, Hypercubes as direct
products, SIAM J. Discrete Math. 18 (2005), 779-786). It is based on a
new approach that yields a simple, unified proof for both the finite and
the infinite case. The main theorem also characterizes the graphs whose
Kronecker coverings are hypercubes.

1 Introduction

This paper is concerned with the decomposition of finite and infinite hypercubes with
respect to the direct product. It generalizes the results of [1] to infinite graphs. It is
shown that every decomposition of the k-dimensional hypercube @ with respect to
the direct product, where k is a finite or infinite cardinal, is of the form K X G where
K, is the complete graph on two vertices and G a non-bipartite graph that contains
a spanning subgraph S that is isomorphic to Qy_;. Furthermore, G is characterized
by the condition that the endpoints of the edges in E(G) \ E(S) have even distance
in S and induce an involution of S.

The main result in [1] is the existence of a spanning hypercube in every graph
G with the property that K, x G is a hypercube. It is effected by an application of
Graham’s density lemma [2] for (the number of edges of) subgraphs of the hypercube,
a method that does not extend to the infinite case. Here Graham’s density lemma is
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replaced by application of metric properties of the sets of parallel edges in hypercubes
and symmetries induced by these sets.

To prove that every factorization has exactly two factors, where one of them is
always a K>, the Cartesian skeleton is invoked in [1]. This argument is replaced by
a short direct proof.

The paper is organized as follows. The next section contains the main definitions
and basic facts about the direct product and the connection with coverings. Then
comes the proof of the main result, that is Lemma 2. Formally this lemma is identical
to the Lemma 2 in [1], except that the new proof is also valid for the infinite case as
will be displayed in the section on infinite hypercubes. The main difference to the
proof in [1] is that it does not refer to Graham’s density lemma.

Then follow the definition of the Cartesian product of infinitely many graphs, of
the weak Cartesian product and of the infinite hypercube. It will then be clear that
Lemma 2 also holds in the infinite case. The paper ends with a proof of the fact that
all factorizations of the hypercube with respect to the direct product have exactly
two factors and a complete statement of the main result.

2 Preliminaries

All graphs considered here are undirected graphs that may contain loops but not
multiple edges. In this section we shall define the direct and the Cartesian product
of graphs and collect the main properties needed in the sequel. For both products
there exists an extensive literature. Let us only mention that R. McKenzie [5] and
Sabidussi [6] were the first to investigate these products for infinite graphs. For a
survey of graph products in general the interested reader is referred to [4].

The direct product G x H of two graphs G and H is defined on the Cartesian
product V(G) x V(H) of the vertex sets of the factors. Its edge set is the set of all
pairs of vertices (a,x), (b,y) € V(G) x V(H) where ab € E(G) and zy € E(H). It is
commutative, associative and the one-vertex graph with a loop is a unit.

Figure 1 depicts the direct products K, x P35, where P5 is a path of length 2 with
loops added to its endpoints, and K, x K3. In both cases the product is a cycle of
length 6.

C E C D
B F B F

A D A E
*e————e e———e

Figure 1: Two decompositions of Cg

The Cartesian product GOH has the same vertex set as the direct product. Its
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edge set consists of all pairs (a, ), (b,y) with ab € E(G) and x = y, or a = b and
zy € E(H). It is also commutative and associative with K as a unit.

The subgraph of GOH induced by the vertices (a,z),z € V(H), is called an H-
layer of GOH and is denoted by H(%*). Note that any H-layer is isomorphic to H.
Analogously one defines G-layers. The d-dimensional hypercube or d-cube Qg is the
Cartesian product of d copies of the complete graph K, on two vertices. So Q1 = Ko
and we also set Qg = K;. The vertices of Q4 can be considered to be all binary
vectors of length d. Two such vertices © = (z1, 2, ...,%4) and y = (y1,¥2,-- -, Ya)
are adjacent in Qg if and only if there exists an index 4 such that z; = 1 — y; and
z; =y; for j # 1.

Let Q4_10K, be an arbitrary factorization of Q3. The edges between the two
Q4_1-layers are said to be of the same color or are parallel in Q4. The set of all
edges between two QQ4_1- layers will be referred to as a color class or a parallel class
of the edge set of the factorization. Such classes are also equivalence classes with
respect to the Djokovié-Winkler relation © as defined in [4, p. 48]. We will therefore
denote such classes containing the edge e by ©.. The main property (cf. [4, Lemma
2.3]) of this relation that we shall use is the fact that in a bipartite graph two edges
e = [u,v], f = [z,y] are in the relation © if and only if the notation can be chosen
such that

d(u,z) =d(v,y) =d(u,y) — 1 =d(v,z) — L.

Layers of direct products are defined analogously to those of the Cartesian prod-
uct. In the case of the direct product the layer H(** is isomorphic to H only if a
carries a loop (in G), otherwise the edge-set of H(*) is empty, cf. Figure 1.

For a given graph G it follows directly from the definition of the direct product
that interchanging vertices between the G-layers is an automorphism of Ky X G. In
fact, direct products by Ks can be characterized by involutions, that is by automor-
phisms of order two.

Lemma 1 Suppose that H is bipartite. Then there exists a graph G such that H is
isomorphic to Ky x G if and only if H has an involution that interchanges the color
classes of V(H).

Proof. If H can be factored as Ky x G for some graph G, then the involution ¢
defined by ¢(i,z) = (1 —1i,z) for i = 0, 1 is such an automorphism of H. Conversely,
suppose H has color classes Cy = {u1, u2, ..., u,} and C; = {v1,vs,...,v,} together
with an automorphism ¢ such that ¢(u;) = v; and ¢(v;) = u; for each i. We construct
a graph G on the vertex set {w1, ws, ..., w,} by including the edge w;w; in G if and
only if w;v; € E(H). It follows immediately from the definition of the direct product
and the assumptions about ¢ that H is isomorphic to K5 X G. |

We note that if the involution ¢ in the above lemma has the property that (z)
is not adjacent to x for any vertex z of H, then the resulting factor G has no loops.
However, each pair of vertices z and ¢(z) that are adjacent in H gives rise to a loop
in G. The former case is illustrated in the second factorization of Cs and the latter
by the first factorization in Figure 1.
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To establish the connection with covering spaces we recall that a graph G is said
to be a covering graph of a graph G if there exists a surjective homomorphism (called
a covering) f: G — G such that for every vertex v of G the set of edges incident with
v is mapped bijectively onto the set of edges incident with f(v). A covering f is
k-fold if the preimage of every vertex of G consists of k vertices. Clearly K, x G is
a 2-fold covering of G.

To simplify the description of large graphs, the concept of voltage graphs is gen-
erally used, see for example [3] or [7]. Then the Zy-covering graph of G with voltages
1 on all edges is known as the Kronecker cover or the canonical double cover of G.
Is is identical with Ky x G.

3 The main result

For a bipartite graph G with bipartition V(G) = X + Y we call an involution «
bipartite if «(X) = X. For such an involution we let G* denote the graph obtained
from G by addition of the edges {uv | u = a(v),v € V(G)}.

It is not hard to see that Ko x Q¢ _, is isomorphic to @, for any bipartite involution.
We wish to show that every graph G with Q = K3 x G is of that form. The main
step in the proof is the following lemma.

Lemma 2 If G is a connected, nonbipartite graph such that Ko X G is a k-dimen-
sional hypercube, then G has a spanning subgraph isomorphic to a (k—1)-dimensional
hypercube.

Proof. Assume that G is connected and nonbipartite such that H = Ky X G is
isomorphic to Q. We denote the vertex set of K» by {0,1} and the projection map
from H onto G by pg. The idea of the proof is to find a parallel class © of edges in
the hypercube @y, such that for each e € O either pg(e) is a loop or there is another
edge f € © with pg(e) = pa(f).

Choose a odd cycle C' = wvy,vs,...,0941,v; Of shortest length in G. If C is a
loop, then there is an edge e in H projecting onto it, so assume that ¢ > 1. Consider
the subgraph Ky x C ~ Cypyo of H. The edges e = [a,d] and f = [b,c] belong to
K, x C where a = (0,v;1),b = (0,v21),¢ = (1,v1) and d = (1, va0,1). Denote by ©,
the parallel class of H containing the edge e.

Suppose dg(a,b) < 2¢. Since a and b belong to the same color class of H,
dg(a,b) = 2r < 2¢. If P is a shortest path in H from a to b, then P projects
under the homomorphism pg to a walk @ of length 2r joining v; and vepyy. If P
does not contain a pair (0,z) and (1,z) for some vertex x of G, then adding the
edge V109041 to @ yields an odd cycle of length 2r + 1. Hence, there exist vertices
(0,v) and (1,v) in P. From among all such pairs choose (0, w) and (1,w) that are
closest together along P. The segment of P from (0, w) to (1,w) projects onto an
odd cycle in G whose length is less than 2r. This contradicts the choice of C, and
so dg(a,b) = 2¢ = dy(c, d). It follows that f € ©,.

Let R be a shortest path in H from a to c. Since a and c are from different color
classes of H, the length of R is odd. The image pg(R) is a closed walk beginning
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and ending at v; that must contain an odd cycle. For if not, then its edges induce a
bipartite subgraph of G that has a closed walk of odd length. Therefore, the length of
pe(R), and hence also of R, is at least 2¢ + 1. We conclude that dy(c,d) < du(c,a),
and so ¢ and d belong to the same component of H \ O,.

Let g = [z,y] be an arbitrary edge of H where z = (0,u) and y = (1,v), and
suppose that g € ©.. The involution ¢ that interchanges vertices (0,t) and (1,t)
for all t € V(G) leaves the parallel classes of H invariant and ¢(e) = f. Thus,
v(g) = [(1,u),(0,v)] is also in ©,. That is, for all u,v € V(G), [(0,u), (1,v)] € O,
implies that [(1,u), (0,v)] € ©,.

The graph H \ O, consists of two components, say S; and Sy each of which is a
hypercube of dimension & — 1. To complete the proof we will now show that pg is
injective when restricted to S; or to S;. We assume without loss of generality that
a,b € Sy and that ¢,d € S,. Consider the following partition V(H) = AUBUCUD
depicted in Figure 2 where

A= U {02),(12)} B= |J {0),1)}

(0,z)€S1, (1,2)€S1 (0,2)€S2, (1,2)€S1

C= U {(0,50),(1,.’1))} D= U {(0,56),(1,.’1})}.

(0,2)€S1, (L,z)€S2 (0,2)€82, (1,2)€S2

Since a € S and ¢ € Sy and pg(a) = pe(c), it follows that a,c € C and hence
C # 0. Suppose A # 0. Let u = (0,2) € A. By definition of A, v = (1,z) € A and
both of  and v belong to S;. Each vertex of S; and each vertex of S, is incident
with exactly one edge that belongs to ©,. Let w,z € Sy such that [u,w] € ©, and
[v,2] € ©,. Since H is bipartite it follows that w € {1} x G and that z € {0} x G,
and therefore w,z € D. The hypercube S is connected so there must be an edge
hin S; from A to BN Sy or C'NS;. Without loss of generality we can assume
that h connects A with C'N Sy and that it is of the form h = [(1,%), (0, s)], where
(1,t) e AC Sy and (0,s) € S;NC.

C A D B
c (19, d @ 5
o0 ! [} [} o O O [ I ) [}
[} [ J [} [} O O O O
a (09 \b u <04 z
= G —

Figure 2: The partition V(H) = AUBUCUD

This implies that s and ¢ are adjacent in G, and hence g = [(1, 5), (0,t)] is an
edge of H. But (0,t) € Sy and (1, s) € Sy. Hence g is the unique edge of H incident
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with (0,¢) that belongs to the parallel class ©,. By the above argument it follows
that h must also belong to ©., but this is a contradiction since h is incident with
two vertices of S;.

Therefore, A = (), and we conclude that pg is injective on S;. That is, G has a
spanning hypercube. a

Corollary 3 The hypercube Qy, is representable as a product of the form G x K, if
and only if G is isomorphic to Q%_, for some bipartite involution o of Qr—1.

Proof. Suppose G x K5 = Q. Then the projections of endpoints of the edges in O,
induce a. In other words, let [u,v] € ©.. Then a(pgu) = pgv.
The converse is just as easy. a

4 Infinite hypercubes

We have introduced the hypercube as the Cartesian product of finitely many com-
plete graphs on two vertices. So we begin with the generalization of the Carte-
sian product of finitely many factors to that of infinitely many. Clearly the ver-

tex set of G10---0OG,, consists of the coordinate vectors v = (vq,vs,...,v,) where
v; € V(G;), and the edge set of GiO---0G,, is the set of all unordered pairs
[u,v] = [(u1,u2,...,us), ((v1,v2,...,v,)] for which there exists a k € {1,2,...n}

such that [ug,vi] € E(Gk) and u; = v; for i # k,i € {1,2,...n}.

For infinitely many factors, we replace the coordinate vector by a function from
an index set into the sets of vertices of the factors. Thus, let I be an index set and
G,, 1 € I, be a family of graphs. Then the Cartesian product

¢=[]aG.

el

is defined on the set x of all functions z : v — z,, z, € V(G,), where two vertices
z,y are adjacent if there exist a x € I such that [z.,y.] € E(G,) and z, = y, for
v €I\ {k}. We call the z, the coordinates of z.

For finite I this clearly coincides with the usual definition, and in this case the
product is connected if and only if the factors are. However, if we have infinitely
many nontrivial factors, there are vertices that differ in infinitely many coordinates.
They cannot be connected by paths of finite length, since the endpoints of every edge
differ in just one coordinate, so the product is disconnected.

The connected components of G are called weak Cartesian products. To identify
a component, it suffices to specify an arbitrary vertex of it. Thus the weak Cartesian
product G = [[}; G, is the connected component of [],.; G, containing a.

It is easy to see that the components of the Cartesian product of infinitely many
factors K, are pairwise isomorphic. We can thus define the n-dimensional hypercube
@ as the weak Cartesian product [];.; G,, where all G, are isomorphic to K3, a, = 0
for all v € I, and || = n.
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One can show that every connected graph is uniquely representable as a weak
Cartesian product of connected prime graphs. This result is due to Imrich and Miller,
for a proof cf. [4]. For us this implies that there are no other representations of @,
as a weak Cartesian product.

More importantly, we note that K,OQ, = @, and that we can define parallel
edges as in the finite case. Removal of a set of parallel edges from @, yields two
isomorphic copies of @, and the set of parallel edges induces an isomorphism between
these copies in a natural way, just as in the case of finite graphs. Moreover, the
characterization of parallel edges by the distances between their endpoint is the
same as in the finite case.

Therefore, both Lemma 2 and Corollary 3 also hold for the infinite hypercube.

5 Two factors only

We begin with a direct product G = G; x G5 and observe that the neighborhood
Ng(u) of w = (uq,us) in G is the Cartesian product, Ng,(u1) X Ng,(us), of the
neighborhood Ng, (u1) of u; in Gy by the neighborhood Ng,(us) of uy in Gy. For
v = (v1,v9) it is clear that

Neg(u) N Ng(v) = (Ng, (u1) 0 N, (v1)) x (Ng, (u2) N N, (v2))-

In a hypercube @), whether finite or infinite, the neighborhoods of two different
vertices are either disjoint or have exactly two vertices in common. Thus, in our case
where @ = G1 X G2, Ng(u) N Ng(v) is empty or has exactly two elements if u and
v are distinct. Also, Ng(u) N Ng(v) = Ng(u) N Ng(w) # 0 and w # v implies that
v = w, otherwise () would contain a K,3. Of course this generalizes in the obvious
way to any number - finite or infinite - of factors.

Theorem 4 Let QQ be a finite or infinite hypercube and assume that Q has a direct
product decomposition Q = Gy X Gy X -+ X Gy. Then k = 2 and one of the two
factor graphs is K.

Proof. Since @) is connected and bipartite, exactly one of Gy, Go, ..., G} is bipartite.
Assume first that there exists an ¢ such that some vertex ¢ € G; has r > 3 neighbors.
Suppose also that there is a j # i and a vertex y € G; such that Ng,(y) contains two
distinct vertices y; and y.. We may assume that ¢ = 1 and j = 2. Choose a vertex
wy, € Gy, for each n > 3. If we let w = (z,y1, ws, ..., wx) and v = (z, Y2, ws, ..., W),
then we see that | Ng(u) N Ng(v)| > r. This contradiction implies that for each j # 1,
every vertex in G; is adjacent to exactly one vertex, and so k = 2 and Gy = K.

Therefore, if £ > 3, then it must be the case that for every 1 < ¢ < k and for every
vertex = in G, |Ng, ()| < 2. Suppose that there exist x € G1, y € G and z € Gj3
such that = has distinct neighbors z; and x5, y has distinct neighbors y; and ¥, and 2
has distinct neighbors z; and z. With w,, chosen as above, u = (z,y, 21, w4, . . . , wg)
and v = (z,y, 22, Wy, ..., wy) we arrive at the contradiction |Ng(u) N Ng(v)| > 4.
That is, if £ > 3, then at most two of the factors have a vertex with more than one
neighbor and all vertices in each remaining factor have degree one.
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Since exactly one of the factor graphs is bipartite it follows that £ < 3. If k = 3,
then one of the factors is K. In this case @ = G1 X Gy X K», and no vertex of @
has degree more than 4. So, ) must be one of @5, @3 or Q4. It is straightforward to
check that none of these hypercubes has a direct product factorization unless k = 2
and one of the factors is Ks. m]

We have thus shown

Theorem 5 FEvery decomposition of a nontrivial hypercube @ into a direct product
has exactly two factors. One factor is always Ko and the other one any of the graphs
Q5_y for a bipartite involution o of Qr—1 if Q has finite dimension k, or Qg for a
bipartite involution o of Qy if Q has infinite dimension n.

Corollary 6 The Kronecker cover of a graph G is a hypercube if and only if G is
isomorphic to a graph Qf or Qt"‘l.
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