Partial S(k-1, k, v)'s inducing P_k -decompositions of K_v

ROBERT E. JAMISON

Department of Mathematics
Clemson University
Clemson, SC 29634-0975
U.S.A.
rejam@clemson.edu

GAETANO QUATTROCCHI*

Dipartimento di Matematica e Informatica
Università di Catania
viale A. Doria, 6 95125 Catania
ITALY
quattrocchi@dmi.unict.it

Abstract

Let P_k be the path with k vertices and k-1 edges, $k \geq 4$. For every integer $v, v \equiv 0$ or $1 \pmod{2(k-1)}$ if k is odd or $v \equiv 0$ or $1 \pmod{k-1}$ if k is even, we produce a P_k -design (V, \mathcal{B}) of order v such that no two blocks have k-1 or k common vertices, i.e. (V, \mathcal{B}) is a partial S(k-1, k, v).

1 Preliminaries

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a simple undirected graph and let P_k be the path with k vertices and k-1 edges, $k \geq 3$. A P_k -decomposition $(V(\Gamma), \mathcal{B})$ of Γ is an edge-disjoint decomposition \mathcal{B} of Γ into copies of P_k , called blocks. Usually \mathcal{B} is called the block set of the P_k -decomposition.

A P_k -design of order v is a P_k -decomposition of K_v , the complete undirected graph on v vertices. Tarsi [4] proved that the necessary conditions for the existence of a P_k -design of order v, $v \ge k$ (if v > 1) and $v(v - 1) \equiv 0 \pmod{2(k - 1)}$, are also sufficient.

We say that a P_k -decomposition $(V(\Gamma), \mathcal{B})$ is good if it induces a partial S(k-1, k, v) where $v = |V(\Gamma)|$, i.e. if every (k-1)-element subset of $V(\Gamma)$ is contained in the vertex-set of at most one block of \mathcal{B} .

^{*} Supported by MIUR, Italy and CNR-GNSAGA

A good P_k -design of order v will be denoted by GP(v, k, 1).

It is trivial to see that a GP(v,3,1) cannot exist, while, for $k \geq 4$, a good P_k -design can exist as shown by the following example. Let $\mathcal{B} = \{[i,1+i,3+i,6+i] \mid i \in \mathbb{Z}_7\}$, then $(\mathbb{Z}_7,\mathcal{B})$ is a GP(7,4,1). On the other hand the P_4 -design $(\mathbb{Z}_7,\mathcal{C})$, where $\mathcal{C} = \{[i,1+i,6+i,2+i] \mid i \in \mathbb{Z}_7\}$, is not good. A simple counting argument shows that a GP(6,4,1) and a GP(k,k,1), for every even $k \geq 4$, cannot exist.

The aim of the present paper is to construct a GP(v, k, 1) for every pair of integers v and k such that

- $v \equiv 0 \text{ or } 1 \pmod{4}, v \geq 7 \text{ if } k = 4;$
- $v \equiv 0 \text{ or } 1 \pmod{2(k-1)}, v \ge 2(k-1) \text{ if } k \text{ is odd}, k \ge 5;$
- $v \equiv 0$ or $1 \pmod{k-1}$, $v \ge 2(k-1)$ if k is even, $k \ge 6$.

These results will be proved applying recursive constructions to starting P_k -designs. We construct these designs by difference methods [1, 2, 3]. So we give only the base blocks (writing short blocks in slanted). Let G be an additive abelian group of order n. We identify the vertex set of our designs with one of the following sets: G, $G^+ = G \cup \{\infty\}$ (∞ being a symbol not in G), $G \times \{1, 2\}$. If $B_i = [a_1^i, a_2^i, \ldots, a_k^i]$, $i = 1, 2, \ldots, m$, are the base blocks then $\mathcal{B} = \bigcup_{i=1}^m dev_G(B_i)$, where $dev_G(B_i) = \{[a_1^i + g, a_2^i + g, \ldots, a_k^i + g] \mid g \in G\}$ (the block-orbit under the action of G) and composition law is given by

- the composition law of G, if V = G;
- the composition law of G extended by the rule $\infty + g = g + \infty = \infty$, if $V = G^+$;
- $(x, i) + g = (x + g, i), i = 1, 2, \text{ if } V = G \times \{1, 2\}.$

Example 1. Let $V = \mathbb{Z}_{10}$. Let $B_1 = [0, 1, 4, 2]$ and $B_2 = [0, 4, 9, 5]$ be the base blocks $(B_2 \text{ is } short)$. The block-orbits under the action of \mathbb{Z}_{10} are $dev_{\mathbb{Z}_{10}}B_1 = \{[i, 1+i, 4+i, 2+i] \mid i \in \mathbb{Z}_{10}\}$, $dev_{\mathbb{Z}_{10}}B_2 = \{[i, 4+i, 9+i, 5+i] \mid i \in \mathbb{Z}_{10}\}$. Then (V, \mathcal{B}) is a cyclic P_4 -design, where $\mathcal{B} = dev_{\mathbb{Z}_{10}}B_1 \cup dev_{\mathbb{Z}_{10}}B_2$ (note that $|dev_{\mathbb{Z}_{10}}B_1| = 10$ and $|dev_{\mathbb{Z}_{10}}B_2| = 5$).

Example 2. Let $V = {\infty} \cup \mathbb{Z}_8$. Let $B_1 = [\infty, 0, 1, 3]$ and $B_2 = [0, 3, 7, 4]$ be the base blocks $(B_2 \text{ is } short)$. The block-orbits under the action of \mathbb{Z}_8 are $dev_{\mathbb{Z}_8}B_1 = {[\infty, i, 1+i, 3+i] \mid i \in \mathbb{Z}_8}$, $dev_{\mathbb{Z}_8}B_2 = {[i, 3+i, 7+i, 4+i] \mid i \in \mathbb{Z}_8}$. Then (V, \mathcal{B}) is a 1-rotational P_4 -design, where $\mathcal{B} = dev_{\mathbb{Z}_8}B_1 \cup dev_{\mathbb{Z}_8}B_2$ (note that $|dev_{\mathbb{Z}_8}B_1| = 8$ and $|dev_{\mathbb{Z}_8}B_2| = 4$).

Example 3. Let $V = \mathbb{Z}_6 \times \{1,2\}$. Let $B_1 = [(0,1),(0,2),(1,1),(2,2)]$ and $B_2 = [(0,1),(3,2),(1,1),(5,2)]$ be the base blocks. The block-orbits under the action of \mathbb{Z}_6 (leaving the second coordinate unchanged in the cyclic development) are $dev_{\mathbb{Z}_6}B_1 = \{[(i,1),(i,2),(1+i,1),(2+i,2)] \mid i \in \mathbb{Z}_6\}$, $dev_{\mathbb{Z}_6}B_2 = \{[(i,1),(3+i,2),(1+i,1),(5+i,2)] \mid i \in \mathbb{Z}_6\}$. Then (V,\mathcal{B}) , $\mathcal{B} = dev_{\mathbb{Z}_6}B_1 \cup dev_{\mathbb{Z}_6}B_2$, is a P_4 -decomposition of the complete bipartite graph K_{V_1,V_2} , $V_i = V \times \{i\}$ for i = 1, 2.

Given a set X, a multiset on X is a list $L = \{x_1, x_2, \ldots, x_n\}$ of elements from X where repetitions are allowed. Formally, a multiset L on X is a map $\mu_L : X \to \mathbb{N}$ where $\mu_L(x)$ is the multiplicity of x. Let (V, \mathcal{B}) , where V = G or $V = G^+$, be a P_k -design constructed by difference methods under the action of a group G and let G, G be two distinct base blocks. We denote by

- $\mu_B(g)$ the multiplicity of $g \in G$ in the multiset $\Delta(B) = \{b c \mid b, c \in B \cap G, b \neq c\};$
- $\mu_{B,C}(g)$ the multiplicity of $g \in G$ in the multiset $\Delta(B,C) = \{b-c \mid b \in B \cap G, c \in C \cap G\}.$

Put $V_i = G \times \{i\}$, i = 1, 2. Let $(V_1 \cup V_2, \mathcal{B})$ be a P_k -decomposition of the complete bipartite graph K_{V_1,V_2} by difference methods under the action of G (see Example 3), and let B, C be two distinct base blocks. We denote by

- $\mu_B^i(g)$, i = 1, 2, the multiplicity of $g \in G$ in the multiset $\Delta^i(B) = \{b c \mid (b, i), (c, i) \in B, b \neq c\}$;
- $\mu_{B,C}^i(g)$ the multiplicity of $g \in G$ in the multiset $\Delta^i(B,C) = \{b-c \mid (b,i) \in B, (c,i) \in C\}.$

The proofs of the following two lemmas are an easy consequence of the difference methods and the fact that there is at most one base block containing ∞ . We suppose that $G = \mathbb{Z}_n$. Moreover if n is even and B is a short base block, then the nonzero element $g \in \mathbb{Z}_n$ such that B + g = B is given by $g = \frac{n}{2}$.

Lemma 1 Let (V, \mathcal{B}) be a P_k -design constructed by difference methods under the action of \mathbb{Z}_n . (V, \mathcal{B}) is a GP(v, k, 1) if and only if the following conditions are satisfied:

- 1. For every base block B one of the following conditions holds:
 - If B is not short and $\infty \notin B$, then $\mu_B(g) \leq k-2$ for every $g \in \mathbb{Z}_n \setminus \{0\}$.
 - If B is not short and $\infty \in B$, then $\mu_B(g) \le k-3$ for every $g \in \mathbb{Z}_n \setminus \{0\}$.
 - If B is short, then $\mu_B(g) \leq k-2$ for every $g \in \mathbb{Z}_n \setminus \{0, \frac{n}{2}\}$.
- 2. For every pair of distinct base blocks B and C, then $\mu_{B,C}(g) \leq k-2$ for every $g \in G$.

Let (V, \mathcal{B}) be the P_4 -design of Example 1. It is $\Delta(B_1) = \{1, 1, 2, 2, 3, 4, 6, 7, 8, 8, 9, 9\}$, $\Delta(B_2) = \{1, 1, 4, 4, 5, 5, 5, 5, 6, 6, 9, 9\}$ and $\Delta(B_1, B_2) = \{0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 7, 8, 9\}$. By Lemma 1, (V, \mathcal{B}) is good. Also the P_4 -design of Example 2 is good.

Lemma 2 Let $V_i = G \times \{i\}$, i = 1, 2. Let $(V_1 \cup V_2, \mathcal{B})$ be a P_k -decomposition of the complete bipartite graph K_{V_1,V_2} by difference methods under the action of \mathbb{Z}_n (see Example 3). $(V_1 \cup V_2, \mathcal{B})$ is good if and only if the following conditions are satisfied:

- 1. For every base block B, $\mu_B^1(g) + \mu_B^2(g) \le k 2$.
- 2. For every pair of distinct base blocks B and C, $\mu_{B,C}^1(g) + \mu_{B,C}^2(g) \leq k-2$.

By Lemma 2, the P_4 -decomposition of Example 3 is good.

$2 \quad GP(v, 4, 1)$

In this section we study the existence of GP(v, 4, 1)'s. We treat separately this case because there is not any GP(6, 4, 1).

Lemma 3 There is a GP(v, 4, 1), v = 7, 9, 10, 12, 13, 15, 16, 18.

Proof A GP(v, 4, 1) for v = 7, 9, 10, is given in Section 1. The remaining path designs are shown below. We leave to the reader to prove that the following base blocks satisfy the conditions of Lemma 1 or Lemma 2.

- GP(12, 4, 1). Base blocks: $[\infty, 0, 4, 9], [0, 1, 3, 6]$.
- GP(13,4,1). Let $V_i = \mathbb{Z}_6 \times \{i\}$ and let $[\{\infty\} \cup V_i, \mathcal{B}_i]$ be a GP(7,4,1), i=1,2. Let $(V_1 \cup V_2, \mathcal{B}_3)$ be the good P_4 -decomposition of K_{V_1,V_2} of Example 3. Then $(\{\infty\} \cup V_1 \cup V_2, \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3)$ is a GP(13,4,1).
- GP(15,4,1). Base blocks: $[\infty,0,4,13]$, [0,1,4,2], [0,6,13,7].
- GP(16, 4, 1). Base blocks: [0, 1, 4, 2], [0, 4, 10, 5], [0, 7, 15, 8].
- GP(18,4,1). Let $V_i = \mathbb{Z}_9 \times \{i\}$, i=1,2. The base blocks [(0,1),(0,2),(1,1),(2,2)], [(0,1),(3,2),(1,1),(5,2)] and [(0,1),(6,2),(1,1),(8,2)] generate a good decomposition $(V_1 \cup V_2,\mathcal{B})$ of K_{V_1,V_2} into P_4 's under the action of \mathbb{Z}_9 . Let (V_i,\mathcal{C}_i) , i=1,2, be a GP(9,4,1). Then $(V_1 \cup V_2,\mathcal{B} \cup \mathcal{C}_1 \cup \mathcal{C}_2)$ is a GP(18,4,1).

Lemma 4 If there is a GP(v, 4, 1) then there is a GP(v + 12, 4, 1).

Proof Let (W, \mathcal{B}_1) be a GP(12, 4, 1) with $W = \mathbb{Z}_{12}$. Suppose v = 2t. Let (V, \mathcal{B}_2) be a GP(v, 4, 1) with $V = \{x_0, x_1, \dots, x_{2t-1}\}$. Put $\mathcal{B}_3 = \{[j, x_{2i}, 4+j, x_{2i+1}], [j, x_{2i+3}, 8+j, x_{2i}] \mid i = 0, 1, \dots, t-1, j = 0, 1, 2, 3\}$ (the suffices are $\pmod{2t}$). It is easy to see that \mathcal{B}_3 is a good P_4 -decomposition of $K_{V,W}$. Then $(V \cup W, \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3)$ is a GP(v + 12, 4, 1).

Let v = 2t + 1. Put $V_1 = \{x_0, x_1, \dots, x_{2t-3}\}$ and $V_2 = \{y_0, y_1, y_2\}$. Let \mathcal{B}_3 be the block set of a good P_4 -decomposition of $K_{V_1,W}$ (since $|V_1| \equiv 0 \pmod{2}$), we can construct this decomposition as in the previous case). It is easy to check that $\mathcal{B}_4 = \{[y_0, i, y_1, i+2], [y_2, 6+i, y_1, 4+i], [y_1, 8+i, y_2, 10+i], [y_0, 4+i, y_2, i], [y_2, 2+i, y_0, 8+i], [y_1, 10+i, y_0, 6+i] \mid i=0, 1\}$ is a good P_4 -decomposition of $F_{V_2,W}$. Then $F_4 \cap F_4 \cap F_5 \cap F_6$ is a $F_4 \cap F_6$ by a good F_4 -decomposition of $F_4 \cap F_6$ is a $F_4 \cap F_6$ by a good F_4 -decomposition of $F_4 \cap F_6$ is a $F_4 \cap F_6$ by a good F_4 -decomposition of $F_4 \cap F_6$ by a good F_4 -decomposition of $F_4 \cap F_6$ by a good $F_4 \cap F_$

Theorem 1 For every $v \equiv 0$ or 1 (mod 3), $v \geq 7$, there is a GP(v, 4, 1).

Proof Apply Lemmas 3 and 4.

3 $GP(v, k, 1), k \ge 5$

Lemma 5 There exists a $GP(4t + 1, 2t + 1, 1), t \ge 2$.

Proof Put $\alpha_i = 2t + 4 - i$, $\beta_i = 5 + i$, i = 0, 1, ..., t - 2. Then

$$B = [0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-2}, \beta_{t-2}]$$

is the base block of a P_{2t+1} -design $(\mathbb{Z}_{4t+1}, \mathcal{B})$. It is easy to verify that $\mu_B(g) \leq 2t-1$ for every $g \in \mathbb{Z}_{4t+1}$. By Lemma 1, $(\mathbb{Z}_{4t+1}, \mathcal{B})$ is good.

Lemma 6 There exists a $GP(4t + 2, 2t + 2, 1), t \ge 2$.

Proof Let

$$B = [\infty, 0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-2}, \beta_{t-2}]$$

where α_i and β_i are defined as in Lemma 5. It follows $\mu_B(g) \leq 2t - 1$ for every $g \in \mathbb{Z}_{4t+1}$. By Lemma 1, B is the base block of a GP(4t+2, 2t+2, 1) on vertex set $\{\infty\} \cup \mathbb{Z}_{4t+1}$.

Lemma 7 There exists a GP(4t-1,2t,1), t > 3.

Proof Put $\alpha_i = 2t + 2 - i$, $\beta_i = 4 + i$, i = 0, 1, ..., t - 3. Then

$$B = \begin{cases} [0, 1, 3, 8, 5, 9] & \text{if} \quad t = 3\\ [0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-3}, \beta_{t-3}, t+4] & \text{if} \quad t \ge 4 \end{cases}.$$

is the base block of a P_{2t} -design $(\mathbb{Z}_{4t-1}, \mathcal{B})$. It is easy to verify that $\mu_B(g) \leq 2t-2$ for every $g \in \mathbb{Z}_{4t-1}$. By Lemma 1, $(\mathbb{Z}_{4t-1}, \mathcal{B})$ is good.

Lemma 8 There exists a GP(4t, 2t + 1, 1), $t \ge 2$.

Proof Let

$$B = [\infty, 0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-3}, \beta_{t-3}, t+4]$$

where α_i and β_i defined as in Lemma 7. It follows $\mu_B(g) \leq 2t - 2$ for every $g \in \mathbb{Z}_{4t-1}$. By Lemma 1, B is the base block of a GP(4t, 2t+1, 1) on vertex set $\{\infty\} \cup \mathbb{Z}_{4t-1}$. \square

Lemma 9 There exists a $GP(6t-3, 2t, 1), t \geq 3$.

Proof Let (V, \mathcal{B}) be the P_{2t} -design with vertex set $V = \{\infty\} \cup \mathbb{Z}_{6t-4}$ and block set obtained as devolopment of the following base blocks:

- $B_1 = [\infty, 0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-3}, \beta_{t-3}]$, where $\alpha_i = 4t + 1 i$, $\beta_i = 2t + 4 + i$, $i = 0, 1, \dots, t-3$;
- $B_2 = [0, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-2}, \beta_{t-2}, 3t-2]$, where $\alpha_i = 2t-1-i$, $\beta_i = 4t-1+i$, $i = 0, 1, \dots, t-2$ (B_2 is short).

 B_1 and B_2 satisfy the hypothesis of Lemma 1. Then (V, \mathcal{B}) is good.

Lemma 10 There exists a $GP(6t-2, 2t, 1), t \geq 3$.

Proof Let (V, \mathcal{B}) be the P_{2t} -design with vertex set $V = \mathbb{Z}_{6t-2}$ and block set obtained as development of the following base blocks:

- $B_1 = [0, 1, 3, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-3}, \beta_{t-3}, 3t + 4]$, where $\alpha_i = 4t + 2 i$, $\beta_i = 2t + 4 + i$, $i = 0, 1, \dots, t 3$;
- $B_2 = [0, \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_{t-2}, \beta_{t-2}, 3t-1]$, where $\alpha_i = 2t i$, $\beta_i = 4t + 1 + i$, $i = 0, 1, \dots, t-2$ (B_2 is short).

 B_1 and B_2 satisfy the hypothesis of Lemma 1. Then (V, \mathcal{B}) is good.

Theorem 2 If there is a GP(v, 2t+1, 1), $v \ge 4t$ and $t \ge 2$, then there is a GP(v+4t, 2t+1, 1).

Proof Let v be even, $v \geq 4t$, $t \geq 2$. Put $V = V_1 \cup V_2$ where $V_i = \mathbb{Z}_{\frac{v}{2}} \times \{i\}$, i = 1, 2. Let $X = \{x_0, x_1, \dots, x_{4t-1}\}$. By assumption there is a GP(v, 2t+1, 1) (V, \mathcal{B}_1) . By Lemma 8 there a GP(4t, 2t+1, 1) (X, \mathcal{B}_2) . So it suffices to produce a good P_{2t+1} -decomposition $(V \cup X, \mathcal{B}_3)$ of $K_{V,X}$. Define the block set \mathcal{B}_3 as follows:

- Let t = 2. For every $i \in \mathbb{Z}_{\frac{v}{2}}$ and $j = 0, 1, 2, 3, [(i, 1), x_{it}, (i, 2), x_{it+1}, (i-1, 1)] \in \mathcal{B}_3$.
- Let t be even, $t \geq 4$. For every $i \in \mathbb{Z}_{\frac{v}{2}}$ and j = 0, 1, 2, 3, $[(i,1), x_{jt}, (i,2), x_{jt+1}, (1+i,1), x_{jt+2}, (1+i,2), x_{jt+3}, \dots, (\frac{t-2}{2}+i,1), x_{jt+t-2}, (\frac{t-2}{2}+i,2), x_{jt+t-1}, (\frac{t}{2}+i,1)] \in \mathcal{B}_3$.
- Let t be odd, $t \ge 3$. For every $i \in \mathbb{Z}_{\frac{v}{2}}$ and j = 0, 1, 2, 3, $[(i, 1), x_{jt}, (i, 2), x_{jt+1}, (1+i, 1), x_{jt+2}, (1+i, 2), x_{jt+3}, \dots, (\frac{t-3}{2}+i, 1), x_{jt+t-3}, (\frac{t-3}{2}+i, 2), x_{jt+t-2}, (\frac{t-1}{2}+i, 1), x_{jt+t-1}, \frac{t-1}{2}+i, 2)] \in \mathcal{B}_3$.

Let v be odd, $v \geq 4t+1$, $t \geq 2$. Let $V = V_1 \cup V_2$, where $V_1 = \{0, 1, \dots, 2t-2\}$ and $V_2 = \{2t-1, 2t, \dots, v-1\}$. Let $X = X_1 \cup X_2$, where $X_j = \{\infty_j\} \cup \{x_0^j, x_1^j, \dots, x_{2t-2}^j\}$, j = 1, 2. It suffices to produce a good P_{2t+1} -decomposition of $K_{V,X}$ or, equivalently, a good P_{2t+1} -decomposition of K_{V_1,X_j} and $K_{V_2,X}$. Being $|V_2|$ even, a good P_{2t+1} -decomposition of $K_{V_2,X}$ can be produced as in the previous case. The required decomposition of K_{V_1,X_j} is $[x_i^j, i, x_{1+i}^j, 2t-2+i, x_{2+i}^j, 2t-3+i, \dots, x_{t-1+i}^j, t+i, \infty_j]$, $j = 1, 2, i \in \mathbb{Z}_{2t-1}$.

Theorem 3 If there is a GP(v, 2t, 1), $v \ge 4t - 2$ and $t \ge 3$, then there is a GP(v + 4t - 2, 2t, 1).

Proof Let v be even, $v \geq 4t-2$, $t \geq 3$. Put $V = V_1 \cup V_2$ where $V_i = \mathbb{Z}_{\frac{v}{2}} \times \{i\}$, i = 1, 2. Let $X = \{\infty_0, \infty_1\} \cup X_1 \cup X_2$, where $X_1 = \{x_0, x_1, \ldots, x_{2t-3}\}$, $X_2 = \{y_0, y_1, \ldots, y_{2t-3}\}$. By assumption, there is a GP(v, 2t, 1) (V, \mathcal{B}_1) . By Lemma 6, there is a GP(4t-2, 2t, 1) (X, \mathcal{B}_2) . So it suffices to produce a good P_{2t} -decomposition $(V \cup X, \mathcal{B}_3)$ of K_{VX} . Define the block set \mathcal{B}_3 as follows:

- Let t be even. For every $i \in \mathbb{Z}_{\frac{v}{2}}$ and j = 0, 1, $[(i,1), x_{j(t-1)}, (i,2), x_{1+j(t-1)}, (1+i,1), x_{2+j(t-1)}, (1+i,2), x_{3+j(t-1)}, \dots]$ $(x^{(i)}, x^{(j)}, x^{(j(i-1))}, (x^{(i-1)}, x^{(i-1)}, (x^{(i-1)}, (x^{(i-1)}, x^{(i-1)}, (x^{(i-1)}, x^{(i-1)}, (x^{(i-1)}, x^{(i-1)}, (x^{(i-1)}, x^{(i)}, x^{(i$ $[(0+i,2),y_{j(t-1)},(i,1),y_{1+j(t-1)},(1+i,2),y_{2+j(t-1)},(1+i,1),\\ y_{3+j(t-1)},\ldots,(\frac{t-2}{2}+i,2),y_{t-2+j(t-1)},(\frac{t-2}{2}+i,1),\infty_j] \in \mathcal{B}_3.$
- Let t be odd. For every $i \in \mathbb{Z}_{\frac{\nu}{2}}$ and j = 0, 1, $[(i,1),x_{j(t-1)},(i,2),x_{1+j(t-1)},(\frac{1}{2}+i,1),x_{2+j(t-1)},(1+i,2),x_{3+j(t-1)},\dots \\ \dots,(\frac{t-3}{2}+i,1),x_{t-1+j(t-1)},(\frac{t-3}{2}+i,2),x_{t-2+j(t-1)},(\frac{t-1}{2}+i,1),\infty_j] \in \mathcal{B}_3, \text{ and } [(i,2),y_{j(t-1)},(i,1),y_{1+j(t-1)},(1+i,2),y_{2+j(t-1)},(1+i,1),y_{3+j(t-1)},\dots \\ \dots,(\frac{t-3}{2}+i,2),y_{t-1+j(t-1)},(\frac{t-3}{2}+i,1),y_{t-2+j(t-1)},(\frac{t-1}{2}+i,2),\infty_j] \in \mathcal{B}_3.$

Let v be odd, $v \ge 4t - 1$, $t \ge 3$. Let $V = V_1 \cup V_2$, where $V_1 = \{0, 1, \dots, 2t - 2\}$ and $V_2 = \{2t-1, 2t, \dots, v-1\}$. Let $X = X_1 \cup X_2, X_j = \{x_0^j, x_1^j, \dots, x_{2t-2}^j\}, j = 1, 2.$ It suffices to produce a good P_{2t} -decomposition of $K_{V,X}$ or, equivalently, a good P_{2t} decomposition of K_{V_1,X_i} and $K_{V_2,X}$. Being $|V_2|$ even, a good P_{2t} -decomposition of $K_{V_2,X}$ can be produced as in the previous case. The required decomposition of K_{V_1,X_j}

$$[i, x_i^j, 2t-2+i, x_{1+i}^j, 2t-3+i, x_{2+i}^j, \dots, 2t-t+i, x_{t-1+i}^j], \ i \in \mathbb{Z}_{2t-1}. \ \Box$$

Theorem 4 Let $k \geq 5$. Let v be an integer such that $v \geq 2(k-1)$ and

- $v \equiv 0$ or 1 (mod 2(k-1)) if k is odd;
- $v \equiv 0$ or 1 (mod k-1) if k is even.

Then there is a GP(v, k, 1).

Proof Apply Lemmas 5, 6, 7, 8, 9, 10 and Theorems 2 and 3.

Open Questions 4

- The problem studied in this paper can be generalized as follows: for every integer t, $3 \le t \le k-1$, determine the spectrum of the integers v such that there is a P_k -design (V, \mathcal{B}) of order v having the property that no two blocks have $h, t \leq h \leq k$ common vertices, i.e. (V, \mathcal{B}) is a partial S(t, k, v).
- For every admissible $v \equiv 4 \pmod{6}$, $v \geq 10$, determine a GP(v, 4, 1) embeddable into a Steiner quadruple system of order v as shown in the following example.

Example 4. Let (V, \mathcal{B}_1) be the GP(10, 4, 1) with $V = \{a, b, c, d, e, f, g, h, l, m\}, \mathcal{B}_1 = \{emlf, lhfg, mdhb, amfd, cmga, m, lhfg, lhf$ fcgd, lead, gbde, hafb, heca, cbef, glab, mblc, ldch, mhge. Let $\mathcal{B}_2 = \{abcd, aefg, behl, cfhm, dglm, ahlm, bfgm, cegl, defh, ecdm,$ fbdl, gbch, hadg, lacf, mabe. Then $(V, \mathcal{B}_1 \cup \mathcal{B}_2)$ is a Steiner quadruple system of order 10 (considering the blocks of $\mathcal{B}_1 \cup \mathcal{B}_2$ as K_4 's).

References

- [1] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge (1979).
- [2] The CRC handbook of combinatorial designs. Edited by Charles J. Colbourn and Jeffrey H. Dinitz. CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996.
- [3] L. Gionfriddo, F. Rania and A. Tripodi, Difference methods in design theory, Quaderno n. 28/02 del Seminario Matematico di Brescia (2002).
- [4] M. Tarsi, Decompositions of a complete multigraph into simple paths: non-balanced handcuffed designs, J. Combin. Theory ser. A 34 (1983), 60–70.

(Received 8 Apr 2005)