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Abstract

An edge ordering of a graph G is an injection f : E(G) — N. A (simple)
path A for which f increases along its edge sequence is an f-ascent, and
a maximal f-ascent if it is not contained in a longer f-ascent. The de-
pression £(G) of G is the least integer k such that every edge ordering of
G has a maximal ascent of length at most k.

We determine a lower bound for the depression of trees, which is exact
if the set of branch vertices is independent, but not necessarily otherwise.

1 Introduction

We generally follow the notation of [2]. The neighbourhood N(v) of a vertex v of
a simple graph G = (V, E) is defined by N(v) = {u € V : wv € E}. An edge
ordering of G is an injection f : E — N. Denote the set of all edge orderings of
G by F(G). For any f € F(G) a path a,b,c,d of length three such that f(bc) =
min{ f(ab), f(be), f(ed)} or f(be) = max{f(ab), f(bc), f(cd)} is called an f-exchange.
A path X in G for which f € F(G) increases along its edge sequence is called an
f-ascent (or simply ascent if the ordering is clear), and if A has length £, it will also
be called a (k, f)-ascent. Thus an f-ascent contains no f-exchanges. If the path A
with vertex sequence vy, v1, ..., vy Or edge sequence ey, es, ..., ¢, forms an f-ascent, we
denote this fact by writing A\ as vov;...vg or ejes...ex. An f-ascent is mazimal if it is
not contained in a longer f-ascent. Let h(f) denote the length of a shortest maximal
f-ascent and define the depression £(G) of G by

e(G) = frg;\(g){h(f)h

that is, £(G) is the smallest integer k such that every edge ordering of G has a
maximal ascent of length at most k. To show that ¢(G) = k, we must therefore show
that
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(a) each edge ordering of G has a maximal ascent of length at most k — this shows
that £(G) <k,
(b) there exists an edge ordering f of G with no maximal ascents of length less

than k, i.e. for which each (I, f)-ascent, where | < k, can be extended to a
(k, f)-ascent — this shows that £(G) > k.

The study of the lengths of increasing paths in edge-ordered graphs was initiated
by Chvétal and Komlds [3] who posed the problem of determining the altitude a(G),
the greatest integer k such that G has a (k, f)-ascent for each edge ordering f € F(G),
for G = K,. They also considered the corresponding problem in the case where f-
ascents are trails, not necessarily paths. Let @(G) be the parameter corresponding
to (@) in this instance. It was shown by Graham and Kleitman [5] that @(K3) = 3,
@(K5) = 5 and @(K,,) = n — 1 otherwise. On the other hand, a(K,) is unknown for
n > 9; see e.g. [1]. For this reason subsequent work focussed on « rather than @; to
the best of our knowledge @ has not been considered for other classes of graphs.

Let 7(G) denote the detour length (the length of a longest path) of G. If G is a
connected graph with at least two edges, then for any f € F(G), any two adjacent
edges form a (2, f)-ascent, hence h(f) > 2. On the other hand, each ascent is a path
and thus has length at most 7(G). Therefore

2 <e(G) < 7(G). (1)

The depression of a graph was first defined in [4], where the bound in (1) was
improved by defining a parameter related to 7(G). For any path u,v,w in a graph
G, let T(uvw) be the length of a longest path in G containing the subpath u, v, w.
Define

7(G) = min{7(uvw)},

where the minimum is taken over all paths of G of length two; obviously 7'(G) <
7(G). As shown in [4], (G) < 7(G) for all graphs G. It follows that if G has a
vertex adjacent to two leaves, then ¢(G) = 2. Indeed, graphs with depression two
were characterised in [4], by no means an easy task. (Of course, ¢(G) = 1 if and only
if K, is a component of G.)

Theorem 1 [4] If G is connected, then ¢(G) = 2 if and only if G has a vertex
adjacent to two leaves or to two adjacent vertices of degree two.

Theorem 1 shows that there is no forbidden subgraph characterisation of graphs
with depression two, because if any vertex of an arbitrary graph G is joined to two
new vertices, the resulting graph has depression two.

2 Depression in trees

Theorem 1 gives the following characterisation of trees with depression two.
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y x w

Figure 1: A tree with depression five

Corollary 2 [4] If T is a tree, then €(T) = 2 if and only if some vertex of T is
adjacent to at least two leaves.

A branch vertex of a tree is a vertex of degree at least three and a support vertex
is a vertex adjacent to a leaf. Let L(T) and B(T) respectively denote the sets of
all leaves and all branch vertices of the tree T, and ¢(T) the minimum length of
a path P between two leaves of T such that no two consecutive vertices of P are
branch vertices, i.e. B(T) N V(P) is independent. For v € V(T) and I € L(T), a
(v, 1)-endpath, or v-endpath if the leaf is unimportant, or endpath if neither v nor !
is important, is a path P from v to [ such that each internal vertex of P has degree
two in T. A v-L path is any path from v to a leaf. A branch vertex v incident
with exactly one edge e such that e does not lie on any v-endpath is called a special
branch vertex. Each tree with at least two branch vertices has at least two special
branch vertices. (Root T at a branch vertex x and choose a branch vertex y # «
at maximum distance from z; now root 17" at y and choose a branch vertex 3y’ at
maximum distance from y. The edges e and €’ incident with y and y’, respectively,
on the y-y’ path satisfy the above requirement.) A spider S(as,...,a,) is a tree with
exactly one branch vertex v and v-endpaths of lengths 1 < a; < --- < a,, where
r = degv. The depression of spiders is given in [4].

Proposition 3 [4] £(S(ay,...,a,)) = min{a; + as, a3 + 1}.

An upper bound for the depression of trees related to the above result is also
given in [4]. Those spiders obtained by removing all edges of the tree T that are not
edges of endpaths are called hanging spiders of T. Let H(T') denote the set of all
hanging spiders H = S(ay, ..., a,), r > 3, of T and define

T)= mi 1}.
s(T) HrenﬁlT){as—i— }

Theorem 4 [4] For any tree T, ¢(T) < min{{(T), s(T)}.
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This bound is not exact for all trees, not even in the case where B(T') is inde-
pendent. Consider the tree T in Figure 1. It has no hanging spiders and ¢(T) = 6.
Hence by Theorem 4, £(T) < 6. Suppose f is an edge ordering of T with h(f) = 6
as (partially) indicated in Figure 1. We may assume without loss of generality that
a < b. Suppose ¢ < b. Then p < ¢, otherwise c¢b is a maximal (2, f)-ascent, which
is impossible. If ¢ < p, then rgpch contains a maximal ascent of length at most five.
Thus p < ¢. But now pgr contains a maximal ascent of length at most three, a
contradiction. Hence we may assume that b < ¢ and consequently ¢ < p. If ¢ < p,
then r¢p contains a maximal ascent, hence p < ¢ and so ¢ < r. Denote the y-u path
by P. If s < b, then P followed by the edge b contains a maximal ascent of length at
most five, hence b < s. It follows that f increases along P from u to y. Therefore, if
s < ¢, then sepgr is a maximal (5, f)-ascent, and if ¢ < s, then ¢ followed by P is a
maximal (5, f)-ascent, a contradiction. Therefore ¢(T") < 5.

In Section 3 we obtain a lower bound for the depression of all trees and show that
it is not exact for trees with adjacent branch vertices, while in Section 4 we prove
that this bound is exact for trees in which the set of branch vertices is independent.

3 Lower bound for trees

The lower bound for the depression of trees requires the following definition.

Definition 1 For a € B(T) with dega = r, let e1(«), ..., e,(a) be an arrangement
of the edges incident with « and ¢;(«) the length of a shortest a-L path P;(«) that
contains e;(«). We abbreviate ¢;(a), {;(a) and Pj(«) to e;, ¢; and P; if the vertex
« is clear from the context. An arrangement ey,...,e, is called suitable if {; < ¢;
whenever ¢ < j. From a suitable arrangement ey, ..., e, of the edges incident with a,
define

p(a) = min{l () + la(a), l3(a) + 1}.

Generally, when we say that a path P is an ascent, no direction of ascent is
implied; however, when we say that the path PUQ is an ascent, where V(P)NV(Q) =
{w}, we mean that the ascent starts at the endvertex of P other than w, increases
towards () and ends at the endvertex of ) other than w.

Theorem 5 FEwvery tree T has an edge ordering f such that

(4) h(f) > minaep{p(a)} and

(i1) for each a € B(T) there exist a suitable arrangement ey, ...,e,, v = dega, of
the edges incident with a and a choice of paths P; (as in Definition 1) such
that P, U P;, 2 <1 < r, or their reverses, are f-ascents.

Proof. We use induction on |B(T)|, the result being obvious for paths. If B(T) =
{v}, then T = S(¢4, ..., ¢,) is a spider. By Proposition 3,

€(T) = min{l; + fy,3 + 1} = min {p(a)}.
a€B(T)
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As in [4], let f increase along P; from the leaf to v, using the integers 1,...,¢;. For
i = 2,...,r, and in this order, label the edges of P; to form ascents from v to the leaf,
using the integers 23;11 Ci41,.., 375 0. Tt is easily seen [4] that f satisfies (i) and

Suppose the result is true for all trees with fewer than & > 2 branch vertices.
Let T be a tree of size m, |B(T)| = k, v with degv = r a special branch vertex
and e the edge incident with v not contained in any v-endpath. Let Q1,...,Q,_1
be the v-endpaths, labelled such that |E(Q;)| < |E(Q;)| whenever ¢ < j and T"
the subtree of size m’ obtained by deleting all vertices of Q;, i > 2, except v, from
T. Then |B(T')| = k — 1. By the induction hypothesis, 7" has an edge ordering
fE(T") — {1,...,m'} that satisfies (¢) and (i7).

For any o € B(T") and 1 < ¢ < dega, if we define ¢}(a) in T" similar to ¢;(a) in
T, then ¢;(a)) = ¢;(a) by the construction of 7", so we only use the notation ¢;(a).
Consider a suitable arrangement e;, 1 < ¢ < r, of the edges incident with v and the
v-L paths P; of length ¢;(v) as in Definition 1. Then e = e, for some 1 < s < r, and
if i £ s, then Q; = P; or Q; = P;y; depending on whether i < s or i > s.

Let u be the branch vertex nearest to v and @ : u,uy,...,us = v,...,u; the u-
endpath containing @;. Then e = vu,—; and u € V(FP;). Let ¢’ be the edge other
than wu; incident with w on P,. Since @ is the only u-L path in 7" containing
uuy, @ is an f’-ascent by (ii). Assume without loss of generality that f'(uui) <
f(ugusg) < -+ < f'(ws—yus). The u-L path R = P; — @ is obviously a shortest
u-L path containing ¢’. Hence we may assume without loss of generality that R is
that particular w-L path containing ¢’ that forms an f’-ascent as asserted in (i)
(otherwise we may redefine P; to contain the path with this property). Since P; is a
shortest v-L path containing e, it follows that R has length ¢;(u) if |[E(R)| < |E(Q)|
and length ¢y(u) if |E(Q)| < |E(R)|, in which case |E(Q)| = ¢1(u). In either case it
follows from (i¢) that RU @ is a maximal f’-ascent.

We obtain an edge ordering f of 7" which depends on the value of s. In each case
we show that any maximal f-ascent that is not a maximal f’-ascent either contains
a maximal f'-ascent, or has length at least that of some maximal f’-ascent for some
other reason, or has length at least p(v). This implies that (¢) holds. In each case it
also follows from the induction hypothesis, the reconstruction of T from 7" and the
definition of f that f satisfies the conditions in (i¢) for every branch vertex of T”.
We show that P;(v) U Py(v), i > 2, or their reverses, are f-ascents; it follows that f
satisfies (i7) in T

Case 1 s = 1. Note that for i = 2,...,r, P, = Q;_1; also, es = vugy;. Let f
agree with f' on 7" and, using the integers m' 4 1,...,m, label the edges of each P;,
© > 3, consecutively to form f-ascents increasing from v to the leaves, and so that
f(ei) < f(Ej) ifi< 7.

Each maximal f’-ascent in 7" — E(Q;) is a maximal f-ascent. Suppose X is a
maximal f'-ascent that contains wu;. Since uuj...u; is an f’-ascent and t > 2, X
does not end at uw;. If X starts at wy, then f'(uwi) = mingeny{f'(w1z)}. By
definition of f, f(uwy) = mingey(u){f(wiz)} in T also (also if v = u;) and X' is a
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maximal f-ascent. Clearly, no other internal vertex of )y is the start or end of a
maximal f’-ascent. Hence each maximal f’-ascent in 7" is a maximal f-ascent. In
particular, P, UP, = P, UQ; = RUQ is a maximal f-ascent (by (i7)) of length
G (v) + (v) = 6 (u) + lo(u).

Therefore the f-ascents not contained in 7" are as follows; we illustrate that they
either have lengths at least that of some maximal f’-ascent or lengths at least p(v).

If ) is a maximal f’-ascent that contains uu; and does not start at u;, then A =
(N =Q1)UP;, i > 3,is amaximal f-ascent of length at least that of X'; in particular,
for each i > 3, P, U P; is a maximal f-ascent of length at least that of the maximal
f'-ascent Q U R. By definition of f, {e;} UP;, 2 < i< j <r, are f-ascents and are
thus contained in maximal f-ascents of lengths at least £;(v) +1 > l3(v) +1 > p(v).

Hence h(f) > min{h(f'),{s(v) + 1} > minsepr){p(e)}. We have also shown
above that P;(v)U P;(v), ¢ > 2, are f-ascents. Combined with the induction hypoth-
esis this implies, as stated before Case 1, that f satisfies (ii).

Case 2 s=2. Then ey = e = vu,_1, P, = Qq and for ¢ = 3,...,r, P, = Q;_;. For
each z € E(T"), let f(z) = f'(z)+>_._30;(v). Using the integers 1,...>""_.¢;(v), label
the edges of each P;, i = 3,...,r, consecutively to form f-ascents increasing from the
leaves to v, and so that f(e;) > f(e;) if ¢ < j. Asin Case 1 each maximal f'-ascent
in 7" is a maximal f-ascent. In particular, P, U P; is a maximal f-ascent of length
l1(v) 4+ £3(v) = €1(u) 4+ ¢2(u). The f-ascents not contained in 7" are as follows.

For each i > 3, P,UP; is a maximal f-ascent of length at least that of the maximal
f'-ascent P, U P;. The other f-ascents that contain edges of 7" are P; U {es2}, 7 > 3,
which have lengths at least ¢3(v) 4+ 1 and hence are contained in maximal f-ascents
of lengths at least ¢3(v) + 1. Finally, for each 3 < ¢ < j < r, P;U{e;} is a
maximal f-ascent of length at least ¢3(v) + 1. Thus A(f) > min{h(f’), ls(v) +1} >
mingepm{p(e)}. Asin Case 1, f also satisfies (7).

Case 3 s > 3. Then P, = Q; fori = 1,...,s — 1 and P, = @Q;_; for i > s.
For each z € E(T") — E(Q), let f(z) = f'(2) + > ;_,.14i(v). Using the integers
1,..> i1 li(v), label the edges of each P;, i = s+ 1,...,r, consecutively to form
f-ascents increasing from the leaves to v, and f(e;) > f(e;) if i < j. Using the
integers m' + 31 6i(v) + 1, .,m/+ 35, 6(v) + 30, Li(v), label the edges of P,
i=2,..,5—1 to form f-ascents increasing from the leaves to v, and f(e;) > f(e;)
if i < j. Finally, label the edges of P, = (); with the largest integers to form an
f-ascent increasing from v to the leaves.

Each maximal f’-ascent in 7" — E((Q);) is a maximal f-ascent. Also, any maximal
f'-ascent containing uu; that does not start at u; is a maximal f-ascent; in particular,
P,U P, is a maximal f'- and f-ascent. The maximal f-ascents that are not maximal
f'-ascents are as follows. For each i = 2,...,7, i # s, P, U P, is a maximal f-ascent
of length at least ¢;(v) 4 {5(v). For 2 <i< j <r, P;U{e;} is an f-ascent of length
at least ¢3(v) + 1, hence is contained in a maximal f-ascent of at least this length.
Therefore h(f) > min{h(f'), ¢1(v) + l2(v), ls(v) + 1} > minaepry{p(a)}. Since we
have also shown that P, U P, 2 < ¢ < r, are f-ascents, it follows as before that f
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Figure 2: The double spider S(1,6 : 3,4)

satisfies (i7) in T [ |
Corollary 6 For any tree T, ¢(T') > minaepr){p(a)}.

The above bound is not exact if (B(7')) contains edges, as we show next. A double
spider is a tree T such that (B(T")) = K,. If T is the double spider that consists
of two adjacent vertices u and v with degu = k 4+ 1 and degv = k' + 1, together
with k& > 2 u-endpaths P; of lengths a;, 1 < i < k, and k' > 2 v-endpaths P} of
lengths b;, 1 < j < k', where a; < --- < a; and by < -+ < by, then we denote T by

S(ai,...;ay, : by, ..., b ). The double spider S(1,6 : 3,4) is illustrated in Figure 2.

Proposition 7 Let T = S(ay, ..., ay, : by, ..., by ). Then
S(T) Z min{a1 + az, as + ].7 bl + bg,b3 + 1,@1 + b2 + 1,@2 + bl + 1}7

where we ignore the term as + 1 if k = 2, and the term by +1 if k' = 2.

Proof. Let u; be the neighbour of u on F; and v; the neighbour of v on PJ’ Define
the edge ordering f as follows. From the leaf to u, label the edges of P, with the
integers 1, ..., a;; from the leaf to v, label the edges of P| with a; +1,...,a; 4 b;. Let
fuw) = a1+ b + 1. Fori=2,..,k, and in this order, label the edges of P; with
consecutive integers a; +b; +2, ..., Zleai +b; + 1 to form ascents from u to the leaf.
For j = 2,...,k', and in this order, label the edges of P; with consecutive integers
S b 2, e+ Z;‘I:lbj + 1 to form ascents from v to the leaf. The
maximal f-ascents are Py U P, for i = 2,...,k, {uju}UP; for2<i<j<k, PUP
for i = 2,.., k', {viwpU P for 2 < i< j <K, PLU{w}U P for j =2,..,k" and
P/ U{vu}U P, for i = 2,..., k. Therefore

h(f) :min{a1+a2,a3+1,b1+b2,b3+1,a1+b2+1,a2+b1+1}

(ignore the terms az + 1 or b3 + 1 if k =2 or &' = 2) and the bound follows. [ |
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Let T = S(1,6 : 3,4) — see Figure 2. Then {(u) = 1, ly(u) = 4, l3(u) = 6,
li(v) = 2, ly(v) = 3 and {3(v) = 4. Therefore min,epry{p(z)} = 5. However, by
Proposition 7, ¢(T') > min{7,7,6,10} = 6. This improves the bound in Corollary 6.

It is also easy to see that the difference between the bounds in Theorem 4 and
Corollary 6 can be arbitrary. Consider the spider S(1,2,2) with branch vertex v and
vertices u and w of degree two, and two disjoint copies of P, with vertex sequences
Up,y.eey Uy and wy, ..., w,. Let T be the tree obtained by joining u to u;, and w to wy.
Then T has no hanging spiders, minepm{p(z)} = p(v) = 3 and min{{(T'),s(T)} =
UT)=n+1.

4 Trees with independent branch vertices

We show that the bound in Corollary 6 is exact for trees T' with B(T') independent.
If B(T) = ¢, then T is a path and it is easy to see that £(P,) = n — 1, hence we
assume that B(T') # ¢. Recall that ¢(T") is the minimum length of a path P between
two leaves of T such that no two consecutive vertices of P are branch vertices.

Theorem 8 If B(T) is independent, then ¢(T) = minaepr{p(a)}.

Proof. By Corollary 6 we only need to prove that ¢(T') < mingepr{p(e)}. Suppose
this is not true. Consider a tree T with B(T') independent and edge ordering f
such that h(f) > minsepr{p(a)}. By Theorem 4, ¢(T) < ¢(T). But B(T) is
independent, hence any path of T between two leaves is without consecutive branch
vertices and therefore ¢(T') < ¢1(a)+{y(w) for any o € B(T). Hence h(f) > l3(v)+1
for some v € B(T) such that {3(v) +1 < {1(v) + {2(v).

Consider a suitable arrangement e; = vv;, © = 1,...,7 = degwv, of the edges inci-
dent with v and v-L paths P; of length ¢; containing e;. Since B(T) is independent,
degv; = 1 or 2 for each 3. But ¢4 4+40y > l3+1 > ¢y +1,ie. ly > ¢; > 1 and
degv; > 1 for each i. Hence degv; = 2. We henceforth only consider ¢ € {1,2,3}.
Let ¢} be the edge on P; adjacent to e;, z; = f(e;) and y; = f(€}). Let P, have vertex
sequence fy = v, %1 = Uj, 12, ..., -

If P; contains an f-exchange, let j be the largest integer such that ¢;_1,7;, %11, ¢j42
is an f-exchange. If degi; = 2, then i;i;41...¢¢, OF i¢,%¢,1...¢; is @ maximal f-ascent of
length less than (5, contradicting h(f) > ¢35+ 1. Therefore i; € B(T') and degi;_; =
degijy; = 2 since B(T) is independent. If it exists, let j' be the largest integer less
that j such that ¢;_1,7;, 741,749 is an f-exchange. If deg i = 2, then 4;%;/41...941
Or 4j41%;...¢; is a maximal f-ascent of length less than {3, a contradiction. Hence
iy € B(T), so that j/ < j —2, and degij_1 = degijiy1 = 2. Repeating the process
if necessary we eventually obtain an integer 2 < ¢; < {; < {3 such that degi;, = 2
and Q; : igiy...4;, (or its reverse) is an f-ascent, while 4gi;...i5,4;,41 (Or its reverse) is
not. If P; does not contain an f-exchange, then @); = P; is an f-ascent and we take

Assume without loss of generality that z3 < y; and consider ¢ € {1,2}. If
x; > w3, then either eze; is a maximal (2, f)-ascent (if y; < w;), or e3 followed by
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Q; is a maximal (¢; + 1, f)-ascent, contradicting h(f) > ¢35 + 1. Therefore z; < z3.
Moreover, if x; < y;, then e; followed by Q3 is a maximal f-ascent of length at most
0341, hence y; < ;. Now if &1 > @9, then @, followed by e; is a maximal (€5 +1, f)-
ascent, while if #; < @, then @, followed by e, is a maximal (¢; + 1, f)-ascent, where
¢y < 0y < ¢3. This contradiction shows that no edge ordering f with h(f) > l3(v)+1
exists. Thus ¢(T') < l3(a) + 1 for each o € B(T') and the bound is established. ®

5 Open problems

1. The bound in Proposition 7 is not best possible in all cases. Is there a simple
formula for £(S(ay, ...,ay : by, ..., by))?

2. If such a formula exists, it may be possible to determine a formula for the
depression of trees when the branch vertices are not independent, or perhaps
for special cases, for example where the subgraph induced by the branch vertices
consists of independent edges and isolated vertices.

3. Failing the above, improve the bounds in Theorem 4 and Corollary 6.

4. For arbitrary k > 0, let G be any graph with depression k. When any vertex
of GG is joined to two new vertices, the resulting graph H has depression two,
whether the new vertices are adjacent to each other or not (Theorem 1). This
can also be viewed as follows. Let G be any graph and construct H by identi-
fying any vertex of G with the central vertex of a new P; or with any vertex
of a new Kj. Then ¢(H) = 2.

Describe similar methods to obtain larger graphs with fixed depression € > 3
from smaller graphs with the same depression.

5. Characterise trees with ¢ = 3.

6. Characterise graphs with ¢ = 3.

Note added in proof: Problem 1 has been solved in [6] and Problem 5 in [7]; the
rest remain open.
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