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Abstract

For an edge e of a graph G, we denote by G/e the graph obtained from
G by contraction of e. Let & > 4 be an integer. We prove that for each
edge of a k-connected graph of minimum degree at least |3k| — 1, either
G/e or G — e is k-connected.

1 Introduction

An edge e of a graph G is said to be k-contractible if the graph obtained from G by
contraction of e, denoted by G /e, is k-connected. When we investigate a property of
k-connected graphs, a k-contractible edge gives us a basis for an inductive argument.
For this reason, it is worthwhile to study the distribution of k-contractible edges in
a k-connected graph. Tutte [7] proved that a 3-connected graph of order at least
five has a 3-contractible edge. Since then numerous results on the distribution of
3-contractible edges in a 3-connected graph have been obtained. Those who are
interested in this topic may consult Kriesell’s survey [4].

An edge e of a graph G is said to be 3-removable if G — e is homeomorphic to
a 3-connected graph. In other words, if the graph obtained from G — e by sup-
pressing vertices of degree two and replacing multiple edges with single edges is 3-
connected, then we say that e is 3-removable. Since the above operation transforms
a 3-connected graph to another 3-connected graph with fewer edges, a 3-removable
edge can also act as a basis for an inductive argument for 3-connected graphs. The
distribution of 3-removable edges in a 3-connected graph was studied in [3] and [6].

Though the previous researches have given insight into 3-contractible edges and
3-removable edges, few of them deal with both types of edges simultaneously. But
Tutte [7] proved the following theorem.
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Theorem A ([7]) Every edge in a 3-connected graph of order at least five is either
3-contractible or 3-removable.

The purpose of this paper is to give an extension of the above theorem for graphs
of higher connectivity.

One obstacle to this goal is the definition of a “k-removable” edge. Let e be an
edge of a k-connected graph (k > 3). If e is incident with a vertex of degree k, then
G — e has a vertex of degree k — 1, and hence it is no longer k-connected. There
exist infinitely many k-connected k-regular graphs, and for such graphs, we cannot
simply delete an edge and expect the resulting graph is k-connected. For k = 3,
in order to remove this obstacle, we suppress vertices of degree two. However, for
k > 4, it is not easy to deal with vertices of degree k — 1 by a simple operation
like suppression. Recently, Yin [9] defined a 4-removable edge in a 4-connected by
introducing a relatively simple operation to handle vertices of degree three, and Wu,
Li and Su [8] gave a lower bound to the number of 4-removable edges in a 4-connected
graph. But for £ > 5, no definition of a k-contractible edge has been proposed.

In this paper, we avoid this obstacle by restricting ourselves to k-connected graphs
of minimum degree at least k + 1. For such graphs, no vertex of degree k — 1 arises
by deleting an edge, and hence we can use the following simple definition.

Definition 1 For k > 4, an edge e of a k-connected graph of minimum degree at
least k + 1 is said to be k-removable if G — e is k-connected.

In this paper, we prove the following theorem. Note |3k| —1 > &k + 1 for k > 4.

Theorem 2 Let k > 4 and let G be a k-connected graph of minimum degree at
least L%AJ — 1. Then every edge of G is either k-contractible or k-removable.

For graph-theoretic terminology not defined in this paper, we refer the reader to
[1]. Let G be a graph. For © € V(G), we denote by Ng(z) the neighborhood of & in
G, and for A C V(G), we define Ng(A) by Ng(A) = Uyea No(v).

Let G be a non-complete graph, and let S be a minimum cutset of G. A union of
at least one, but not all, components of G — S is called a fragment associated with
S. If |S| = k, it is also called a k-fragment. Note that if A is a k-fragment of a
graph G, then S = Ng(A) — A is a minimum cutset of G of order &, and both A and
V(G) — (AU Ng(A)) are k-fragments associated with S.

2 Proof of the Main Theorem

In order to prove Theorem 2, we use the following lemma. Its proof is immediate
from the definition of G/e and G — e.

Lemma 3 Let G be a non-complete k-connected graph and let e = xy be an edge

of G.
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Figure 1: Fragments

(1) If G/e is not k-connected, then there exists a k-fragment A of G such that
{z,y} C Ng(A) — A.

(2) If G — e is not k-connected, then there exists a (k — 1)-fragment B of G — e
such that x € B and y € B, where B =V (G) — (BU Ng_(B)).

Now we prove Theorem 2.

Proof of Theorem 2.  The theorem is trivial if G is complete. Thus, we may
assume that G is not a complete graph. Assume ¢ = zy € E(G) is neither k-
contractible nor k-removable. Since e is not k-contractible, there exists a k-fragment
A of G such that {z,y} C Ng(A) — A by Lemma 3 (1). Furthermore, since e is
not k-removable, there exists a (k — 1)-fragment B of G — e such that x € B and
y € B, where B = V(G) — (BU Ng_.(B)), by Lemma 3 (2). Let S = Ng(A) — A,
A=V(G) — (AUNg(A)) and T = Ng_(B) — B. Let

X;=(SNB)U(SNT)U(ANT),
Xo=(ANT)u(SNT)U(SNB),
X;=(SNB)U(SNT)U(ANT),and
Xy=(ANT)Uu(SNT)uU(SNB).

Notez € BNSandy € BNS, |S| =k and |T| =k — 1. (See Figure 1.)
Claim 1

(1) If ANB # 0, then | X;| > k.

(2) If ANB # 0, then | X,| > k.

(3) If AN B # 0, then | Xs| > k.

(4) If ANB # 0, then | X4| > k.
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Proof. We prove (1). Since S is a cutset of G and T is a cutset of G — zy, there
does not exist an edge in G which joins a vertex in AN B and a vertex in A U B.
Therefore, if AN B # 0, then X, is a cutset of G and hence |X;| > k since G is
k-connected. We can prove (2), (3) and (4) in a similar way. O

Claim 2

(1) Either ANB=0or ANB = 0.

(2) Either ANB=0or ANB = 0.
Proof. We prove (1). If AN B # 0, then |X;| > k by Claim 1. Since |X;| + | X3] =
|S|+ |T| = 2k — 1, we have | X3| < k— 1, which implies AN B = (), again by Claim 1.
We can prove (2) in a similar way. O
Claim 3

(1) |Al > |3k] and |A] > |3F]

(2) |B| > |3k| +1 and [B| > [1k| +1

Proof. (1) Take a vertex vin A. Then deggv > 0(G) > |3k
AUS. Since |S| =k, we have k+ |A4| = |AUS|>degGU+
|A] > |sk]. We can prove [A| > |1k in a similar way.

;] —1 and {v}UNg(v) C
1> L AJ which implies
(2) Applying the same argument as above to z and observing {z} U Ng(z) C
BUT U {y}, we have | k| < |[BUT U{y}| = |B| + k, which implies |B| > [3k].
Since k > 4, we have |B| > 2. Then we can take a vertex u in B— {z}, and apply the
same argument to u, observing {u} U Ng(u) C BUT. This implies |B| > |+k| + 1.

We can prove [B| > |1k| + 1 in a similar way. O

AN B = by Claims 1 and 2. These imply A C T and [ANT| = |
Claim 3. Since [T| =k -1, |SNT|+|ANT| <k —1— |3k] = [3K]
|X:| > kand | X,| >k, |SNB| > k— ([3k] — 1) = |2k| +1and |SNB| > |3k] +1.
However, these imply |S| > 2 (|3k] +1) > k + 1, a contradiction. Therefore, we
have either ANB =0 or ANDB = 0.

Assume AN B # (. Then AN B = (. By Claims 1 and 2, |X;| > k and
ANB = 0. Therefore, B C S. By Claim 3, |[SN B| = [B| > L% ;| + 1. This
implies [SNB|+ [SNT| < k— (|3k] +1) = [$k| — 1. Since |X;| > k, we have
JANT| >k — ([sk] —1) = [3k] + 1, and since |T| =k =1, [ANT|+|SNT| <
(k=1)— (|3k] + )*[%]—2 Now, we have

Assume ANB # @ and ANB # 0. Then |X;| > k, |Xy| > k, ANB = and
> |1k

_ 1 1
X, < (ISNB|+[SNT) +(SNT|+ [ANT)) < M —1+ H —2< k-2
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and hence AN B = () by Claim 1. Therefore, we have A C T. By Claim 3, we have
|ANT| > |sk|. However, this contradicts [ANT|+ [SNT| < [3k] — 2. Hence we
have AN B = (). By symmetry, we also have AN B = (), and hence A C T.

By applying the same arguments as above to the fragment A, we have AN B =
ANB = (). These imply B C S and B C S. Then Claim 3 (2) forces [SNB| > |4k]+1
and |[SNB| > |3k] + 1. However, these imply |S| > 2 (|3k| +1) > k+1. Thisis a
final contradiction, and the theorem follows. a

3 Concluding Remarks

Theorem 2 is best-possible in the sense that there exist infinitely many k-connected
graphs G of minimum degree L%LJ — 2 such that G has an edge which is neither
k-contractible nor k-removable (k > 4). If k is an even integer, put & = 2/. Let m
be an integer with m > [ —1, and let Hy, Hy, H3, Hy and K be five complete graphs
on mutually disjoint sets of vertices with |H;| = |Ha| = |H4| =1, |H3| =1 —1 and
| K| = m. Take a vertex z in Hy and a vertex y in Hy. Let G, be the graph defined

by
V(G) = OV(Hi) UV(K)

E(G) = CJE(HZ) UE(K)U{uw: u€V(H;),v€V(Hp),l<i<4}
LZJi{uv: u€eV(K),veV(H)UV(Hs)} U{ay},

where we consider Hy = H;. Then G, is a 2l-connected graph of minimum degree
3l -2 = L%LJ — 2, and the edge xy is neither k-contractible nor k-removable. If
k is an odd integer, then put & = 20 + 1, where [ > 2, and the follow the same
construction as above, but with |H;| = |Hs| = |H;| = [, |Hs| =1+ 1 and |K| = m,
where m > [ — 1. Then the resulting graph is a (2] 4 1)-connected graph of minimum

degree 3/ — 1 = L%AJ — 2 and the edge zy is neither k-contractible nor k-removable.

For k > 4, it is not difficult to construct a k-connected (|2k] — 1)-regular graph
in which every edge lies in a triangle. (One example is the Cartesian product of
KLng _, and K3.) For each edge e in such a graph, both contraction and removal

2

of e yields a vertex of degree L%AJ — 2. Thus, in Theorem 2, we cannot hope to find
an edge e such that either removal or contraction of e results in a k-connected graph

which also has minimum degree at least |3k — 1.

By extending the definition of a k-removable edge in Definition 1, we can unite
Theorem A and Theorem 2.

Definition 4 Fork > 1, an edge e of a k-connected graph G is said to be k-removable
if G — e is homeomorphic to a k-connected graph.
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For k > 4, G — e is homeomorphic to a k-connected graph if and only if G — e itself is
a k-connected graph. Therefore, this definition is a common extension of Definition 1
and the definition of a 3-removable edge in [3] and [6].

Under Definition 4, Theorem A says that Theorem 2 also holds for 3-connected
graphs of order at least five. Dirac [2] and Plummer [5] characterized the edges e in
a 2-connected graph G such that G — e is not 2-connected. From their results, it is
easy to see that every edge in a 2-connected graph of order at least five is either 2-
removable or 2-contractible. This implies that Theorem 2 holds for £ = 2. Trivially,
every edge in a connected graph is 1-contractible. By combining these observations,
we have the following.

Theorem 5 Let k be a positive integer. Then every edge in a k-connected graph of
minimum degree at least |2k| — 1 and order at least k + 2 is either k-removable or
k-contractible.
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