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Abstract

Network dynamics has become a popular area of study as it is well known
that networks evolve and adapt over time. With this in mind, abnormal
change detection is critical to the understanding and control of network
dynamics. This paper presents differences in graph diameter as a method
for detecting abnormal change in a network time series. A formal defini-
tion of graph diameter is presented, with theoretical implications, exam-
ples and computational results. Also presented is an apparent means for
characterization of network state without dependence on other networks
in the time series. This leads directly to the ability to identify anomalous
change and characterizing the affects on the network communications.

* On leave from US Department of Defense, Ft. Meade, MD 20755.
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1 Introduction

We are primarily concerned with large-scale enterprise networks, the type of net-
work which evolves from the communications of large military, business and social
organizations. These are usually dynamic networks, and very often will be intranets
(private internets, with restricted access). Often these enterprises can be represented
by a time series of networks, each representing one day’s or one week’s transactions
or communications.

Network management and other network analysis and control applications benefit
greatly from effective and efficient means of detecting abnormal changes in such
a time series of dynamic networks. Techniques for abnormal change detection are
becoming more important as networks (especially large-scale enterprise networks) are
becoming more complex and dynamic. (Of course, whether a particular abnormal
change is significant for network management will depend on the particular network.
This would have to be discussed on an ad hoc basis, and is beyound our scope here.)

We consider the analysis of large-scale complex networks on a macroscopic level,
that is we consider properties of whole networks or large parts of networks as opposed
to analyzing each individual network component, as would be more appropriate if
one were dealing primarily with networks such as wireless networks (where local
information is crucial to decision-making). Macroscopic analysis often provides an
efficient means for network management and control. Existing techniques include
various pattern recognition approaches [4, 7, 10, 11, 14, 15], spectral graph theory
[13] and mean/median graphs [5, 8, 9]. An overview of the existing theory and
applications can be found in [13, 12].

Because communications and other types of networks can be modeled as directed
graphs (digraphs), the problem of abnormal change detection in networks becomes
a problem of identifying meaningful graph measures that quantify the difference in
a network time series. Graph diameter, a macroscopic measure of the “size” of a
network, lends itself directly to abnormal change detection in a time series.

The paper contains a brief introduction to modeling communications networks
as graphs in Section 2. Section 3 discusses the property of graph diameter and
recent applications using graph diameter. After developing a distance measure based
on graph diameter, Section 4 proves that the distance measure is a pseudo-metric.
In Section 5, a semnsitivity analysis is presented for the distance measure on some
well known families of graphs. An example is presented in Section 6 and Section 7
contains an analysis of a real time series using difference in graph diameter. Section
8 proposes the use of graph diameter as a characterization of network state and
concluding remarks are in Section 9.

2 Communications Networks as Graphs

Networks are ubiquitous. They are present in systems ranging from social networks
to food networks, and from biological networks to communications networks. These
networks can be represented by the mathematical abstraction known as graphs. A
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graph G = (V, E) is a model of a network which consists of a finite vertex set V
and a finite edge set E. An edge e € E is a pair of vertices denoting the endpoints
of the edge. Edges in E can be directed or undirected. Directed edges are ordered
pairs of vertices (u,v) € E, with the edge oriented from the vertex u to the vertex v.
An undirected edge is an unordered pair of vertices u,v € F denoting a connection
between v and v. An undirected edge u,v € E can be modeled as directed by
creating two directed edges (u,v) and (v,u). Graphs with directed edges are known
as directed graphs, or digraphs. The number of vertices in G = (V, E) is |V| and the
number of edges is | E|.

A weight function can also be introduced on the graph elements of G; it can
be defined over the set of vertices or the set of edges. The vertez-weight and edge-
weight are denoted by wy and wg respectively. Such a function maps the set of
graph elements to associated attributes. These attributes could be vertex labelings,
edge capacities, or traffic on an edge. A communications network can be represented
as the graph G = (V, E,wy,wg). Here, the vertex-weight, wy, is a labeling of the
vertices, wy : V — L, where L is the set of values of some attribute of a given
communications vertex (examples include cost, latency, etc.). Similarly, the edge-
weight, wg, is a mapping of the edge to its measured traffic flow, wg : E — R. In
this paper we are not concerned with vertex-weights, although it is quite possible to
use some measure of vertex-weights for change detection.

3 Graph Diameter

Graph diameter has become a popular property of graphs in recent research in the
fields of complex interactive networks and network analysis. For error and attack
tolerance of networks, graph diameter has been used to demonstrate change in net-
works subject to different faults [1]. Small-world networks are defined in terms of
graph diameter and neighborhood size [6, 16, 17]. Tying the ideas together, the di-
ameter of the World-Wide Web and the Internet have been measured, and are used
as evidence in the discussion of these two networks as small-world networks [1, 2].

Graph diameter can take on several meanings. We shall be concerned with macro-
scopic structure of networks, so graph diameter will be defined based on averages
of the longest shortest paths for all vertices. The definition of graph diameter more
commonly used in graph theory is the greatest of the longest shortest paths for all
vertices [18].

The shortest path between two vertices u and v is the path that starts at v and
ends at v with the smallest possible number of vertices visited in between. The
shortest path can also be based on an edge-weight, where the shortest path is the
path with the smallest sum of weights for all edges traversed between vertices u and
v. There are well known efficient algorithms for computing shortest paths [18].

Eccentricity is the key property that leads to the definition of graph diameter
and its application to abnormal change detection.

Definition 3.1 Given a graph G = (V, E) the eccentricity of a vertexv € V, denoted
g(v), is the mazimum distance from v to any other vertex in the graph. That is,
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e(v) = maxyevd(v,u), where d(v,u) is the length of the shortest path between the
vertex v and u.

The shortest path used in the definition of eccentricity can either be based on number
of hops (each edge weight equal to one), or on an edge-weight as described above.
Graph diameter is defined based on the eccentricities of all vertices in the graph.
Here, graph diameter is presented as the average of all vertex eccentricities.

Definition 3.2 Given a graph G = (V, E), graph diameter is defined as

Of course, graph diameter can be weighted or not weighted. Graph diameter can
be calculated using algorithms for all pairs of shortest paths. From the algorithms,
averaging over all of the vertex eccentricities is straightforward. Section 6 presents
an example network for calculating vertex eccentricities and graph diameter.

To use graph diameter as a measure of change, or difference, between two graphs
G and H, simply calculate the difference between their respective diameters. The
difference, f(G, H), is given by

f(G,H) = |D(G) = D(H)|.

The absolute value is used to measure the magnitude of the difference in the diameters
of the two graphs. The following two sections discuss some theoretical properties of
this distance measure and some sensitivities that this measure has for detecting
change in networks.

4 A Pseudo-Metric

It is a desirable property that a measure of network distance be a metric. A metric
on set A is a function, d : A x A — R, that maps a product set, A x A, to the real
numbers such that four axioms hold true: non-negativity, separation, symmetry, and
the triangle inequality.

The axiom of separation states that for a given distance measure, d(a,b) = 0
if and only if @ = b. In terms of graphs, two graphs are equivalent if they are
isomorphic, that is, the two graphs have a one-to-one mapping of the vertices which
preserve the edge connections [18]. It is certainly possible that two graphs, G and H,
are not isomorphic, but have the same graph diameter and therefore f(G, H) = 0.
A simple example of this is the complete graph with n vertices, K,. The complete
graph I, has diameter D(K,) = 1,V n > 2, and it follows that f(K;, K;) = 0,V
i,7 > 2; however, K; and K; are not isomorphic if ¢ # j.

Although the function f(G,H) = |D(G) — D(H)| is not a metric, it is still a
useful measure of distance between two graphs. To prove this, we present the notion
of a pseudo-metric.
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Definition 4.1 A pseudo-metric on set A is a function, d : A x A — R, for which
the following axioms hold for all a,b,c € A:

(i) d(a,b) >0,
(ii) d(a,b) =0, if a = b,
(iii) d(a,b) = d(b, a),

(iv) d(a,b) < d(a,c) + d(c,b).

For the graph diameter distance measure, axiom (i¢) of Definition 4.1 implies that
if two graphs are isomorphic, denoted G = H, then they have the same graph
diameter, but having the same graph diameter does not imply that the two graphs
are isomorphic. This relaxes the separation axiom in the definition of a metric.

Theorem 4.1 The function f(G,H) = |D(G) — D(H)| is a pseudo-metric.

Proof. It must be shown that all axioms in Definition 4.1 hold for f(G,H) =
|D(G) — D(H)|. For (i), by definition of absolute value, |D(G)— D(H)| >0,V G, H,
so f(G,H) > 0.

Next, to show that (i¢) holds, the relation of graph isomorphism is used. If G and
H are isomorphic, then there exists a bijection g : V(G) — V(H) such that {u,v} €
E(G) implies that {g(u), g(v)} € E(H). Due to this bijection |V (G)| = |V(H)| and
g(v) = e(g(v)) and therefore f(G,H) =0if G = H.

Again, by definition of absolute value, f(G,H) = |D(G) — D(H)| = |D(H) —
D(G@)| = f(H,G), so (iti) holds.

Finally, it must be shown that the triangle inquality f(G,H) < f(G,K)+f(K,H)
holds for all graphs G, H, K. Without loss of generality it is assumed that D(G) >
D(H). Three cases are considered. In the first case, let D(G) > D(H) > D(K).
Then

|D(G) — D(K)| +|D(K) — D(H)| = D(G) — D(K) + D(H) — D(K),
but D(H) — D(K) > 0 and —D(K) > —D(H), so
D(G)—- D(K)+ D(H) — D(K)

vV v
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For the second case, let D(G) > D(K) > D(H). Then

|D(G) — DE)| + |D(K) — D(H)| = D(G) ~ D(K) + D(K) ~ D(H)
— D(G) - D(H)
— |D(G) - D(H)|

In the last case, let D(K) > D(G) > D(H). Then
|D(G) = D(K)| +|D(K) - D(H)| = D(K) = D(G) + D(K) — D(H),
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but D(K) — D(G) > 0 and D(K) > D(G), so

D(K) - D(G) + D(K) — D(H) > 0+ D(K)— D(H)
D(G) — D(H)

|D(G) — D(H)|.

vV IV

Axioms (i)-(iv) hold, therefore f(G, H) = |D(G) — D(H)| is a pseudo-metric. =~ W

It is important to note that it is possible to define an equivalence class for which
the function f is a metric. If we define & to be the set of all networks with diameter
equal to D(G) and write D(®) for the (common) diameter of members of &, then
f(6,9) = |D(®) — D($H)| is a metric on the (quotient set of) equivalence classes

(®).

5 Sensitivity Analysis

In addition to being a pseudo-metric, if difference in graph diameter is to be a
useful indicator of changes in network topology, it is important that small changes
in a relatively dense unweighted network should not result in large changes in the
diameter. To investigate the sensitivity of our distance measure, we look at two
extreme cases, the families of complete graphs and of simple cycles. While real-
world networks do not usually come close to such highly-structured examples, they
make useful benchmarks.

The eccentricity of any vertex of the complete graph K, is 1, so the diameter
is D(K,) = 1. If one edge is deleted, two vertices of the resulting graph G will
have eccentricity 2, so D(G) = 22, If k edges are deleted, where k < %, at most 2k
vertices will have eccentricity 2, and the others will have eccentricity 1. So D(G) < 2.

In general, if a graph G has any vertex « of degree n — 1, then ¢(z) = 1. Any
two other vertices y, z are joined by at least one path of length 2, namely yzz, so
e(y) £ 2 and ¢(2) £ 2. So D(G) < 2. This means that even when } edges are
deleted from K, the resulting graph has diameter less than 2 unless the & edges
form a one-factor.

At the other extreme, consider the cycle C,,. Every vertex has eccentricity [ %], so
this is the graph diameter. If C, has vertices z1, zs, ..., 2y, let C, denote the result
of adding edge x,x; (a chord of length 7) to C,. The addition of an edge reduces the
graph diameter. As an example, we have

D(Cy) = 5,D(Cty) = 4.2, D(CY,) = 4.4, D(Cyy) = 3.8, D(Cy) = 4.0,

while

D(Cs) = D(C3) = 4, D(C3) = D(Cy) = 3.56.
Theorem 5.1 Ifn =0 (mod 4), then

z 3n

D(C!) > D(CF) = =—.
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If n =2 (mod 4), then

Ifn=1 (mod 4), then

D(c}) > pcE T = 112
If n =3 (mod 4), then
. n=3| 3n  1ldn — 15
D(C))>D(Cp?* )= — — —.
()2 pe) =3 M

Proof. In the first case, it is easy to see that the graph diameter is smallest when
the chord is of length n/2: in those cases the eccentricities are n/2 — 1 (twice — the
vertices furthest from the endpoints of the chord), n/2 — 2 (four times — the vertices
adjacent to the two just mentioned), n/2 — 3 (four times), ..., n/4+1 (four times),
n/4 (twice — the endpoints of the chord). The average is as shown.

The other cases are handled similarly. It is interesting to note that when n =

2(mod4), D(C’n,%) = D(Cn%_l) +52. "

Theorem 5.1 shows that the addition of an edge can reduce the diameter of C) by
approximately 25%, from |%| to approximately ‘%”. This discussion shows that the
distance measure based on graph diameter is sensitive to small changes in sparse
graphs and less sensitive for small changes in near complete graphs.

This analysis is pointless in the case of weighted networks, because the difference
in diameter due to inclusion or deletion of one edge can be made as large as we please
by increasing the weight of the edge.

6 An Example Network

Here an example network (graph) is used to demonstrate the calculation of vertex
eccentricities and difference in graph diameter as presented in Section 3. First, the
graph without an edge-weight function will be used, then an edge-weight w will be
introduced.

Let G be the graph in Figure 1 with V = {1,2,...,7} and E = {{1,2},{1,3},
{2,5},{3,5},{4,7},{5,6},{5,7},{6,7}}'. The eccentricities for the example graph
are: £(1) =4, £(2) =3,¢(3) =3, ¢(4) =4, (5) =2, ¢(6) = 3, ¢(7) = 3. Taking an
average of all the eccentricities, D(G) ~ 3.143.

To demonstrate that graph diameter can detect small changes in graph topology,
an edge is added to the graph in Figure 1. Figure 2 shows the graph with the edge

!The example graph is undirected, therefore, the edges are just unordered pairs of adjacent
vertices. It is trivial to convert the graph to directed as described in Section 2.
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Figure 1: Example graph.
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Figure 2: Example graph with edge {3,4} added.

{3,4} added. Let this graph be H = (EU{3,4}, V). It is left to the reader to verify
that the graph diameter D(H) = 2.714 and the difference f(G, H) = 0.429.

Now, an edge-weight w; is introduced on the original graph G to give G; =
(V,E,w;). For simplicity, let wi(e) = 3,Ve € E. This yields a graph diameter,
D(G4) = 9.429. To demonstrate that graph diameter can detect a change in edge-
weight, set wy = wy,Ve # {3,5} € E. Let wy({3,5}) = 1 and G, = (E,V,ws). With
this minimal change, D(G5) = 8.0, and f(G1, Gs) =~ 1.429.

7 Time Series Using f

The examples in Section 6 demonstrate that graph diameter can be used to detect
small changes in both network topology (unweighted) and network traffic (weighted).
In this section, graph diameter is used to measure change in a time series of an actual
communication network. Both unweighted and weighted time series are presented
where the corresponding edge-weight is traffic. The time series are based on daily
traffic activity.

We analysed sample network traffic which was used for previous investigations
(see, for example, [3]). It was collected from the network management system of a
large enterprise data network. The network can be thought of as an intranet with
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some 70,000 users. A traffic probe was installed on a single physical link in the
network and traffic parameters were logged over 24 hour periods in daily log files.
This probe collected traffic between up to 9,000 users daily. A traffic log file contains
information on the logical originators (O) and destinations (D) of traffic (derived
from network address information) and the volume of traffic transmitted between
O-D pairs. To reduce the overall number of O-D pairs in the data set, the individual
users (network addresses) were clustered by the business domain they belonged to
on the data network. The aggregated logical flows of traffic between the 325 business
domains observed over this physical link in a day were then represented as a directed
and labelled graph. Vertex-weight identified the business domains of logical nodes
communicating over the physical link with edge-weight denoting the total traffic
transmitted between corresponding O-D pairs over a 24 hour period.

Successive log files collected over subsequent days produced a time series of cor-
responding directed and labelled graphs representing traffic flows between business
domains communicating over the physical link in the network. Log files were col-
lected continuously over a period of several months, from July 9 to December 24,
1999, and weekends and public holidays were removed to produce a final set of 102
log files representing the successive business days’ traffic.

08 —

0.6 —

magnitude of change (normalized)

0.2 —

o) 20 40 60 80 100 120
days

Figure 3: Change in time series, using unweighted comparison.

Figure 3 shows the times series change based on the difference in graph diameter
normalized by the maximum change over the interval. Peaks in the time series
represent potential abnormal change in network topology. Abnormal change would
be based on deviations from some normal state of the network. Examples of network
changes corresponding to the maximum peak in Figure 3 are given in Figures 4 and
5 respectively.

Figure 6 shows the time series change based on the difference in weighted graph
diameter, normalized by the maximum change over the interval. As in the plot
in Figure 3, peaks represent potential abnormal change. The peaks and valleys
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Figure 5: Enterprise network after change.

differ between the two plots, as different factors are compared for weighted and non-
weighted graphs. The non-weighted plot would show topological changes where edges
are either added or deleted. The weighted plot, based on edge traffic, can show both
topological changes as well as abnormal changes in edge traffic. As demonstrated in
Section 4 and Section 6, both are sensitive to small changes in the network.

8 Time Series Using D

Instead of considering time series of f (difference in graph diameters), one can use
the diameter D directly and obtain an interesting time series of graphs. With the
measure D, we simply use the characterization of a graph independent of any other
graphs. This is the first time that we have addressed the problem of abnormal change
detection from a characterization of an individual graph. Note that f (as a function
of time) is effectively the rate of change of D in time.

As can be seen in Figure 7, there are still peaks and valleys in the time series plot
of graph diameter, but these peaks and valleys have a different connotation than in
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Figure 6: Change in time series, using weighted comparison.

the time series. This connotation is based on the difference in two graphs. From a
communications network perspective, large graph diameter implies a longer average
communication path between any two vertices. From the aspects of performance
and redundancy, small graph diameter is desirable so as to minimize the longest
average communication path link. So from this standpoint, an abnormal event could
be defined as an event where the graph diameter moves above some established
threshold. We also notice the obvious correlation of significant events with the time
series using the consecutive f-distances (see Figure 3).

This is an interesting new approach to classifying change in time series of net-
works. Comparison with other networks is not necessary, but can still be used. The
measure of graph diameter provides the ability to characterize a given network’s state
and we plan to pursue other aspects of this type of classification.

9 Conclusion

Graph diameter has been presented as an effective way of identifying change in
dynamic networks. This novel approach to time series analysis has shown that both
topological changes and traffic changes can be detected in communications networks.
Graph diameter differs from other approaches in that it treats the network at a more
macroscopic level and also allows for measuring the state of the network at any given
time. Other approaches merely focus on the difference between two networks in
series.
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Figure 7: Characterization by diameter.
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