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Abstract

An (a,d)-edge-antimagic total labeling of G is a one-to-one mapping g
taking the vertices and edges onto 1,2,...,|V(G)| + |E(G)] so that the
edge-weights w(uv) = g(u)+g(v)+g(uv), wv € E(G), form an arithmetic
progression with initial term a and common difference d. Such a labeling
is called super if the smallest labels appear on the vertices. In this paper,
we investigate the existence of super (a, d)-edge-antimagic total labelings
of graphs derived from cycles by adding one chord.

1. Introduction and Definitions

We follow either Wallis [9] or West [10] for most of the graph theory terminology and
notation used in this paper. In particular, we will consider a graph to be finite and
without loops or multiple edges. The vertex set of a graph G is denoted by V(G),
whereas the edge set of G is denoted by E(G).

A labeling of a graph is any mapping that sends some set of graph elements to a
set of positive integers. If the domain is the vertex-set or the edge-set, the labelings
are called respectively vertex labelings or edge labelings. Moreover, in this paper we
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deal with the case where the domain is V(G) U E(G), and these are called total
labelings.

We define edge-weight of an edge uv under a vertex labeling to be the sum of the
vertex labels corresponding to every vertex w and v. Under a total labeling, we also
add the label of uwv.

By an (a, d)-edge-antimagic vertex labeling we mean a one-to-one mapping from
V(G) onto {1,2,...,|V(G)|} such that the set of edge-weights of all edges in G is
{a,a+d,...,a+ (|E(G)| — 1)d}, where a > 0 and d > 0 are two fixed integers.

An (a,d)-edge-antimagic total labeling is defined as a one-to-one mapping from
V(G)U E(G) onto the set {1,2,...,|V(G)| +|E(G)|} so that the set of edge-weights
of all edges in G is equal to {a,a + d,...,a + (|E(G)| — 1)d}, for two integers a > 0
and d > 0.

An (a, d)-edge-antimagic total labeling will be called super if it has the property
that the vertex-labels are the integers 1,2,...,|V(G)|, the smallest possible labels.
A graph with an (a,d)-edge-antimagic total labeling or super (a, d)-edge-antimagic
total labeling will be called (a, d)-edge-antimagic total or super (a, d)-edge-antimagic
total, respectively.

These labelings are natural extensions of the notions of edge-magic labeling which
was introduced by Kotzig and Rosa [5,6] and studied in [2,4,8], and the notion of
super edge-magic labeling which was defined by Enomoto et al. in [3]. Note that
MacDougall and Wallis in [7] called super edge-magic labeling “strongly edge-magic”.

Additionally, Acharya and Hegde in [1] introduced the concept of a strongly (k, d)-
indezable labeling which is equivalent to an (a, d)-edge-antimagic vertex labeling.

Let C,, be the cycle with V(C,) = {v; : 1 < i < n} and E(C,) = {vjvss1 : 1 <
i <n—1}U{v,v}. We shall write C! to mean the graph constructed from a cycle
Cp by joining two vertices whose distance in the cycleis ¢t. Forn > 4,2 <t <n—2,
the graph C! is of course also the graph C"~".

In the present article we investigate the values of ¢ for which there exists a super
(a, d)-edge-antimagic total labeling of C%. If n is odd we can restrict our attention
to t odd or even and if n is even we will pay attention to ¢ at most 7.

2. Basic Counting

The first result in this section finds an upper bound for the feasible values of the
parameter d for a super (a,d)-edge-antimagic total labeling of C!.

Theorem 1. IfC! n>4,2<t<n-—2, is super (a,d)-edge-antimagic total then
d<3.

Proof. Suppose C!, n > 4,2 <t <n -2, has a super (a,d)-edge-antimagic total
labeling g : V(CL)UE(CL) — {1,2,...,n}U{n+1,n+2,...,2n+1}. Consider the
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extreme values of vertices and edges. The maximum edge-weight is no more than
4n. On the other hand, the minimum possible edge-weight is at least n + 4.

Thus we have
a-+nd<idn

and
3n—4

n

d<

4
=3-=<3
n

for every n > 4.
O

Suppose the endpoints of the chord receive labels  and y. The following result
provides the values a and = + y under a super (a,d)-edge-antimagic total labeling.

Theorem 2. Let C!, n >4, t > 2, be super (a,d)-edge-antimagic total.

Ifd =0 and n =2k, then z +y =2k + 1 and a = 5k + 2.

Ifd =0 and n =2k + 1, then eitherx +y =k +1 and a = bk + 4, or
r+y=3k+3 and a =5k +5.

Ifd=1thenx+y=n+1anda=2n+2.

Ifd=2 and n =2k, thenx+y =2k + 1 and a = 3k + 2.

Ifd=2 and n =2k + 1, then either x +y=k+1 and a = 3k + 3, or
r+y=3k+3 and a = 3k + 4.

Proof.  Assume that C., n > 4, t > 2, has a super (a,d)-edge-antimagic total
labeling g : V(CL) U E(CL) — {1,2,...,2n + 1} and W = {w(w) : w(w) =
g(uw) + g(v) + g(uwv),uwv € E(C!)} = {a,a+d,...,a+nd} is the set of edge-weights.

The sum of edge-weights in the set W is

Z w(uww) = (n+ L)a+ @d .

w€E(CY)

In the computation of the edge-weights of C! the label of each edge is used once,
the labels of endpoints of the chord are used three times each and the labels of all
the other vertices are used two times each.

Thus

" 5n% 4+ Tn + 2
2 . = .
;:1 g(vz) rTy E g(uv) 9 rTy

weE(CY)

Combining these two equations gives us

m+2 zx+y n
a= ——=d.
2 n+1 2

Let us consider three cases.
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Case 1. d =0.

If n is even, say n = 2k, then a =5k + 1 + 2’”;;3’1 The value a is an integer when
x4y = 0 (mod 2k + 1). The condition 1 < z,y < 2k implies « +y = 2k + 1.

Consequently a = 5k + 2.

If n is odd, n = 2k + 1, then a = 5k + § + 572%. Applying the conditions that a
is an integer and 1 < z,y < 2k + 1 we get either x +y = k+ 1 and a = 5k + 4, or

r+y=3k+3and a=5k+5.
Case 2. d =1.

In this case a =2n + 1 + ﬁ—f{ Using the condition 1 < z,y < n we can see that
a is an integer if and only if z +y =n + 1. Thus a = 2n + 2.

Case 3. d = 2.

If n is even, n = 2k, then a = 3k 41+ 5L is an integer if 24y = 0 (mod 2k +1).

Applying the condition 1 < z,y < 2k implies x +y = 2k + 1 and a = 3k + 2.
When n is odd, n = 2k + 1, we get a = 3k + 5 + 5722, Since 1 < z,y < 2k+1, it
follows that either z +y =k +1and a =3k +3,0or x +y = 3k + 3 and a = 3k + 4.

a

3. Known Results

The following was proved in [2]:

Proposition A. Let G be a graph which admits total labeling and whose edge la-
bels constitute an arithmetic progression with difference d. Then the following are
equivalent.

(i) G has a (k,0)-edge-antimagic total labeling.

(it) G has a (k — (|E(G)| — 1)d, 2d)-edge-antimagic total labeling.

The following five results were obtained by MacDougall and Wallis in [7]. We
rewrite them in the light of our terminology.
Proposition B. Cj ., m > 1, has a super (a,0)-edge-antimagic total labeling for

all possible values t with a = 10m + 9 or a = 10m + 10.

Proposition C. Cf . . m > 3, has a super (a,0)-edge-antimagic total labeling for
every t other thant =5,9,4m — 4,4m — 8 with a = 10m +4 or a = 10m + 5.

Proposition D. C} .., m > 1, has a super (10m + 4,0)-edge-antimagic total
labeling for every t =1 (mod 4) except 4m — 3.

Proposition E. C! , m > 1, has a super (10m+ 2, 0)-edge-antimagic total labeling
for allt =2 (mod 4).
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Proposition F. Cf ,,, m > 4, has a super (10m + 7,0)-edge-antimagic total
labeling for all t =3 (mod 4) and for t = 2,6.

4. Super (a,d)-edge-antimagic total labeling for C!,

In this section we present the values of ¢ for which there exists a super (a, d)-edge-
antimagic total labeling of C!.

Theorem 3. Forn odd, n =2k + 1 > 5, and for all possible values t every graph
C! has
(1) a super (a,0)-edge-antimagic total labeling with a = 5k +4 or a = 5k +5 and
(i) a super (a,2)-edge-antimagic total labeling with a = 3k + 3 or a = 3k + 4.
Proof. 1t follows from the propositions B, C and D that every graph C, n odd,

n = 2k 4+ 1 > 13, has a super (a,0)-edge-antimagic total labeling for all possible
values t with a = bk +4 or 5k + 5.

Now, for i = 1,2,3,4 we construct the vertex labeling g; : V/(C%,,,) = {1,2,...,
2i 4+ 3} in the following way:

(0) Hoifj=1,35

Vi) = .

R FEC R T

g2(v1) = 1, g2(v2) = 4, g2(v3) = 2, ga(va) = 5, ga(vs) = 6, ga(ve) = 3,
92(1}7) = 7

93(”1) =1, 93(”2) =3, 93(”3) =T, 93(1)4) =2, 93(”5) =6, 93(”6) =38,
g3(v7) = 3, ga(vs) = 4, ga(ve) = 9.

9a(v1) =6, ga(va) =7, ga(vs) =1, ga(vs) = 8, ga(vs) = 2, ga(ve) =9,
ga(v7) = 3, ga(vs) = 4, ga(ve) = 10, ga(v10) = 5, ga(v11) = 11.

It is a matter for routine checking to see that the labeling g; is (b, 1)-edge-
antimagic vertex labeling of C%,,, for i € {1,2,3,4} and for all possible ¢t with
b=1i+4+2orb=1i+3. We are able to arrange the edge values {2i+4,2i+5,...,4i+7}
to the edges of C%,,, for i € {1,2,3,4} such that the resulting labelings are super
(¢, 0)-edge-antimagic total for all possible values ¢ with ¢ = 5i + 9 or ¢ = 57 + 10.

Note that, under every super (a,d)-edge-antimagic total labeling, the set of edge
values of G consists of the consecutive integers {|V(G)|+1,|V(G)|+2,..., [V(G)|+
|E(G)|}. Combining the above described facts with Proposition A, it is easy to see
that C! for n odd, n = 2k + 1 > 5, has a super (a,2)-edge-antimagic total labeling
for all possible values t with a = 3k + 3 or a = 3k + 4.

d
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Theorem 4. Forn =0 (mod 4), n > 4, the graph C! has
(i) a super (% + 2,0)-edge-antimagic total labeling and
(it) a super (3 + 2,2)-edge-antimagic total labeling for all t =2 (mod 4).

Proof. The existence of super (57" +2,0)-edge-antimagic total labeling of C, n =0
(mod 4), n > 4, for all t = 2 (mod 4) follows from Proposition E [7]. Combining
this with Proposition A we can see that C%, n = 0 (mod 4), n > 4, has a super
(2 + 2,2)-edge-antimagic total labeling for all ¢ =2 (mod 4).

d

Theorem 5. Forn =10 and for n =2 (mod 4), n > 18, the graph C! has
(i) a super (3 + 2,0)-edge-antimagic total labeling and
(i1) a super (3 + 2, 2)-edge-antimagic total labeling for all t =3 (mod 4) and for
t=2 andt=6.

Proof. MacDougall and Wallis (Proposition F) proved the existence of super (3 +
2,0)-edge-antimagic total labeling of CY, for n =2 (mod 4), n > 18 and for all t = 3
(mod 4) and for t = 2,6. In [7] are described the 17 dual pairs of labelings for Cig
and there is shown that C!, for t € {2,3,4,5}, has super (27, 0)-edge-antimagic total
labeling. Now, if we apply Proposition A then we arrive at the desired result.

a

In this notation, we remark that CZ is not super (a,d)-edge-antimagic total for
d € {0,2} (see [7]). Moreover, for C%, and d € {0,2}, we have not yet found a
construction that will produce super (a, d)-edge-antimagic total labeling.

Theorem 6. Forn odd, n > 5, and for all possible values t every graph C! has a
super (2n + 2,1)-edge-antimagic total labeling.

Proof. Let V(C!) = {v1,va,...,v,} and E(CL) = {vjvsq1 : 1 =1,2,...,n — 1} U
{vyv1} U {chord}. Consider the bijection
g5 V(CHYUE(CY) = {1,2,...,n}U{n+1,n+2,...,2n + 1} where
() 4l ifjisodd, 1<i<n
v;) =
s if i s even, 2<i<n—1

ntlot ifjisodd, 1<i<n—2

g5(viviy1) = {% ifiiseven,2<i<n-—1

s (Unvl) = %

gs(chord) = 2n + 1.

It follows from Theorem 2 that the sum of labels of the endpoints of the chord
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must be 4y = n+1. We can see that for 1 <7 < 22 — 1, g5(v;) + g5(vn—i) = n+1.
So the endpoints of the chords v;v, ; for 1 < i < 2= — 1 cover all even distances
{2,4,6,...,n — 3} in the cycle and obviously all odd distances {n — 2,n —4,n —

.,3}. It is a routine procedure to verify that the set of edge-weights of all
edges in the cycle consists of the consecutive integers {gs(v,,) + g5(v1) + g5(v,v1)} U
{g5(v;) + gs(viz1) + g5(Vivit1) : 1 < i <n—-1} ={2n+2,2n+3,...,3n + 1} and
95(vi) + g5 (Un—s) + gs(chord) =3n+2 for 1 <i < "T’l -1

This implies that g5 is a super (2n + 2, 1)-edge-antimagic total labeling of C! for

n odd and for all possible values t.
O

Theorem 7. Forn even, n > 6, and for t odd, t > 3, the graph C! has a super
(2n 4 2,1)-edge-antimagic total labeling.

Proof. Name the vertices in C! as vy, vs,...,v, and the set of edges is E(CY) =
{viviy1 11 =1,2,...,n =1} U{v,v1 } U{chord}. Then attach labels to all the vertices
and edges as follows:

g6(vi) = fori=1,2,...,n

(
96(Viviz1) =2n+1—1 fori=1,2,...,n—1
g6(vpv1) =n+1

ge(chord) = 2n + 1.

There is no problem in seeing that the labeling g¢ uses each integer 1,2,...,2n+1
exactly once and this implies that the labeling gq is a bijection from the set V(C!)U
E(C!) onto the set {1,2,...,2n +1}.

Consider the following chords v;v,41-; for ¢ = 2,3,...,2 — 1. The distances of
endpoints of the chords cover all odd lengths 3,5,7,...,n — 3 in the cycle and the
edge-weight for every chord is gg(v;) + g6(vn+1-:) + gs(chord) = (n + 1) + (2n + 1).
Moreover, it is easy to verify that the edge-weights of all edges in the cycle are
2n+2,2n4+3,2n+4,...,3n+ 1. So g is a super (2n + 2, 1)-edge-antimagic total
labeling of C!, n even, for all odd t.

d

Theorem 8. Forn =0 (mod4), n >4, and for t =2 (mod 4), t > 2, the graph
C! has a super (2n + 2, 1)-edge-antimagic total labeling.

Proof.  First, we consider n = 4 and define the labeling g; : V(C?) U E(C?) —
{1,2,3,...,9} where

Il ifi=1,3
97(Ui)—{ 2 o
% ift1=2,4
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n+i+2 ifi=1,2
5 ifi=3

97(UiUi+1) = {
97(U4U1) =9

g7(chord) = g;(vivs) = 6.

We can see that the edge-weights of edges of C} are 10,11,12,13,14. Thus the
labeling g; is super (10, 1)-edge-antimagic total labeling of C7.

For n > 8, n =0 (mod 4), define the bijective function

gs: V(CHYUE(CL) = {1,2,3,...,2n + 1} in the following way.

4l ifiisodd, 1<i<%-1

2L ifiisodd, 24+1<i<n-—1
1 ifiiseven, 2 <4

3+1 ifiiseven, § <1

gs(vz‘) =

gs(vpv1) =2n+1

2n+1—4 ifiiseven,2<i<n-—2
gs(vivit1) = fncitl if 4 is odd except i = % — 1

il o ifi=2-1
gs(chord) = 3¢ + 1.

It can be seen that the weights of edges in the cycle, under the function gs,
clearly form two arithmetic progressions 2n+2,2n+3,..., 2 2 41 and 2 +3, 2+
4,...,3n+2. To prove that gs is a super (2n+ 2, 1)-edge-antimagic total labeling of

C! it suffices to exhibit a chord with edge-weight %" + 2 and distance t = 2 (mod 4).

When i is odd and 1 <4 < 7 — 1, the distances of endpoints of the chords v;v,,;
cover all lengths ¢ = 2 (mod 4) in the cycle and gs(vi) + gs(vn—i) + gs(chord) =
n+14241=2142is the edge-weight of every chord.

Thus gg is the required labeling.

5. Conclusion

In the foregoing sections we presented the values of ¢ for which there exists a super
(a,d)-edge-antimagic total labeling of C%. We have shown a bound for the feasible
values of the parameter d and have proved that graph C! has a super (2n + 2,1)-
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edge-antimagic total labeling
(i) for n odd, n > 5, and for all possible values ¢,
(ii) for n even, n > 6, and for ¢ odd, ¢ > 3,
(iii) for n = 0 (mod 4), n > 4, and for ¢t = 2 (mod 4), ¢t > 2.
We have not yet found a construction that will produce super (2n + 2,1)-edge-

antimagic total labeling of C! for the other values of n and t. However, we suggest
the following:

Conjecture 1. There is a super (2n + 2,1)-edge-antimagic total labeling of C
forn=0 (mod4) and for t =0 (mod 4) and
forn=2 (mod 4) and for t even.
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