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Abstract

Constant weight codes (CWCs) are an important class of codes in coding
theory. Generalized Steiner systems GSq(t, k,v, g) were first introduced
by Etzion and used to construct optimal constant weight codes over an
alphabet of size g + 1 with minimum Hamming distance d, in which
each codeword has length v and weight k. As to the existence of a
GS4(2,k,v,g), alot of work has been done for k = 3,4, while not so much
is known for & = 5. In this paper, a good quadruple system(GQS(v))
is introduced to construct a GS5(2,5,v,5). It is proved that there exists
a GS5(2,5,v,5) for any prime power v = 1 (mod 4) and v > 9. More
existence results on GS5(2,5,v,5)s are also obtained.

1 Introduction

The concept of an H-design was first introduced by Hanani [13] as a generalization
of Steiner systems (the notion of H-design is due to Mills [15]). An H(v,g,k,t)
design is a triple (X, G, B), where X is a set of points whose cardinality is vg, and
G ={G,...,G,} is a partition of X into v sets of cardinality g, the members of G
are called groups. A transverse of G is a subset of X that meets each group in at
most one point. The set B contains k-element transverse of G, called blocks, with
the property that each t-element transverse of G is contained in precisely one block.
When ¢ = 2, an H(v,g,k,2) is just a group divisible design of group type g* and
denoted by k-GDD(g").

As stated in [6] and [23], an optimal (g + 1)-ary (v, k,d) constant weight code
(CWC) over Z,4; can be constructed from a given H(v, g, k, t) (I, xI,, {{i} xI, | i €
1}, B), where I,, = {1,2, ...,m} and d is the minimum Hamming distance of the
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resulting code. For each block {(i1, a1), (i2, a2), ..., (ix, ag)}€ B, we form a
codeword of length v by putting a; in position i;, 1 < j < k, and zeros elsewhere.
For convenience, when two codewords obtained from blocks B; and B, have distance
d, we simply say that B; and B, have distance d.

In the code which is related to an H(v,g,k,t), we want that the minimum
Hamming distance d to be as large as possible. It is not difficult to see that
E—t+1<d<2(k—t)+1.In[6], an H(v, g, k,t) which forms a code with minimum
Hamming distance 2(k—t)+1 is called a generalized Steiner system GS(t, k,v,g). An
H(v,g,k,t) which forms a code with minimum Hamming distance d is denoted by
GSy(t, k,v,g). Fort =2, a GSy(t, k,v,g) is a k-GDD(g") with an additional distance
property. If a pair of blocks have ¢ groups in common and within those groups have
p € {0,1} points in common, then their distance will be 2(k — ¢) + ¢ — p. So, to
achieve a minimum distance of d, we also need to ensure that blocks in the GDD
don’t share too many groups. For d = k, we need the extra property that if a pair
of blocks occur on the same groups, then they are disjoint.

As to the existence of a GiSy4(2, k,v,g), a lot of work had been done for k = 3,4
(see [2,3,4,6,7,8,9,10, 11, 14, 16, 17, 18, 19, 20, 21], while not so much is known
for k > 5.

The following result was stated in [19].

Lemma 1.1 If there exists a GSy(t, k,v,g), then
(1) LZ—:;LZ:E:} LZ:E:?J“ > g+ 0, where s =2(k—t)+1—d, and

1, ifs=1, v—t—1=0 (mod k —t—1) and
§= (v—t)(v—t—1)= -1 (mod k —t),
0, otherwise.

(2) (]”7’) divides (vfi)g”i forany0<i<t-—1.

t—1i t—1i

Remark 1 In [19], condition (2) is (}7;) divides (}7})¢" for any 0 < <t —1,

this condition erred from [6], the correction needed is to replace g’ by g'~*.
From Lemma 1.1, we have the following result.
Lemma 1.2 If there exists a GS5(2,5,v,5), thenv > 9, and v =1 (mod 4).

In this paper, the following results are obtained.

Theorem 1.3 There exists a GS5(2,5,v,5) for any prime power v = 1 (mod 4),
v>9.

Theorem 1.4 There exist both a GS5(2,5,mn,5) and a GS5(2,5,m(n — 1) +1,5)
form =1 (mod 4), m > 5 and prime power n =1 (mod 4), n > 9.
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2 Construction using good quadruple system GQS

To construct a GS5(2,5,v,5), we need the following notation. Let G be an abelian
group of order v = 4t + 1. A good quadruple system in G (denoted by GQS(v)) is
a set of quadruples @ = {(@i1, i2; i3, ia) = 1 < @ < t} which satisfies the following
properties:

(1) {2 € G\{0} 1 1<i<t,1<k<2U{~2a € G\ {0} :1<i<t3<I<4}=
G\ {0};

(2) {(wi — @i2), £(wiz —wia): 1 <i <t} =G\ {0}

(3) {(zis — 1), (wis — Tai2), (Tis — 1), (Tia — xi2): 1 <3 <t} =G\ {0}

(4) the elements in S are pairwise different, where S = {{z;1, @i, @3, @i}, {—zi1,
Lio — 41, Li3 — Li1, Li4 —5011}, {Iil — L2y, —L42, Li3 — Li2, Li4 — 232'2}7 {Iﬂ — L4535 Li2 — Li3,
—&i3, Tig — 272‘3}7 {272‘1 — Ti4, Ti2 — Tid, T3 — LTid, —272‘4}}-

Example 2.1 The following is an exzample of a GQS(25) in Zys:
Q@ =1{(1,2;3,6),(3,20;13,18), (4,13; 16, 20), (6, 18; 1,15), (8, 15; 4, 14), (14, 16; 2, 8) }.

In the following, we will construct G.S5(2,5,v,5)s via GQS(v)s.

Lemma 2.2 If there exists a GQS(v) in group G of order v = 4t + 1, then there
exists a GS5(2,5,v,5).

Proof Suppose Q = {(z1,Ti2; i3, x44) : 1 <7<t} is a GQS(v) in group G. Let
A=G x Zs, G={{g} x Zs:g € G},
60:{{[272‘1,0}, [.Z‘iZ,O}, [.1‘137 1], [272‘47 1], [0,3]} 01 S 1 S t},
A=Hlzi+g. il [wi2+g, 5], [vis+9,7+1], [za+g,5+1],[9.5+3]} : g € G g, j+1 €
Zs,1<i <t}

We claim that (X, G, A) is a GS5(2,5,v,5).

First , we prove that it is a 5-GDD(5"). Let (, s), (2, s') be any two elements of
X', which are not in the same group, then & # '. If s = s’ = 7, then there exists an ¢,
such that |z — x| = | —2'| or |3 — 24| = |v—a'|. Tt is clear that {(z, s), (2', ")} C
C, where C = {[zis + 9,7 .[xi2 + 9,5 ],|wiz + 9,5 + .[wia + 9,5" + 1].lg, 5" + 3]},
ge{r—za,x —xp, v — 3,2 — 2z}, j €{j,j—1}.

If s # ', we distinguish two cases. (1) Suppose that |s — s'| = 1: without loss
of generality, we may assume that s = s’ + 1. Let ¢ = x — 2/, then there exists an
i, such that z;, — x5 = c,u € {3,4},w € {1,2}. It is clear that {(z,s),(2',s')} C
{[xn + @ — x4, 8]y [Ti2 + T — i, 8], [Tiz + T — Ty, 8], [Tia + T — Ty, 8], [0 — T4, 8+ 3]}
(2) Suppose that |s — s'| = 2, without loss of generality, we may assume that s =
s+ 2. Let ¢ = x — ', then there exists an 4, such that z;, = ¢, u € {1,2}, or
Ty = —c,w € {3,4}. If z;, = ¢, then it is clear that {(z,s),(2',s)} C {[za +
2, s8], [z + 2, s), [vis+ 2, s+ 1], [xu + 2/, s+ 1], [2, §']}. If 24y = —c, then it is clear
that {(z,s), (¢, s")} C {[za+z, 8 = 1], [w+x,s = 1], [v3+ 2,5, [vu+ 5], [z,5]}.
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So we conclude that for any two elements in X', which are not in the same group,
there exists at least one block in A containing them. By simple counting we know
that |A| = 2= which is just the number of blocks in a 5-GDD(5"). So (X, G, A)
is a 5-GDD(5%).

Next, we prove that the minimum distance of the GDD is 5. If it is not so, then
there exist at least two different blocks A, A’ € A, such that the distance between A
and A’ is 4, and hence A and A’ share one common point and five common groups.
Suppose

A ={[x1 + h,s], [xe + h,s],[x3 + h,s + 1], [xs + h, s + 1], [h, s + 3]},

A=Az + W8, [y + B8, [+ B s 1, [ 4+ B s+ 1 (R s+ 3])
where (z1, 9, &3, 24), (¢}, 2}, a5, 2}) € Q. Then {@1+h, xot+h, x3+h, va+h, h}={z|+
B xhy+ 10 2y +h' 2+ h, B}, and there exist y € A,y € A, such that y =y'. If h =
I, then {z1, 2y, x5, 24} = {, 2}, %, 2} and hence we have that s = s'. Otherwise,
A and A’ can not share one common point, a contradiction. This leads to A = A’, also
a contradiction to A # A'. For h £ 1, let E = {z1+h—y,z0+h—y,z3+h—y, 24+
h—y,h=y}\{0}, F = {ay + 1 —y', a4+ 1 —y',as + B —y', 2y + B —y', I —y'}\ {0}
Then E,F € S, and E = F, a contradiction to property (4) in the definition of
G@S. This completes the proof. 0

Remark 2 Property (4) of the definition ensures the design in Lemma 2.2 has
distance 5.

In next section, we will use Lemma 2.2 to prove the main results.

3 Proof of the Main Results

In order to construct GS5(2,5,v,5)s via Lemma 2.2, we should find GQS(v)s. The
following lemma provides a construction for a GQS(v).

Lemma 3.1 Suppose v = 4t+1 is a prime power, 5 fv, and 8 is a primitive element
of GF(v). Let Q = {(6%,6%F% 01+ 03+%) . 1 <4 < t}, then Q forms a GQS(v), and
hence a GS5(2,5,v,5) exists.

Proof Since 6 is a primitive element in GF(v), it is easy to see that 6% = —1.

So, property (1) is satisfied. Since 6% = —1, we have that £(6° — 6%+") = +26°

and (6" — ¢3+7) = £20". Thus U {£26',£20'""} = GF(v)*, and hence prop-
1<i<t

erty (2) is satisfied. From @t% — @1 = 9i(6" — 1), 91 — g2+ = —@t+i(gt — 1),
O3 — g8 = 19" — 1) and 93 — 92 = 019" — 1), we have that U {6%(6! —

1<i<t
1), =00t — 1),61 (0" — 1),6°(0" — 1)} = GF(v)*. So property (3) is satisfied. Fi-
nally we need to verify property (4). For convenience, let a{z,y, z, w} denote the set
{az,ay,az,aw}. Since {6 0%+ g1+t §3t+i} = i1, —1,0", —0'}, then we can obtain
a set P; of quadruples from {#¢, 6%+ g+ §31+1} ~where

-Pi = {-Pih -Pi27 -PiS7 -Pi47 -Pi5}7
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Py = 01{1,-1,0, -0}, Py = 0/{—1,-2,0'—1,-0"' -1}, Py = 6*{2,1,0'+1, —0'+1},
Py = 61 - 6,1 — 6!, 6", —20'}, Py = {1 + 6", -1 + 6,20", 6'}. Let a; =
0i7 bz = 0t+i, then the sum of Pﬁ, Pig, Pi3, Pi4, Pi5 is 07 —5@2‘, 50,1', —5bi, 5b1 respectively.
Suppose Cy = Py, Cy = Py, are two elements in S, we need to prove that Cy # Cb.

We distinguish two cases below.

(1) i =j. Thus C1,C2 € P, and s #w. If s=1,w e {2,3,4,5}orw=1,s €
{2,3, 4,5}, then it is clear that Cy,Cy are different because of £5a;, £5b; # 0. If
s,w € {2,3,4,5}, then from 5 # 0 and a;b; # 0, it is clear that Cy, Cy are different.

(2) i #j. If s = w =1, then §° # 6, thus Cy,C, are different. If s =
w € {2,3,4,5}, then C,C, are different since a; # a;, and b; # b;. In the fol-
lowing, we need only to consider the case s # w. If s = 1,w € {2,3,4,5} or
w=1,s € {2,3,4,5}, then it is easy to see that C;,C, are different since 5z # 0,
z € {ai,a;,b;,b;}. If s,w € {2,3,4,5}, it is clear that Cy,Cy are different because
5z # 52",z € {a;,b:}, 2 € {a;,b;} U{{a;,b;} \ {z}}. So, property (4) is satisfied.
This completes the proof. 0

Remark 3 In [12], Hanani used the same method to construct the 5-GDD(5")s
for prime powers v = 1 (mod 4), but the 5-GDD(5")s for v = 4t + 1 = 5¢ do not
have distance 5. The reason is as follows: Let 6 be a primitive element of GF(5¢),
then 6% = —1 = 4, and hence 6" = 2 or ! = —2. In any case, the five elements in P;
in the proof of Lemma 3.1 are the same. So, the 5-GDD(5")s for v = 4t + 1 = 5¢ do
not have distance 5. The GQS construction generalizes this construction to a group,
and the resultant 5-GDD(5%)s are GS5(2, 5, v, 5)s.

In order to prove Theorem 1.3, we need to construct the GS5(2,5,v,5)s for v =
5% e > 2.

An Incomplete group divisible design, K-IGDD, is a quadruple (V, W, G, B), where
V is a set of points, W C V, G = {G1,Ga,...,G,} is a partition of V into subsets
called groups, H; = G;NW, 1< i < v, Bis a set of blocks such that a group and
a block contain at most one common point and every pair of points from distinct
groups, not both in W, occurs in a unique block in B, where |B| € K for any B € B.
A E-IGDD(g%) denotes a K-IGDD with [V| = gv, |W| = gu, G; = g, and either
HlCWOI'H1:07K:{k}

Similar to the construction of a (v,k,d) CWC from an H(v, g, k,t), we can also
construct a (v, k,d) CWC from an k-IGDD(g(*%). The distance of two blocks in
a k-IGDD(g("%) is the Hamming distance of the two codewords obtained from the
two blocks. An Incomplete generalized Steiner system, IGS4(2,k,(v,u),g), is a k-
IGDD(g(*%) with the property that the minimum Hamming distance of related CWC
is d. For convenience, we also say that the design has minimum Hamming distance

d.

It is easy to see that if u = 0 or uw = 1, then an IGS4(2,k, (v,u),g) is just a
GSd(Q,k,v,g).



176 X. LI, Q. SHU AND D. WU

We also need the concept of IOA. Let X = {1,2,...,v}, Y ={v—a+1,...,v}.
Let L be an s x k matrix based on X, where s = v> — a®. We say that L is an
incomplete orthogonal array denoted by TOA(k,v;a) if each (s x 2)-matrix contains
every ordered pair of (X x X)\ (Y x Y) precisely once. Suppose L = (e;;) is an
I0A(k,v;a), where 1 < i <v?—a* 1<j<k. R = (ei,-...,eqs) is called a vector
of L. Suppose Ly, Lo, ..., L, are 7 IOA(k,v;a)s on the same symbol set. The r
IOA(k,v;a)s are called simple if all the r(v* — a?) vectors from Ly, Lo, ..., L, are
pairwise distinct.

The following construction was stated in [19].

Lemma 3.2 Let m,n,t,u and a be integers such that 0 < a < u, 0 < a < n, and
1 <t <n. Suppose the following designs exist:

(1) a k-GDD(g™) with the additional property that all its blocks can be partitioned
into t sets So, S1,...,Si_1, such that the minimum distance in S,, 0 <r <t —1, is
k;

(2) simple t IOA(k,n + a;a)s;

(3) an IGSk(2,k, (n 4+ u,u),g).

Then there exists an IGSy(2,k, (e, f),g), where f = (m — 1)a+u and e = mn + f.
Further, if there exists a GSp(2,k, f,g), then there exists a GS(2,k,e,g).

In order to construct GSg(2,k,v,g)s via Lemma 3.2, we need to construct r
IOA(k,v;a)s. The following result was from [1, 5].

Lemma 3.3 If v > 4w > 4 and (v,w) # (6,1),(10,1), then there ewists an
TOA(5, v;w).

Lemma 3.4 Ifn > 3a > 3 and (n+a,a) # (6,1)),(10,1) orn > 4 and a = 0 and
(n+a,a) # (6,0),(10,0), then there exist simple n IOA(5,n + a;a)s.

Proof From Lemma 3.3, there exists an IOA(5,n + a;a). Suppose A = (a;;) is
an IOA(5,n 4 a;a). Treat the symbol set as Z, U @, where @ = {oo1,...,00,},
1<i<(nt+a)?—a*,1<j<5. For0<s<n-—1,let

;=4 ai+s (mod n), if4<j<5anda;€ Z,,
Qjjs if 4<j<5anda; € Q.

Let Ly = (If;), then it is not difficult to see that Lo, ..., L, are n IOA(5,n +a;a)s.
We prove that the n IOAs are simple. If it is not so, then there exist ¢ and j,
0 <i<j<n—1,suchthat L; and L; have a common vector. Suppose the common
vector is (z1, &2, L3, 24, T5). It is clear that at least one of 24 and x5 is not in Q.
Assume that z; € Q, 1 € {4,5}. Then there exists an integer k, 1 < k < (n+a)?—a?,
such that ay +i = ; = ay; + j. This leads to ¢ = j, a contradiction. This completes
the proof. 1]
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Since the group size of a k-GDD(g™) is g, then it is not difficult to see that the
blocks of the k-GDD(g™) can be partitioned into at most g sets Sy, S, ..., Sy_1, such
that the minimum distance in S,, 0 <r < g—1,is k. Takingu=0,1,a =0,t =g
in Lemma 3.2, with the above simple n IOA(5,n+a; a)s, we can obtain the following
working lemma.

Lemma 3.5 Let m,n,u be integers such that u = 0,1,9 < n,n & {2,3,6,10}. If
there exist a 5-GDD(g™) and a GS5(2,5,n+u,g), then there exists a GS5(2,5, mn+

’LL, g) °
Applying Lemma 3.5 with g = 5, we have the following result.

Lemma 3.6 Let m,n,u be integers such that w = 0,1,n > 8. If there exist a 5-
GDD(5™) and a GS5(2,5,n + u,b), then there exists a GS5(2,5, mn + u, ).

The following result was stated in [19].

Lemma 3.7 If there exist a GS4(2,k,m,g), a GSa(2,k,n + u,g) and an OA(k,n),
u=0,1 then there exists a GSq4(2,k,mn + u,g).

Lemma 3.8 There exists a GS5(2,5,5%,5) for any positive integer e > 2.

Proof From Example 2.1 and Lemma 2.2, a GS5(2,5,25,5) exists. Applying
Lemma 3.6 with m =5 and n = 25, w = 0, a GS5(2,5,125,5) exists. For e > 4, if
2le, then a GS5(2,5,5%,5) exists from Lemma 3.7. Otherwise, e = 2s + 1 and s > 2,
thus e = 2(s — 1) + 3. Snce a GS5(2,5,5%°~Y 5) exists, then applying Lemma 3.7
with m = 52¢~Y n = 5% u = 0, we obtain a G'S5(2,5,25,5°). This completes the
proof. 0

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3 The result comes from Lemma 3.1 and Lemma 3.8. 0

In order to prove Theorem 1.4, we need the following result (see [22]).

Lemma 3.9 The necessary conditions m = 1 (mod 4) and m > 5 are also sufficient
for the existence of a 5-GDD(5™).

We are now in a position to prove Theorem 1.4.
Proof of Theorem 1.4 The result comes from Theorem 1.3, Lemma 3.7 and
Lemma 3.9. a
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