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Abstract

For a graph G and S C V(G), if G — S is acyclic, then S is said to be
a decycling set of G. The cardinality of a smallest decycling set of G is
called the decycling number of G and is denoted by ¢(G). We prove in
this paper that if G runs over the set of connected graphs with a fixed
degree sequence d, then the values ¢(G) completely cover a line segment
[A, B] of positive integers. Let CR(d) be the class of all connected graphs
having degree sequence d. For an arbitrary graphic degree sequence d,
two invariants

A :=Min(¢,d) = min{¢(G) : G € CR(d)}

and
B := Max(¢,d) = max{¢(G) : G € CR(d)},

arise naturally. For a regular graphic degree sequence d = r" := (r,7,...,
), where 7 is the vertex degree and n is the order of the graph, we obtain
some significant results on the values of Min(¢, ") and Max(¢, 7").

1. Introduction

Let G be a connected graph and X C E(G). Then the minimum |X| such that
G — X is acyclic is known as the dimension of the cycle space of G and it is equal to
|E(G)| - |V(G)| + 1. It is natural to investigate the corresponding problem in terms
of vertices, and this was indeed considered by Kirchhoff [8] in his work on spanning
trees.

The problem of determining the minimum number of vertices whose removal elim-
inates all cycles in a graph G is difficult even for some simply defined graphs. For
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a graph G, this minimum number is known as the decycling number of G, and is
denoted by ¢(G). The class of those graphs G for which ¢(G) = 0 consists of all
forests, and ¢(G) = 1 if and only if G has at least one cycle and a vertex is on all of
its cycles. It is also easy to see that ¢(K,) =n—2and K, ;, =p—11if p < ¢, where
K, denotes the complete graph of order n and K, ;, denotes the complete bipartite
graph with partite sets of cardinality p and ¢. The exact values of decycling numbers
for many classes of graphs were obtained and cited in [2].

We proved recently in [10] that if G runs over the set of graphs with a fixed degree
sequence d, the values ¢(G) completely cover a line segment [a,b] of nonnegative
integers. Let R(d) be the class of all graphs having degree sequence d. Thus for an
arbitrary graphic degree sequence d, two invariants

a :=min(¢,d) = min{d(G) : G € R(d)}

and

b := max(¢,d) = max{¢(G) : G € R(d)},

arise naturally. For a regular graphic degree sequence d = r™ := (r,r,...,r) where
7 is the vertex degree and n is the number of graph vertices, we obtained in [10] the
exact values of min(¢,7™) and max(¢,r™) in all situations. It is natural to extend
this problem to the class of connected graphs with a degree sequence d. As a direct
consequence of Taylor [15] and our result in [10], we have that if G runs over the
set of connected graphs with a fixed degree sequence d, the values ¢(G) completely
cover a line segment [A, B] of nonnegative integers. Let CR(d) be the class of all
connected graphs having degree sequence d. Thus for an arbitrary graphic degree
sequence d, two invariants

A :=Min(¢,d) = min{¢(G) : G € CR(d)}

and

B := Max(¢,d) = max{¢(G) : G € CR(d)},
arise naturally. We will find the values of Min(¢, ") and Max(¢, ™).

Only finite simple graphs are considered in this paper. For the most part, our
notation and terminology follows that of Bondy and Murty [3]. Let G = (V, E)
denote a graph with vertex set V' = V(@) and edge set £ = E(G). We will use the
following notation and terminology for a typical graph G. Let V(G) = {v1,va,...,v,}
and E(G) = {e1,ez,...,e,}. We use |S| to denote the cardinality of a set .S and
therefore we define n = |V| to be the order of G and m = |E| the size of G. To simplify
writing, we write e = uv for the edge e that joins the vertex u to the vertex v. A path
of length k in a graph G, denoted by Py, is a sequence of distinct vertices uy, us, . . ., uy,
of G such that for alli =1,2,..., k— 1, uu;41 are edges of G. A u,v-path is a path
which has u as its first vertex and v as its last vertex in the path. The degree of a
vertex v of a graph G is defined as dg(v) = |{e € E : e = uv for some u € V'}|. The
maximum degree of a graph G is usually denoted by A(G). If S C V(G), the graph
G[S] is the subgraph induced by S in G. For a graph G, if X C E(G), we denote by
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G — X the graph obtained from G by removing all edges in X. If X = {e}, we write
G—efor G—{e}. For a graph G, if X C V(G), the graph G — X is the graph obtained
from G by removing all vertices in X and all edges incident with vertices in X. For a
graph G with X C E(G), we denote by G + X the graph obtained from G by adding
all edges in X. If X = {e}, we simply write G + e for G + {e}. Two graphs G and
H are disjoint if V(G)NV(H) = 0. For any two disjoint graphs G and H, we define
G U H, their union, by V(GUH) =V(G)UV(H) and E(GUH) = E(G) UE(H).
We can extend this definition to a finite union of pairwise disjoint graphs, since the
operation “U” is associative. For a graph G and s € V(G), the neighborhood of s in
G is defined by
N(s)={veV(G):sve EG)}.

If S C V(G), then we define
N(S) = N(s).

sES
It F CV(G), we write Np(S) for N(S)N F. A graph G is said to be regular if all of
its vertices have the same degree. A 3-regular graph is called a cubic graph.

Let G be a graph of order n and V(G) = {vy,vs,...,v,} be the vertex set of G. The

sequence (dg(v1),dg(v2), ..., dg(vy)) is called a degree sequence of G, and we simply
write (d(vy),d(vs),...,d(v,)) if the underlying graph G is clear from the context. A
sequence d = (dy,ds, ..., d,) of non-negative integers is a graphic degree sequence if

it is a degree sequence of some graph G. In this case, G is called a realization of d.

An algorithm for determining whether or not a given sequence of non-negative inte-
gers is graphic was independently obtained by Havel [7] and Hakimi [6]. We state
their results in the following theorem.

Theorem 1.1 Let d = (dy,ds, . .., d,) be a non-increasing sequence of non-negative
integers and denote the sequence

(d2 -l,d;—1,.. 'add1+1 - 1add1+2a" adn) =d.
Then d is graphic if and only if A" is graphic. a
Let G be a graph and ab, cd € E(G) be independent, where ac,bd ¢ E(G). Put
Go@bed — (G — {ab,cd}) + {ac,bd}.
The operation o(a,b;c,d) is called a switching operation. It is easy to see that the

graph obtained from G by a switching has the same degree sequence as G. The
following theorem has been shown by Havel [7] and Hakimi [6].

Theorem 1.2 Let d = (dy,ds,...,d,) be a graphic degree sequence. If Gy and G,
are any two realizations of d, then Gy can be obtained from Gy by a finite sequence
of switchings. a

As a consequence of Theorem 1.2, Eggleton and Holton [4] defined in 1978 the graph
R(d) of realizations of d whose vertices are the graphs with degree sequence d; two
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vertices being adjacent in the graph R(d) if one can be obtained from the other by
a switching. They obtained the following theorem.

Theorem 1.3 The graph R(d) is connected. O

The following theorem was shown by Taylor [15] in 1980.

Theorem 1.4 For a graphic degree sequence d, let CR(d) be the set of all connected
realizations of d. Then the induced subgraph CR(d) of R(d) is connected. O

2. Interpolation theorem

Let G be the class of all simple graphs, a function f : G — Z is called a graph
parameter it G = H, then f(G) = f(H). If f is a graph parameter and J C G, f is
called an interpolation graph parameter with respect to J if there exist integers x and
y such that

{f(G):GeT} =yl = ke Z v <k <y}

We have shown in [11, 12, 13] that the chromatic number y, the clique number w, and
the matching number «; are interpolation graph parameters with respect to R(d). If
f is an interpolation graph parameter with respect to J, {f(G) : G € J} is uniquely
determined by min(f,J) = min{f(G) : G € J} and max(f,J) = max{f(G) : G € J}.
In the case where J = R(d) we simply write min(f, d) and max(f, d) for min(f, R(d))
and max(f, R(d)) respectively and in the case where J = CR(d) we write Min(f,d)
and Max(f,d) for min(f,CR(d)) and max(f,CR(d)) respectively.

We proved in [10] the following results.
Theorem 2.1 If o is a switching on G, then |¢(G) — ¢(G7)| < 1. O

Theorem 2.2 For a given graphic degree sequence d, there exist integers a and b
such that there is a graph G with degree sequence d and ¢(G) = ¢ if and only if ¢ is
an integer satisfying a < ¢ < b. O

By Theorem 1.4 and Theorem 2.1, we have the following interpolation theorem with
respect to CR(d).

Theorem 2.3 For a given graphic degree sequence d, there exist integers A and B
such that there is a connected graph G with degree sequence d and ¢(G) = ¢ if and
only if ¢ is an integer satisfying A < ¢ < B. a

Let G be a graph and D be a minimum decycling set of G. Then G — D is an
induced forest of G of maximum order. ErdSs et al. [5] first defined a counterpart
graph parameter I as follows. Let G be a graph and F C V(G). F is called an
induced forest of G if G[F] contains no cycle. An induced forest F of G is mazimal
if for every v € G — F, F U {v} is not an induced forest of G. Let I(G) be defined as

I(@) := max{|F| : F is an induced forest of G}.
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Thus I(G) is the maximum cardinality of induced forests of G. An induced forest
F of G with |F| = I(G) is called a mazimum induced forest of G. It is clear that
#(G) + I(G) = |V(G)| for any graph G. Consequently, if d is a graphic degree
sequence of length n, then n = min(¢,d) + max(/,d) = max(¢,d) + min(/,d) =
Min(¢,d) + Max(I,d) = Max(¢,d) + Min(I,d). Since ¢ is an interpolation graph
parameter with respect to R(d) and CR(d), I is an interpolation graph parameter
with respect to R(d) and CR(d). A linear forest is a forest with each component is
a path.

3. Cubic graphs

It is easy to observe that the values of Min(¢,r™) and Max(¢, r") are easily obtained
for all » € {0,1,2}. The problems of finding Min(¢,3") and Min(¢, 3") are more
difficult. We will consider such problems in terms of the graph parameter I. A cubic
tree is a tree in which its vertices consisting of degree 1 or 3. It is easy to see that
if T is a cubic tree of order n, then n = 2k + 2, where k& is the number of vertices
of degree 3 of T. Let T denote the family of cubic graphs obtained by taking cubic
trees and replacing each vertex of degree 3 by a triangle and attaching a copy of K4
with one subdivided edge (the graph K} in Fig. 3.1) at every vertex of degree 1.

It is easy to see that Min(/, 3*) = 2, Min([, 3%) = 4, Min(, 3%) = 5 and Min(Z,3') =
6.

Fig. 3.1

A lower bound for the order of maximum induced forest in connected cubic graphs
has been obtained by Liu and Zhao [9] as stated in the following theorem.

Theorem 3.1 Let G be a connected cubic graph of ordern > 12. Then I(G) = 3n—1
ifGeTand I(G) > in if G ¢ T. O

It is clear that if G € T, then G has order 8% + 10, where k is the number of vertices
of degree 3 in the corresponding cubic tree. Thus I(G) = Min(I, 3%+1%) = 5k + 6.
We now consider a cubic graph of order 8k + 8. Let C' be a cubic graph of order
8k+8. Then by Theorem 3.1, I(C) > 2(8k+8) = 5(k+1). A cubic graph T obtained
by taking cubic tree with % vertices of degree 3, replacing k£ — 1 of the vertices by a
triangle and attaching a copy of K at every vertex of degree 1. Thus 7" has order
8k +8 and I(T) = 5(k+1). Thus Min(Z, 3%*8) = 5(k + 1). The value of Min(I, 3"),
n = 8k + 4,8k + 6, can be obtained in the following argument. Since a switching
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changes the order of induced forest by at most 1, we have Min(7, 3¥*9) < Min(I, 37)+
Min(I, 37)+1 for all even integers p and ¢ with 4 < p < . Thus bk+4 = [2(8k+6)] <
Min(7,3%+6) < Min(7,3*) + Min(Z,3%5¢=D+10) 4 1 =2 + 5(k — 1) + 6 + 1 = 5k + 4.
Finally 5k + 3 = [2(8k + 4)] < Min(Z,3%%*) < Min(7,3*) + Min(7,35*=0+8) 4+ 1 =
2+ 5k 4+ 1 =5k + 3. Therefore we obtain the following theorem and corollary.

Theorem 3.2 Let n be an even integer with n > 12. Then

Ip—1 if n=2(mod8),

Min(I,3") = {

[2n] otherwise.
O
Corollary 3.3 Let n be an even integer with n > 12. Then
n+1 if n=2(mod8),
Max(¢,3") = { LSnJ otherwise.
O

Let H be a graph. A graph G is called an H-free graph if G does not contain H as
an induced subgraph. Let X be a set of graphs. Then a graph G is called an X -free
graph if for every H € X, G is an H-free graph. In [14], there are five connected
cubic graphs of order 8, all of which having maximum induced forests of order 5.
Alon et al. proved in [1] that if G is a { K4, Kfl}—free graph with maximum degree 3.
If G is of order n and of size m, then I(G) > n — 2. Consequently, if G is a cubic
{ K4, K }-free graph of order n > 10, then I(G) > % 5" Zheng and Lu proved in [16]
that I(G) > 2?" for any connected cubic graph G of order n without triangles, except
for two cubic graphs with n = 8. They also pointed out that this lower bound is
best possible. It is easy to see that there exists cubic graph G of order n containing
triangles and I(G) > 2. We extend their result by proving that I(G) > 2* for any
connected cubic Kj- free graph G of order n > 10.

Let P be a graph with V(P) = {vg,v1,...,vs} and E(P) = {vvi4; 14 =1,2,...,8
(mod 9)} U {vyv4, usvs, vav7,v306 }. Thus P is a triangle-free graph of order 9 and of
size 13. By Alon et al. [1], I(P) > [9—23] = 6. It is easy to find a set of 6 vertices of
P, for example {vg, vy, v2, v3, 5,06}, which is induced a forest. Therefore I(P) = 6.

By applying the result in [1] we find that if G is a connected K)-free graph of order
8 and A(G) = 3, then I(G) = 5 if and only if G is a cubic graph.

Lemma 3.4 Let G be a connected triangle-free graph of order n and A(G) = 3. If
G is not a cubic graph, then I(G) > 2.

Proof. Suppose that G does not contain a vertex of degree 1. Thus G contains at
least one vertex of degree 2. Let & be the number of vertices of degree 2 in the graph
G and let vy, vs,...,v; be the k vertices of degree 2. Let Py, P, ..., Py be k graphs
each of which is isomorphic to the graph P. The graph G* can be constructed from
G by adding an edge from v;(1 < i < k) to the vertex of degree 2 of P;(1 <1i < k).
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Therefore G* is a cubic triangle-free graph of order n + 9%. Since m <I(GY) =
I(G) + kI(P) and I(P) = 6, I(G) > 2*. Suppose that G contains a vertex v of
degree 1. Thus, by induction on n, we have I(G) > I(G —v)+1 > 2("3—71) +1>2

O
Lemma 3.5 Let X = CR(3%) U {K4, K} and let G be an X-free graph of order n
with A(G) = 3. Then I(G) > 2.

Proof. Let X =CR(3*)U{Ky, K}} and let G be an X-free graph of order n. Then,
by Alon et al. [1], I(G) > 3. By calculation we found that [22] = [%] for all
n with 4 < n < 10 and n # 8. If n = 8, then G is not cubic. Thus we also
have that I(G) > #. Thus the lemma is verified for all n with 4 < n < 10. Now
suppose that n > 11. By Lemma 3.4, we may assume that G contains a triangle 7'
with V(T') = {z,y,z}. If there exists a vertex in V(T'), say = such that dg(z) = 2,
then by induction on n there exists a maximum induced forest F; of G — T with
|Fy| > 2(73—_3) Hence F = Fy U {z,y} is an induced forest of G and |F| > 2.
Suppose that for all triangles T = {z,y,z} of G, dg(z) = dg(y) = de(z) = 3. Since
G is a Ky-free graph, |[N(T)| > 2.

Case 1.

Suppose that z and y have a common neighbor u, and let v be the neighbor of 2.
Since G is a Kj-free graph, u and v are not adjacent in G. Thus by induction on n,
G — T contains an induced forest of order at least @ Since dg_r(u) < 1, any
maximum induced forest of G — T must contain u. If there is a maximum induced
forest F} of G — T does not contain u, v-path, then Fy U {y, z} is an induced forest of
G of order at least 2?" Suppose that for any maximum induced forest Fy of G — T,
F contains u, v-path. Since G' = G — T + uv satisfies conditions of the lemma, there
is a maximum induced forest F' of G’ of order at least 2("3—73) If uv ¢ E(F'), then
F = F'U{y, 2} is a maximum induced forest of G of order at least 2. If uv € E(F"),
then F = (F' — uv) U {y, 2} is a maximum induced forest of G of order at least 2.

Case 2.
Suppose that z,y, z have different neighbors. Let w,v,w be the neighbors of z,y, 2
respectively. Put G; = Gl{u,v,w}]. If |E(G,)| = 3, then G is not connected and
I(G) >4+ I1(G—G1) >4+2(n—6)/3 =2n/3. Suppose that G, is not a triangle
and suppose further that there exist two vertices in {u,v,w}, say w,v, such that
ww ¢ E(G) and ' = G — T + wv satisfies conditions of the lemma. By induction
on n, there exists a maximum induced forest F; of G’ of order at least @ If
uwv ¢ E(Fy), then F = Fy U {z,y} is an induced forest of G of order at least % If
uwv € E(F), then F = (F; — uv) U {z,y} is an induced forest of G of order at least
2 If |[E(H)| =2 and ww € E(H), then G' = G — T + wv satisfies conditions of the
lemma. If E(H) = {vw} and G' = G — T + uw does not satisty conditions of the
lemma, then G’ = G — T + uv satisfies conditions of the lemma. Finally if E(H) = 0,
G'=G—-T+vwand G' = G—T +uw do not satisfy conditions of the lemma, then
G' = G — T + uv satisfies conditions of the lemma. Thus the proof is complete.

O
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We have the following theorem.

Theorem 3.6 Let G be a connected cubic K)j-free graph of order n, n > 6 and n # 8.
Then I(G) > 2?" ]

We proved in [10] the following theorem.

Theorem 3.7 Let r > 3 and nr be even. Then

. N r—1 ifr+1<n<2r—1,
min(¢,r") = mrInk2l o gf g > 2,

20r-1)
O

Let GG be a connected r-regular graph and S be a minimum decycling set of G. Since
for any v € § there is a connected component C' of G — S such that v is adjacent
to at least two vertices of C, there exists u € G — S such that vu = e € E(G) and
G — e is connected. Thus for two disjoint connected r-regular graphs G and H with
minimum decycling set .S and T of G and H respectively, there exist u € S, v €
G-S,ze€T,ye H-Tsuchthatuwv =e € E(G),zy =f € E(H)and G—e, H—f
are connected. A connected r-regular graph K = ((G — e) U (H — f)) + {uz, vy}
satisfies

¢(K) < 6(GUH) = ¢(G) + ¢(H),
and the following corollary holds.

Corollary 3.8 Let r > 3 and nr be even. Then

. r—1 ifr+1<n<2r—1,
Min(o ") = { fazzaz) if 0 5 50

O

Thus the values of Min(¢,r") for all r and n are already obtained. In particular the
values of Min(¢,3*") and Max(¢, 3%") are found for all n.

4. Max(¢, ")

We will discuss the problem of determining the values of Max(¢,r") for r > 4 in
this section. Note that R(r") = CR(r") if and only if r +1 < n < 2r 4+ 1. Thus
Max(¢,r™) = max(¢,r™) for all n € {r + 1,7 +2,...,2r + 1}. In this case we have
already obtained in [10] as stated in the following theorem.

Theorem 4.1 Forr >4, andn=r+73, 1 <j<r+1, then

(1) max(¢,r") =n —2, if and only if j =1,

(2) max(¢,r") =n — 3, if and only if j = 2,

(3) max(¢,r") = n—4 for all even integersn =1 +j,3<j<r+1,

(4) (¢,r™") =n —4, for all odd integersn =r+j,3<j<r+1andn > f(j),

7
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(5) max(¢,r") =n — 5, for all odd integersn=7r+j,3<j<r+1andn < f(j),
where  f(j) =3(j — 1) if j =3 (mod 4), and
fG)=1+3(—-1)ifj=1 (mod4). o

Thus the values of Max(¢,r™) are already obtained for all » and n with n < 2r + 1.
The problem of determining the decycling number of a graph is equivalent to finding
the greatest order of an induced forest and the sum of the two numbers equals the
order of the graph. In particular Max(¢, ™) = n — Min(Z,r").

Let G be a Ky-free graph of order n, A(G) = 4. Let F be a maximal induced forest
of G. We denote by ¢(F') the number of cyclesin G—F. A pair (X,Y’), where X C F
and Y C G—F, is an interchangeable pair of vertices with respect to F if (F — X)UY
is a forest, |(F—X)UY| > |F|, and ¢((F — X)UY') < ¢(F). In general we can define
an interchangeable pair of vertices for a graph G with A(G) > 4 as follows. Let G
be a Kai-free graph of order n with A(G) = A > 4. Let F' be a maximal induced
forest of G. We denote by k(F) the number of Ka_; in G—F. A pair (X,Y), where
X C Fand Y C G — F, is an interchangeable pair of vertices with respect to F if
(F—X)UY is aforest, |(F—=X)UY| > |F|,and k((F — X)UY) < k(F).

Let G be a Kj-free graph of order n and A(G) = 4. Thus for any maximal induced
forest F' of G, G — F is a union of cycles and paths. We choose a maximal induced
forest F' of G with minimum c(F'). In other word, the forest F' is chosen in such a
way that it contains no interchangeable pair of vertices with respect to F. Suppose
that ¢(F) > 1. Let C be a cycle in G — F. Then each vertex of C' must be adjacent
to exactly two vertices in F. Suppose that there exists a vertex u € F, dp(u) > 2,
and u is adjacent to a vertex v € V(C'), then ({u}, {v}) is an interchangeable pair
of vertices with respect to F. Thus for all cycles C' of G — F, each vertex v € V(C),
v must be adjacent to exactly two vertices ui,us € F with dp(uy) = dp(u2) = 1.
By maximality of F', u; and uy must be in the same connected component of F.
Since F is a forest, there exists a unique path in G[F] from wu; to uy. If u; and
uy are not adjacent and there is a vertex u € F in the path such that dp(u) > 3,
then ({u},{v}) is an interchangeable pair of vertices with respect to F. Therefore
the connected component of F' containing u; and u, must be a path. Suppose that
there exist exactly two vertices v, w of C' adjacent to a vertex u € F, then ({u}, {v})
is an interchangeable pair of vertices with respect to F. Finally suppose that there
are three vertices v,w,z of C adjacent to a vertex uw € F, then the path P in
G[F] containing u has order at least 3 or the cycle C' has order at least 4, since
otherwise G would contain K. Let u and ' be the end vertices of P in G[F]. Then
Ne({u,v'}) = {v,w, 2} C V(C). If P has order at least 3, then ({u,u'}, {v,w}) is an
interchangeable pair of vertices with respect to F'. If P has order 2 and C has order
at least 4, then ({u,u'},{v,w, z}) is an interchangeable pair of vertices with respect
to F. Thus the corresponding paths in G[F] of vertices in C' are pairwise disjoint.

Theorem 4.2 Let G be a Ks-free graph of order n, A(G) = 4. Then ¢(G) <

n
z.
Proof. We may assume that G is connected Kj-free graph of order n and A(G) = 4.
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If G contains a maximal induced forest F with G — F' is a forest, then ¢(G) <

5. Suppose for each maximal induced forest F' of G, G — F contains at least one
cycle. Choose a maximal induced F of G with minimum ¢(F). Let C' be a cycle
in G — F with V(C) = {vo,v1,...,04-1} and E(C) = {vwip1 1 0 = 0,1,...k —
1(mod k)}. From above observation, for each i = 0,1,...,k — 1, let P(v;) be the
corresponding path in G[F] containing Ng(v;) = {u;1, uin} as its end vertices. Note
that the paths P(vg), P(v1), ..., P(vg—1) are pairwise disjoint. Moreover, since G has
no interchangeable pair of vertices with respect to F, for each u;;(0 <i<k—-1,1<
j < 2), there is a corresponding path P(u;;) in G — F and all the corresponding

paths are pairwise disjoint.

Case 1.

If k is even, we can form a new graph G’ in which V(G') = V(G — C) and E(G') =
E(G — C) U{uaugsnt, ity ¢ = 0,2,4,...,k — 2}. Since the corresponding
paths P(u;;) are pairwise disjoint, the graph G’ is a Kj-free graph of order n —
k. By induction, G’ contains an induced forest F’ of order at least "T”” Since
G'[V(P(v;)) UV (P(vit1))] is a cycle for all i = 0,2,4,...,k — 2, there exists u €
V(P(v;)) UV (P(vi+1)) such that w ¢ F'. If u € V(P(v;)), then F' U {v;} is a forest
of G. Similarly if u € V(P(vi41). Thus ¢(G) < 3.

Case 2.

If k£ is odd and there exists i such that P(v;) has order at least three, then we can
analogously form a graph G’ in which V(G') = V(G — C), pairing the k — 1 paths
P(vj) with j # 4, and adding u; u; to the edge set of G'. The proof follows by
similar argument as in Case 1.

Case 3.
If k& is odd and for each i = 0,1,2,...k — 1, P(v;) has order two, then since G
has no interchangeable pair of vertices, for each ¢ = 0,1,2,...,k— 1 and j = 1,2,

there is a path P(u;;) in G — F and P(u;;) has Ng_p(u;;) as its end vertices. Put
Ne_r(uij) = {vij), vij2)}. Moreover, the paths P(u;;) are pairwise disjoint. We
can now form a graph G’ in which V(G') = V(G) — (C U Np(V(C))) and E(G") =
E(GIV(G")] U E,, where E; = {Uﬁ(l)vig(l),Uﬁ(g)vig(g) :i=0,1,2,...,k = 1}. By
induction on n, there exists an induced forest F' of G’ with |F'| > 2= Since for
each i =0,1,2,...,k — 1, F' can not contain all vertices in V(P(u;;)) U V(P(u)),
there exists v € V(P (u;1)) U V(P(u;2)) such that v ¢ F'. If v € V(P(u;), then
F" U {ui1,v;} is an induced forest of G. Similarly if v € V(P(u;2)). Thus there is
a set X containing either w;; or u;, but not both, according to F' U {u;,v;} or
F"U{us,v;} is an induced forest of G. Therefore F' U {vg,v1,...,vp-2} U X is an
induced forest of G of order at least "’TSI” +2k —1 > 3. This completes the proof. O

Corollary 4.3 Max(¢,4") < 3. |

Let G be a Kayi-free graph with A(G) = A > 5 and let F be a maximal induced of
G with minimum k(F). Then for each v € G—F, there exists a connected component
T of F such that v is adjacent to at least two vertices of T. Thus A(G—F) < A—2.
Suppose that k(F) > 1. Let K be a complete subgraph of G — F of order A — 1.
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Put V(K) = {vi,vs,...,va_1}. Thus for each v; there exists a connected component
P(v;) of G[F] such that v; is adjacent to exactly two vertices of P(v;). If there
exists u € V(P(v;)) such that wv; € E(G) and dp(u) > 2, then ({u},{v;}) is an
interchangeable pair of vertices with respect to F'. Thus for each i =1,2,... ;A =1,
v; must be adjacent to exactly two vertices of degree one in P(v;). Suppose that
there exists u € V/(P(v;)) such that dp(u) > 3, ({u}, {v;}) is an interchangeable pair

of vertices with respect to F. Thus the corresponding P(v;) of v; in K is a path.
Furthermore all such paths are pairwise disjoint.

Lemma 4.4 Let G be a Kasy-free graph of order n with A(G) = A > 5. Then
I(G) > %" or there exists an induced forest F of G such that G — F is a Ka_1-free
graph.

Proof. With above observation in mind, suppose that for all maximal induced
forests F of G, E(F) > 1. Let F be a maximal induced forest of G with minimum
E(F) and let K be a complete subgraph of G — F of order A — 1. Put V(K) =
{v1,va,...,ua_1}. Let P(v;) be defined as above and let w;;, u;» be the two vertices
with degree one of P(v;). We now form a graph G’ with V(G') = V(G — K) and
E(G’) = E(G[V(G’)D @] X, where X = {u11u21, U12U22,U31U47, ’LL32’LL42}. By induction
onn, I(G') > =2+ or there exists an induced forest F” of G’ such that G' — F' is a
Ka_j-free graph. Since F' does not contain all vertices of P(v;)UP(v2) and likewise of
P(v3)UP(vy), there exist two vertices z,y € {vy,v2,v3, v4} such that F" = F'U{z,y}
is an induced forest of G and G—F" is a Ka_;-free graph. This means that if G' — F”
is a Ka_;-free graph, then there exists a maximal induced forest F" of G such that
G — F"is a Ka_;-free graph. Thus we may assume that |F'| > 22=8+L Hence there
exist two vertices x,y € {vy, v, v3, v} such that F” = F'U{x,y} is an induced forest
of G and |F"| > 225+ + 2 > 2t This completes the proof. O

Lemma 4.5 Let G be a connected Ks-free graph of order n and A(G) = 5. Then
1(G) > 2.

Proof. Case 1.

Suppose that for each maximal induced forest F of G, G — F contains K, as its
component. Choose maximal induced forest F of G with minimum k(F). Let K be
a copy Ky in G — F and V(K) = {vg,v1,vs9,v3}. Since G is connected and G does
not have an interchangeable pair of vertices with respect to F, for each vertex v;,
there is a path P(v;) of F such that v; is adjacent to two vertices with degree one
of P(v;) and for any two distinct vertices v; and v;, P(v;) and P(v;) are disjoint.
For each v;, let u; and u; be the end vertices of P(v;), i = 0,1,2,3. We now
form a graph G’ with V(G') = V(G — K) and E(G') = E(G — K) U E;, where
E; = {uorug1, uoatiia, uai iy, Ussuss }. By induction on n, G’ contains an induced
forest F' of G’ such that |F'| > 2("—5_4). It is clear by forming the graph G’ that there
exist two distinct vertices v; and v; such that F' U {v;,v;} is an induced forest of G
and of order at least 2.

Case 2.
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Suppose that for each induced forest F of G, G — F contains at least one H € CR(3%)
as its component. Choose a maximal induced forest F of G in such a way that F
contains minimum number of copies of graphs in H € CR(3%). Let K be a copy
of graph in CR(3%) in G — F and put V(K) = {uvp,v1,...,v7}. By choosing F in
this way, we have for each v;, there is a path P(v;) of F such that v; is adjacent
to the end vertices of P(v;). Moreover for any two distinct v; and v;, P(v;) and
P(v;) are disjoint. Let w;;, u;s be the end vertices of P(v;), i = 0,1,2,...,7. We
now form a graph G’ with V(G') = V(G — K) and E(G') = E(G — K) U E}, where
Ey = {uiu@it1)1, UppUgsry2 - ¢ = 0,2,4,6}. By induction on n, G' contains an induced
forest F' of order at least 2("5—78) It is clear by forming the graph G’ that there are
at least four vertices @y, s, v3,24 € V(K) such that F' U {x1, s, 23,24} forms an
induced forest of G of order at least 2?"

Case 3.

Suppose that for each induced forest F' of G, G — F contains at least one copy K}
as its induced subgraph. Choose a maximum induced forest F' of G in such a way
that G — F contains minimum number of copies of Kj. Let K be a copy of K} in
G — F. Put V(K) = {vg,v1,0s,03,vs} and d(vg) = 2. For each v;,i = 1,2,3,4,
there exists a connected component P(v;) of F such that v; is adjacent to exactly two
vertices of P(v;). Again let {u;1,u;} be two vertices of P(v;) that are adjacent by
v;, 1 =1,2,3,4. Since K is not a cubic graph, P(v;) and P(v;) may not be disjoint.
It is clear by choosing the minimum number of copies of K} in G — F that for each
vertex u of P(v;), i =1,2,3,4, there are at most two vertices of K that are adjacent
to u. Let G' be a graph with V(G’') = V(G — K) and E(G') = E(G—- K)UE,. A
graph G’ will be formed according to the following cases. We then apply induction
to each such a forming of G', there exists an induced forest F’ of G’ such that F”
together with two vertices of K forms an induced forest of order at least 2?” Put
N = U Np(v;). For two disjoint nonempty subsets X,Y of V(G) we denote e(X,Y)
the number of edges in G joining between X and Y. Note that F' was chosen as a
maximal induced forest of G with minimum k(F'), we have the following observation.

1. 4<|NJ<L8.
2. dp(u) € {1,2}, for all u € N.

3. For each u € N, there are at most two vertices in {v1, va,v3,v4} that are adjacent
to w.

4. If u € N and dr(u) = 2, then there is exactly one vertex in {v;, vy, v3,vs} that is
adjacent to u.

With the above observation in mind, suppose |N| = 4. Thus we may assume
that w11 = w91, Us = Uge, uz;y = ug; and uzy = uge. We can choose E; =
{U11U31,U11U32,U12U317U12U32}-

Suppose |N| = 8 and suppose further that there exist ¢ and ¢’ with i # 4’ such that
e({uin}, {win, up2}) = 2. Then w1, usn and i, uys are not adjacent. We can choose
E; = {uaup, winupe}. Suppose that for 4 and ¢, e({wi }, {wir, uie}) < 1. We may
assume without loss of generality that for pairs 4,7 with 1 < ¢ < ¢ <4, u;; and uy;
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are not adjacent. Thus we can choose Ey = {u11ua1, UiaUaz, Usilay, Uzatas }-

Suppose 4 < |N| < 8 and suppose further that wj;; = wgi,u;s = usy. Thus
dp(uir) = dp(ui2) = 1. We can choose Ey = {ujiuz1, w11 use, U124, u12tas }. Finally
suppose that any pair of 1 < i < 4’ < 4, |Np(v;)NNp(vy)| < 1. Since |N| < 8, we may
assume without loss of generality that uy; = ug; and wuys # uss. Thus uiy, s, uss lie
in the same component of F'. Since dp(u11) = 1, dp(u1a) = 2 or dp(us) = 2. Suppose
that dF(’LL12) =2 and dF(UZZ) = 2, then {ull,un,un} n {U31,U32,U41,U42} = 0 We
can choose E; = {U11U317 U11U32, U12U41U22U42} or By = {U11U31, U11U32, U12U42U22U41}-
Suppose that dp(ui2) = 2 and dp(uzs) = 1. Thus {uir,uia} N {usr, uss, way, uas} =
0. Tf {uir,urz, uze} N {usr, usz, usr,ugp} = 0, then we can choose E; as in the
previous case. If wupe € {ugi,uss, wsr,usn}, sy uze = ugy, we can choose E; =
{u11u41,u11u42,u12u32} or B, = {U11U417u11u42,U12U31}-

Case 4.

Suppose that G — F is an X-free graph, where X = CR(3%) U{Ky, K;}. If |F| < 2,

then, by Lemma 3.5, G — F contains an induced forest F’ of order at least M >

Z(nfgn)
3

Lemma 4.6 Let G be a Kg-free graph of order n with A(G) = 5. Then I(G) > 2.

9 .
> %, This completes the proof. a

Proof. If G does not contain K5 as a subgraph, then the result follows from Lemma
4.5. Suppose that G contains Ky as a subgraph. Put V(K) = {v1,vs,...v5}. Since
G is a Kg-free graph, Ng_jx(K) contains at least two vertices. If there exists a
maximum induced forest F; of G — K such that Ng_x(K) € Fy or G[Np,(K)] is
disconnected, then there exist @,y € V(K) such that F; U{z,y} is an induced forest
of G. By induction on n, we have I(G) > |Fi|+2 > 2= 42 = 22 We now
suppose that each maximum induced forest F of G — K, G[Np(K)] is a connected
component of G[F]. Suppose further that Np(K) contains exactly two elements
z,y € F. Put L =K U{z,y} and H = G[L]. Thus dy(z) > 4 or dy(y) > 4. Thus
I(G) > I(L)+I1(G—L) > 3+2%70 > 20 If N;(K) contains more than two elements,
we can form a graph G’ with V(G') = V(G)— K and E(G') = E(G—K)U{e}, where
e is a new edge connecting two vertices in Np(K). By induction on n, G’ contains
an induced forest F' of order at least 2(”5—_5) Since F’ can not contain all vertices of
Np(K), there exist v;,v; € V(K) such that F" = F' U {v;,v;} is an induced forest
of G and |F"| > 2. O

As a direct consequence of Lemma 4.6 we have the following theorem.

Theorem 4.7 Let G be a connected 5-reqular graph of order n > 12. Then ¢(G)
oy

Lemma 4.8 Let G be a Kaxy-free graph of order n with A(G) = A > 5. Then
1G) > %.

Proof. The result follows for A = 4,5. Suppose that A > 6, by Lemma 4.4 we have
I(G) > %" or there exists an induced forest F' of G such that G — F is a Ka_,-free
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graph. If |[F| < &, then |G — F| > %. Since G — F is a Ka_;-free graph, we
2(A-2)n

have I(G) > I(G — F) > 55— = & m

We have the following theorem.

Theorem 4.9 Let G be a connected r-regular graph of order n > 2r + 2. Then
#(G) < @ for allr > 4. O

Let G be a connected r-regular graph of order n = rqg+t, 0 <t <r—-1,r >4
and ¢ > 1. Then by theorem 4.9, we have I(G) > 2q + [2]. It is easy to construct
a connected r-regular graph G of order n with I(G) =2¢ ift =0, IG) =2¢+ 1 if
t =1,2and I(G) = 2¢+2if 3 < t < r—1. Consequently, we have Max(¢,r") = n—2q
if t =0, Max(¢,r") =n—2¢—1if t = 1,2, Max(¢,r") =n —2¢ —2if 2t > r and
Max(¢,r") € {n —2¢—2,n—2¢—1}if3 <t < 4.

We close this paper with the following conjecture.

Conjecture Max(¢,r") =n —2¢ —2 if 3 <t < g, for all v > 6. |
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