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Abstract

A vertex set D of a graph G is a dominating set if every vertex not in D
is adjacent to some vertex in D. The domination number v of a graph G
is the minimum cardinality of a dominating set in G. A cycle of length
four is denoted by C,. This paper is concerned with upper bounds for
v as a function of invariants such as order n, minimum degree §, and
diameter d.

If G is a connected Cy-free graph of minimum degree § > 1, then
Brigham and Dutton, Quart. J. Math. Ozford 41 (1989), 269-275 proved

that
<1( _5(5—1))
T=5\" 2

and if § > 3, then
2y<n—1—(6—-1)(|d/3] —1+6/2).

Recently, Volkmann, J. Combin. Math. Combin. Comput. 52 (2005),
131-141, gave the following related bound. Let G be a connected graph
of minimum degree 6 > 4. If G does not contain the 4-cycle and the
diamond (a 4-cycle with a chord) as induced subgraphs, then

2y <n—1—(6—3)(1+[d/2]) - d/2] /6.

In this paper we present different improvements of these three bounds.

1 Terminology and introduction

We consider finite, undirected, and simple graphs G with the vertex set V(@) and
the edge set E(G). The number of vertices |[V(G)| of a graph G is called the order
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of G and is denoted by n = n(G). The open neighborhood N(v) = N(v,G) of
the vertex v consists of the vertices adjacent to v, and the closed neighborhood of
v is N[v] = N[v,G] = N(v) U {v}. For a subset S C V(G), we define N(S) =
N(S,G) = U,es N(v) and N[S] = N[S,G] = N(S)US. vertex v is an isolated vertex
if d(v,G) =0, where d(v) = d(v, G) = |N(v)| is the degree of v € V(G). By § = §(G)
we denote the minimum degree of the graph G. Furthermore, the diameter d = d(G)
of a graph G is the maximum distance between two vertices of G. We write C,, for
a cycle of length n and K, for the complete graph of order n. A cycle with length n
is also called an n-cycle. A graph is C4-free if it contains no subgraph isomorphic to
the cycle Cy.

A set D C V(G) is a dominating set of G if N[D,G] = V(G). The domination
number v = (@) of G is the cardinality of any smallest dominating set of G. A
set S of vertices is independent if every two vertices of S are not adjacent. The
independence number a(G) = a of a graph G is the maximum cardinality among the
independent sets of vertices of G.

For detailed information on domination and related topics see the comprehensive
monograph [3] by Haynes, Hedetniemi, and Slater. The following three results are
known.

Theorem 1.1 (Brigham, Dutton [2] 1989) If G is a Cy-free graph of minimum

degree § > 1, then
< 1( _6(6—1))
T=\" 2 )

Theorem 1.2 (Brigham, Dutton [2] 1989) If G is a connected and Cy-free graph
of minimum degree ¢ > 3, then
n—1—-(0-1)(d/3] —1+6/2)

< .
7= 2

Theorem 1.3 (Volkmann [9] 2005) Let G be a connected graph of minimum
degree § > 4. If G does not contain the 4-cycle and the diamond (a 4-cycle with a
chord) as induced subgraphs, then

szl (6 - 3)(1;L l4/2]) — 4/2]/6

In this paper we present different improvements of Theorems 1.1, 1.2, and 1.3
and some related bounds.

2 Preliminary results

The following well-known results play an important role in our investigations.

Proposition 2.1 (Ore [6] 1962) If G is a graph without isolated vertices, then
7 <n/2
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Theorem 2.2 (McCuaig, Shepherd [5] 1989) Let G be a connected graph of
minimum degree 6 > 2. Then v < 2n/5, unless G = C7 or G belongs to a family of
6 graphs of order at most 7 which all contain a C4 as a subgraph.

Corollary 2.3. If G is a Cy-free graph of minimum degree § > 2, then v < 3n/7.
The following proposition is well-known and can be found, for example, in [4].
Proposition 2.4 If G is a Cy-free graph, then
n>6%—6+1.

Theorem 2.5 (Reed [8] 1996) If G is a graph of minimum degree § > 3, then
v < 3n/8.

Theorem 2.6 (Arnautov [1] 1974, Payan [7] 1975) If G is a graph without
isolated vertices, then
14+1In(d+1)
<n:-———=.
T T

3 Upper bounds in terms of order and minimum degree

Theorem 3.1 If G is a Cy-free graph of minimum degree 6 > 2, then

7 < 5—24—;(11—W)
_ i, G862

- 1)

Proof. Case 1. Assume that § > 3 and v > 6 — 2. Because of the well-known fact
that v < «, there exists an independent set of vertices X such that | X| = § — 2.
Define the subgraph H by H = G — N[X].

Subcase 1.1. Assume that H = (). It follows that v < 6 — 2. Since G is C,-free,
we deduce from Proposition 2.4 that

2n > 252 —20+2> 62435 — 10

and thus the desired inequality

3/ (5-2)(6+5)
7§5—2§6—2+?(n—f).

Subcase 1.2. Assume that H # (). Since G is Cy-free, we observe that

di(v) > d(v) — (6 -2) > 6 — (6 — 2) =2
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for an arbitrary vertex v in H. Applying Corollary 2.3 on the subgraph H, we obtain

3
78 -2+ (n - IN[X])) (2)
Since X is an independent set and G is Cy-free, it follows that
|INX]| = U N(z)|+6 -2

zeX
> E |N($)| _w+5_2

zeX 2

—3)(5 -2

> (5—2)5—%%_2
(0 =2)(6+5)
T —

This implies together with inequality (2) the desired bound
0 —2)(0

Case 2. Assume that 6 > 3 and v < 6 — 3. Analogously to Subcase 1.1, we arrive
at the desired inequality (1).

Case 3. Assume that 6 = 2. Corollary 2.3 leads to v < 37", and this is exactly
the bound (1) for § = 2. O.

Using Proposition 2.4, it is straightforward to verify that in the case that 6 > 2,
inequality (1) is better than Theorem 1.1 by Brigham and Dutton [2].

4 Upper bounds in terms of order, diameter and minimum
degree

Our first result in this section is an improvement of Theorem 1.3.

Theorem 4.1 Let G be a connected graph of minimum degree § > 4. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then

1
7 141472+ S(n =151+ |d/2))
1
= g(n —1—=(0=2)(1+|d/2])).
Proof. Let d =2t 4 r with 0 <r <1 and let zox; .. .24 be a minimum length path
between the vertices zg and xq4. If A = {@g, @2, ..., 29}, then |[A| = 1+|d/2| = 1+t
Since G does not contain the 4-cycle and the diamond as induced subgraphs, we

conclude that N(A)NA = (. If we define H = G — N[A] and note that A dominates
NJA], then we observe that

7 =UG) < 1+ |d/2] +~(H). (3)
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Furthermore, the fact N(A) N A = @ implies

t
=0
t
SN (zo)| — t + |A] > 6|A] +1

=0

t

=0

|V[A]|

+4]

and thus n(H) < n — (6|A|+1). Now any vertex of H can have, in G, at most three
neighbors in N[A], because otherwise, we would obtain a 4-cycle or a diamond as an
induced subgraph or a shorter path between o and 4. Hence 6(H) > 5 —3 > 1. It
follows from Proposition 2.1 and (3) that

7 =1(G)

IN

1+ d/2] + 7 (H)

1+ [dj2) + 22T (6|2A|+1)

L 1d/2] + 5(n— 1= 51+ [d/2]). D

IN

Applying Corollary 2.3 or Theorem 2.5 instead of Proposition 2.1, we obtain anal-
ogously the next two results.

Theorem 4.2 Let G be a connected graph of minimum degree § > 5. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then

v <14 [d/2 +§(n—1_5(1+ 1d/2]).

Theorem 4.3 Let G be a connected graph of minimum degree § > 6. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then

v <14 1d/2 —+—g(n—1—6(1+ 1d/2))-

Theorem 4.2 is better than Theorem 4.1 for § > 5, and Theorem 4.3 is better
than Theorem 4.2 for § > 6.

Using Theorem 2.6 instead of Proposition 2.1, we arrive at the next result, which
is an improvement of Theorem 4.1 for ¢ > 8.

Theorem 4.4 Let G be a connected graph of minimum degree § > 4. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then
1+1n(6 —2)

<
v <1+|d/2]+ )

(n—=1-=0(1+|d/2])).
Proof. Analogously to the proof of Theorem 4.1, we deduce that

7 =7(G) < [d/2] +1+~(H).
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Because of 6(H) +1 > d —3+ 1 > 2, and since # is a monotone decreasing
function for x > 2, it follows from Theorem 2.6 that

n(H)(1+In(6(H) + 1))

16) < 1+lajzy+ "DU AL
< 141d/2] +%(n—1—5(1+ 1d/2)))

1+4+1In(6 —2)
0—2

IN

1+ |d/2] + (n—1-6(1+|d/2])). O
Theorem 4.4 is of particular interest, because the following example will demon-
strate that it is asymptotically best possible for § — oo.

Example 4.5 Let Hy, H,,...,H, be p copies of the complete graph K;,, for an
integer 6 > 4, and let x; and y; be two different vertices in H; for i = 1,2,...,p.
We define the graph G as the disjoint union of Hy, Hs,..., H, together with the
edges 1Yz, T2Ys, ..., Tp—1Yp. It is easy to see that G does not contain the 4-cycle
and the diamond as induced subgraphs and that 6(G) = ¢, n(G) = n = p(d + 1),
d(G) =d=2p -1, and 7v(G) = v = p. Now Theorem 4.4 yields
14 1In(§ —2)
<1 -1+ ——
7 < 1+p + 5—2
1+4+1In(6 —2)
= — 1 _
pHp=-1)—55

1+ 1In(é - 2))
< 1+ ——m=
=P ( R
= p(1+o0(1))

(pd +p—1—pd)

for 6 — oo. Since 7(G) = p, this inequality chain shows that Theorem 4.4 is
asymptotically best possible.

Theorem 4.6 Let G be a connected graph of minimum degree § > 3. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then

2
IN

14 1d/3] + 3 (n — (6 +1)(1 + [d/3)

S — (5= 1)1+ L4/3)))

Proof. Let d =3t 4+ r with 0 <r < 2 and let zox; ...24 be a minimum length path
between the vertices zg and z4. If A = {z¢, z3,..., 25}, then |A| =1+[d/3| = 1+t.
Since G does not contain the 4-cycle and the diamond as induced subgraphs, we
conclude that N(A)N A = (. If we define H = G — N[A] and note that A dominates
N[A4], then we observe that

v=7G) <1+ [d/3] +~(H). (4)
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Furthermore, the fact N(A) N A = @ implies

t t

IN[A]l = _L_JON[wsi]: _L_J()N(wsi)v“lfll
- ; | N (2:)] + JA| > (6 + 1)| A

and thus n(H) < n — (6 + 1)|A]. Now any vertex of H can have, in G, at most two
neighbors in N[A], because otherwise, we would obtain a 4-cycle or a diamond as an
induced subgraph or a shorter path between zo and z,;. Hence §(H) > 6 —2> 1. It
follows from Proposition 2.1 and (4) that

Y=1(G) < 1+ 1d/3] +(H)
L+ 1d/3] + 3(n— 6+ DA+ [d/3])). B

IN

Note that for § = 3 the bound in Theorem 4.6 is identical with the bound in
Theorem 1.2, however, the hypotheses are weaker.

Using Theorem 2.6 instead of Proposition 2.1, we obtain similarly to the proof of
Theorem 4.6 the next result, which is an improvement of Theorem 4.6 for § > 7.

Theorem 4.7 Let G be a connected graph of minimum degree § > 3. If G does not
contain the 4-cycle and the diamond as induced subgraphs, then

14+ 1In(6—1)
0—1
Theorem 4.8 If G is a connected and Cy-free graph of minimum degree 6 > 4, then

1+ [d/2] +%(n—1—5(1+Ld/2J)_W)

= %(n—l—(5—2)(1+ Ld/gJ)_w)

Proof. Let d =2t 4 r with 0 <r <1 and let zox; ...24 be a minimum length path
between the vertices zo and z4. If A = {0, 22,...,22}, then |A| =1+ |d/2] =1+t
and N(A)N A =0. If we define H = G — N[A], then we observe that v = v(G) <
1+ |d/2] + v(H). Furthermore, the fact N(A) N A = @ implies, as in the proof of
Theorem 4.1, that |[N[A]| > 6|A|+1 and thus n(H) < n—(§|A|+1). Now any vertex
of H can have, in G, at most three neighbors in N[A]. Hence 6(H) > 6 -3 > 1. It
follows from Theorem 1.1 that

v < 14 [d/2] +~(H)
< 1+Ld/2J+%(n—1—5(1+Ld/2J)—

v <1+ (/3] + (n—(5+ 1)1 + |d/3))).

IN

v

(6—3)(6—4))' O
2

It is a simple matter to verify that for d = 6s +2,d = 6s+4, or d = 5s+ 5
and s > 0, aswellasford:6s,d:(ﬁs—i—l,ord:63—}—3and§25and52g%f17
Theorem 4.8 is an improvement of Theorem 1.2 by Brigham and Dutton [2].
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Applying Theorem 3.1 instead of Theorem 1.1, we obtain analogously to the proof
of Theorem 4.8 the following better bound for § > 5.

Theorem 4.9 If G is a connected and Cj-free graph of minimum degree 6 > 5,

then
(30 — 8)(6 — 5))

<1 1a2] + 2 (n =1 a1+ Laj2)) - B0
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