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Abstract

There are 17 non-isomorphic 2-regular graphs of order 15, and 25 non-
isomorphic 2-regular graphs of order 17. Consequently, there are (17+7_1

= 245,157 possible types of 2-factorisations of K5, and (25+:_1) =
10,518,300 possible types of 2-factorisations of Kj7;. We show that all
except five possible types of 2-factorisations exist for K5, and that all
possible types of 2-factorisations exist for K;. The existence or other-
wise of all possible types of 2-factorisations of K, is now settled for all

n < 17.

1 Introduction

A 2-factorin a graph G is a 2-regular spanning subgraph, and a 2-factorisation of G
is a set of 2-factors in G whose edge sets partition the edge set of G. A 2-factor is said
to be of type [m1,ma, ..., my] if it consists of ¢ cycles of lengths my,ma, ..., m;. The
order in which the cycles in a 2-factor are listed is not important, so the number of
possible types of 2-factors of order n is the number of distinct ways of partitioning n
into integers my,ma, ..., my with 3 < my,ms,...,my < nand my+ms+...+m; = n.
A 2-factorisation of a 2d-regular graph is said to be of type [ai, s, ..., aq] if its d
2-factors are of types oy, as,...,ay. Again, the order in which the types of 2-factors
are listed is not important, so if there are s distinct possible types of 2-factors of order
n, the number of possible types of 2-factorisations of a 2d-regular graph of order n
is (“*7"). We shall call the problem of determining which types of 2-factorisation
of a graph G exist the 2-factorisation problem for G.

The 2-factorisation problem for the complete graph K, has already been settled
for all n < 13, see [7, 9]. Here we settle the problem for n = 15 and n = 17. If we let

AT=[34] BT=[1] A°=[3,33 B°=[4,5 C°=[3,6] D°=[g]
C"M=1[3,3,5] A®=13,3,3,3,3] B“=3,3,4,5] G“=]3,5,7]
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I =[5,5,5] K'®=[447 L%=[18]

(this notation is chosen to match that of [1]) then for n < 17, the following table
lists every (feasible) type of 2-factorisation of K, that does not exist.

[ n | Types of 2-factorisations that do not exist |
3,0 [}
7 [A7, 47, B7]

0 | [A% A% A%, B[, [A%, A%, A°, 7], [A%, A%, A%, D", [A°, A°, B°, B"],
[149,1497 -BQ7 Cf9]7 [‘/49,1497 BQ, D9L [149,1497 Cf97 -DQ]7 [‘AQ7 -BQ7 Cf97 Cf9]7
(B°, B, B°, BY|

11 [011 011 011 011 011}
13 0
15 [A15 A15 A15 A15 A15 Bl5] [A15 A15 A15 A15 A15 GIS]

[1415’1415’141571415’14157115]7 [14157141571415’14157AIS’K'IS]7
[Aw,A15,A156)A15,A15,L15}

17

Table 1: Types of 2-factorisations of K, n < 17, that do not exist.

We have also constructed some specific families of types of 2-factorisations of Kig
and K1, see Section 5.

For complete graphs of order more than 17, relatively little is known about the
2-factorisation problem in general, although considerable progress has been made
for certain special cases of the problem. The Oberwolfach problem asks for a 2-
factorisation of the complete graph K, in which all the 2-factors are of the same type.
The Oberwolfach problem is unsolved in general, but has been completely settled in
the case where all the cycles in each 2-factor are of the same length [4, 5, 10]. A
survey on the Oberwolfach problem can be found in [3]. The Hamilton- Waterloo
problem corresponds to the 2-factorisation problem for K, in the case where two
types of 2-factor are considered, see [2, 8, 11]. The case of 2-factorisations of K, of
type [0,0,...,0,a,3,7], where 6 is a Hamilton cycle and «, 8 and v are 2-factors of
any specified types is completely settled in [6].

2 General Strategy

Naturally, our strategy involves finding numerous distinct types of 2-factorisations
of various graphs. To determine the existence or otherwise of a particular type of
2-factorisation of a graph G, we use a computer search, based on recursion and
backtracking. A number of fairly obvious techniques are used to reduce redundancy
within the searches. In particular, canonical orderings are placed on the vertices
within each cycle in each 2-factor, and on the 2-factors within each 2-factorisation.
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For some of the larger searches, performance was greatly enhanced by including some
randomness in the search.

The number of possible types of 2-factorisations of K5 and K7 is quite large,
245,157 and 10,518, 300 respectively. We will make use of circulants to reduce the
number of 2-factorisations for which we need to search. The circulant C(n,S) is
the graph with vertex set Z,, and edge set given by {z,y} € E(C(n,S)) if and only
ifz—y e Sory—x e S (calculations being done in Z,). We will always have
S C{L,2,...,|(n—1)/2]} for any circulant C(n, S).

We write Kj5 as the edge-disjoint union of G; = C(15,{1,2,4}) and Gy =
C(15,{3,5,6,7}), find all distinct types of 2-factorisations of G; and G,, combine
each type of 2-factorisation of G; with each type of 2-factorisation of G to pro-
duce 2-factorisations of Ki5, and then search directly for any missing types of 2-
factorisations of Ki5. A similar strategy is used for K;;. We write K7 as the edge-
disjoint union of two copies of G = C(17,{1,2,4,8}) (note that C(17,{1,2,4,8}) =
C(17,{8,5,6,7})), find all distinct types of 2-factorisations of G, combine these types
in pairs to produce 2-factorisations of K7, and then search directly for any missing
types of 2-factorisations of Ki;.

3 The complete graph of order fifteen

Since there are 17 non-isomorphic 2-regular graphs of order 15, there are ('7;7") =

969 possible types of 2-factorisations of C'(15,{1,2,4}). We have computationally
constructed 788 of these types and verified that the remaining 181 do not exist. Those
which exist (and a list of those which don’t) are available on the web, see [1]. There
are (1”4471) = 4845 possible types of 2-factorisations of C'(15,{3,5,6,7}). We have
computationally constructed 4793 of these types, and verified that the remaining 52
do not exist; see [1].

It is straightforward, with the aid of a computer, to check which types of 2-
factorisations of K5 can be obtained by combining an existing 2-factorisation of
C(15,{1,2,4}) with an existing 2-factorisation of C'(15,{3,5,6,7}). It turns out that
all except 2954 of the 245, 157 possible types of 2-factorisation of K5 can be obtained
in this manner. We have computationally constructed 2949 of these remaining types,
and verified that the other 5 do not exist, see [1]. The 5 types of 2-factorisations of
K15 which do not exist are listed in Table 1. The non-existence of these 5 types of
2-factorisations of K5 was observed in [8].

4 The complete graph of order seventeen

Since there are 25 non-isomorphic 2-regular graphs of order 17, there are (25+4471) =
20,475 possible types of 2-factorisations of C'(17,{1,2,4,8}). We have computation-

ally constructed 20,460 of these types and verified that the remaining 15 do not
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exist, see [1].

It is straightforward, with the aid of a computer, to check which types of 2-
factorisations of K7 can be obtained by combining pairs of existing 2-factorisations
of C(17,{1,2,4,8}). It turns out that all except 480 of the 10,518, 300 possible types
of 2-factorisation of K7 can be obtained in this manner. We have computationally
constructed all of these remaining 480 possible types of 2-factorisations of K;7; see [1].

5 Conclusions

In this section we list and discuss a few questions on 2-factorisations of graphs. The
first question has undoubtedly been considered by many people and is mentioned in

[7].

(1) Is it true that there exists an N such that for all odd n > N, every possible
type of 2-factorisation of K, exists? If so, does N = 177

It seems reasonable to suggest that such an NV exists, and perhaps that N = 17.
The results for n < 17, in particular n = 15, suggest some likely candidates if one
wishes to search for non-existent types of 2-factorisations of K9 and Ky;. We have
computationally constructed a 2-factorisation of Ko of type [A!®, A% ... A9 q]
where A'® = [3,3,3,3,3,4] and « is any one of the 39 non-isomorphic 2-regular graphs
of order 19, see [1]. We have also computationally constructed a 2-factorisation of Koy
of type [A%, A% ... A®' «] where A = [3,3,3,3,3,3,3] and « is any one of 57 of
the 60 non-isomorphic 2-regular graphs of order 21. The three 2-factors « for which
we have not been able to ascertain the existence or otherwise of a 2-factorisation
of type [A%, A%, .. A% o] are a = [3,3,3,3,3,6], [3,3,3,6,6] and [3,3,3,3,9]. A
2-factorisation of type [A*, A?!, ... A?' [21]] was found by Mariusz Meszka, see [11].

When n is even, one can ask an analogous question for K, — I, the complete
graph of order n with the edges of a perfect matching removed.

(2) Does there exist an N such that for all even n > N, every possible type of
2-factorisation of K, — I exists?

If it exists, NV is at least 14, since there is no 2-factorisation of K5 — I in which each
2-factor is of type [3,3,3, 3], see [3].

Although the existence of N for questions (1) and (2) seems likely, the answer to
the following question is less clear.

(3) For which % does there exist an NN, such that for all n > Nj, there exists a
k-regular graph Gy, of order n for which every type of 2-factorisation of G,
exists? What is the smallest such % (if one exists)? Does there exist such a k
with N, =k + 17
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We have obtained the following interesting results which perhaps shed some light,
though not much, on this question in the case k = 8. For all integers n in the range
9 < n < 17, we have computationally checked the existence of all possible types of
2-factorisations of C'(n, {1,2,3,4}). The results, which can be found in [1], are:

e Forn =9, C(n,{1,2,3,4}) = K,, and 26 of 35 possible types of 2-factorisation
of C(n,{1,2,3,4}) exist.

e For n =10, C(n,{1,2,3,4}) = — I and all 70 types of 2-factorisation of
C(n,{1,2,3,4}) exist.

e For n =11, all 126 types of 2-factorisation of C'(n, {1,2,3,4}) exist.

e For n = 12, all except 4 of 495 possible types of 2-factorisation of C(n,{1,2,
3,4}) exist. The four types which do not exist are
3,3,3,3],13,3,3,3],[3,3,3,3],[4,4,4]],
3,3,3,3],13,3,3,3],[3,3,3,3],[3,4, 5]],
3,3,3,3],13,3,3,3],[3,3,3,3],[3, 3, 6]],
3,3,3,3],13,3,3,3],[3,3,3,3],[12]].

) ) )

’ ’ ’

[l
[l
[l
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e For n =13, all 715 types of 2-factorisation of C'(n, {1,2,3,4}) exist.

e For n = 14, all 1820 types of 2-factorisation of C'(n, {1,2,3,4}) exist.

e For n = 15, all except 33 of 4845 possible types of 2-factorisation of C(n, {1, 2,
3,4}) exist. (The non-existing types are listed in [1].)

e For n = 16, all except 3 of 10, 626 possible types of 2-factorisation of C(n, {1, 2,
3,4}) exist. The three types which do not exist are

[13,3,3,3,4],[3,3,3,3,4],[3,3,3,3,4],[4,4,4,4]],
[13,3,3,3,4],[3,3,3,3,4],[3,3,3,3,4],[3,4,4,5]],
[[3,3,3,3,4],[3,3,3,3,4],[4,4,4,4],[3, 3,3, 7]].

e For n = 17, all except 1 of 20,475 possible types of 2-factorisation of C(n, {1, 2,
3,4}) exist. The type which does not exist is

[13,3,3,3,5],[3,3,3,3,5],[3,3,3,3,5],[4,4,4, 5]].
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