# Construction for an OGDD of type 24<sup>4</sup>

#### XUEBIN ZHANG

Department of Mathematics Nanjing Normal University Nanjing, 210097 China

#### Abstract

Colbourn and Gibbons showed there exists an OGDD of type  $g^4$  for all positive integers  $g \equiv 0 \pmod{4}$  if there exists an OGDD of type  $g^4$  for g = 4, 8, 12 and 24. OGDDs of type  $8^4$  and  $12^4$  were constructed by Dukes, and an OGDD of type  $4^4$  was constructed by the author. In this article, we will construct an OGDD of type  $24^4$  to obtain the existence of an OGDD of type  $g^4$  for all positive integers  $g \equiv 0 \pmod{4}$ .

#### 1 Introduction

A group-divisible design with block size 3 (briefly, 3-GDD),  $(X, \mathcal{G}, \mathcal{A})$ , is a set X and a partition  $\mathcal{G}$  of X into classes (usually called groups), and a set  $\mathcal{A}$  of 3-subsets of X, so that each pair  $\{x,y\}$  of elements of X appears once in a 3-subset of  $\mathcal{A}$  if x and y are from different groups, and does not appear in a 3-subset of  $\mathcal{A}$  if x and y are from the same group.

An orthogonal group-divisible design (briefly, OGDD),  $(X, \mathcal{G}, \mathcal{A}, \mathcal{B})$ , is a pair of 3-GDDs  $(X, \mathcal{G}, \mathcal{A})$  and  $(X, \mathcal{G}, \mathcal{B})$  satisfying two orthogonal conditions:

- (i) if  $\{x, y, z\} \in \mathcal{A}$  and  $\{x, y, w\} \in \mathcal{B}$ , then z and w are in different groups; and
- (ii) for two distinct intersecting triples  $\{x, y, z\}$  and  $\{u, v, z\}$  of  $\mathcal{A}$ , the triples  $\{x, y, w\}$  and  $\{u, v, t\}$  of  $\mathcal{B}$  satisfy  $w \neq t$ .

For the existence of an OGDD of type  $g^u$  (that is, the group size is g and the number of groups is u), Colbourn and Gibbons [4] have done excellent work. The following were their concluding remarks:

The main question that remains open is whether there is any value of g for which an OGDD of type  $g^4$  exists. On the basis of the nonexistence when g=2 and g=4, one might be tempted to conjecture that the answer is negative.

The following theorem is Theorem 2.10 in [4] by Colbourn and Gibbons.

**Theorem 1.1** If m is a positive integer and  $m \notin \{2, 3, 6, 10, 12, 14, 18, 26, 30, 38, 42\}$ , and there is an OGDD of type  $g^u$ , then there exists an OGDD of type  $(mg)^u$ .

**Theorem 1.2** If there exists an OGDD of type  $g^4$  for g = 4, 8, 12 and 24, then there exists an OGDD of type  $g^4$  for all positive integers  $g \equiv 0 \pmod{4}$ .

*Proof.* Apply Theorem 1.1 with u=4, g=4 to obtain an OGDD of type  $(4m)^4$  for all positive integers  $m \notin \{2,3,6,10,12,14,18,26,30,38,42\}$ . Apply Theorem 1.1 with u=4, g=8, m=5,7,9,13,15,19 and 21 to obtain an OGDD of type  $(4k)^4$  for  $k \in \{10,14,18,26,30,38,42\}$ . Apply Theorem 1.1 with u=4, g=12, m=4 to obtain an OGDD of type  $(4\cdot12)^4$ . Since there exists an OGDD of type  $g^4$  for g=8,12 and 24, there exists an OGDD of type  $(4k)^4$  for k=2,3 and 6. Hence there exists an OGDD of type  $(4k)^4$  for all positive integers k, that is, there exists an OGDD of type  $g^4$  for all positive integers  $g\equiv 0 \pmod 4$ . □

OGDDs of type  $8^4$  and  $12^4$  were constructed by Dukes in [2] and an OGDD of type  $4^4$  was constructed by the author in [7].

In this article, we will construct an OGDD of type  $24^4$  to obtain existence of an OGDD of type  $g^4$  for all positive integers  $g \equiv 0 \pmod{4}$ .

# 2 The construction of an OGDD of type 24<sup>4</sup>

It is natural that we hope to construct an OGDD of type  $(2h)^4$  by base blocks under  $Z_{8h}$ . Unfortunately, there is no such design from Theorem 3.1 in Appendix A.

In this section we let

$$G_i = \{0, 3, 6, ..., 69\} + i, \quad i = 0, 1, 2;$$
  
$$H = \{\infty_1, \infty_2, ..., \infty_{24}\}; \quad \mathcal{G} = \{G_0, G_1, G_2, H\}; \quad X = G_0 \cup G_1 \cup G_2 \cup H.$$

**Definition 2.1** Let  $(X, \mathcal{G}, \mathcal{B})$  be a 3-GDD of type  $24^4$ . For i = 1, ..., 24 and j = 0, 1, 2, define:

$$\mathcal{B}_g = \{ B \in \mathcal{B} : B \cap H = \emptyset \}; \quad \mathcal{B}_h = \{ B \in \mathcal{B} : B \cap H \neq \emptyset \};$$
$$\mathcal{P}_{\mathcal{B},i} = \{ \{ x, y \} : \{ \infty_i, x, y \} \in \mathcal{B} \}.$$

From the definition of a 3-GDD, we have

**Lemma 2.2** If  $(X, \mathcal{G}, \mathcal{B})$  is a 3-GDD of type  $24^4$  then

- (i) each  $\mathcal{P}_{\mathcal{B},i}$  is a partition of  $X \setminus H$ ;
- (ii) each point of  $X \setminus H$  appears exactly 12 times in  $\mathcal{B}_g$ .

From the definition of an OGDD, we have

**Lemma 2.3** If  $(X, \mathcal{G}, \mathcal{A}, \mathcal{B})$  is an OGDD of type  $24^4$  then  $\mathcal{B}_g \cup \mathcal{A}_g$  are the blocks of a 3-GDD of type  $24^3$ .

**Lemma 2.4** If  $(X, \mathcal{G}, \mathcal{A}, \mathcal{B})$  is an OGDD of type  $24^4$  then  $\{\mathcal{P}_{\mathcal{B},i} : i = 1, 2, ..., 24\}$  is a partition of  $\{\{x, y\}, \{y, z\}, \{z, x\} : \{x, y, z\} \in \mathcal{A}_q\}$ .

First, by Lemma 2.3, we will construct a 3-GDD of type  $24^3$  for which the three groups are  $G_0, G_1, G_2$ .

It is natural that we hope to construct it by base blocks under  $Z_{72}$ . Unfortunately, there is no such design from Theorem 4.2 in Appendix B. So we consider constructing it by base blocks under subgroups of  $Z_{72}$ .

Let 
$$E = \{0, 2, 4, ..., 70\}, F = \{0, 6, 12, ..., 66\}$$
 be two subgroups of  $Z_{72}$ .  
Let  $\mathcal{T}_1 = \{$ 

$$\{1, 9, -55\}, \{1, 57, -31\}, \{1, 33, -7\}, \{0, 8, -62\}, \{0, 14, -50\}, \{0, 26, -8\},$$

$$\{0, 56, -2\}, \{0, 62, -26\}, \{0, 38, -56\}, \{0, 32, -14\}, \{0, 2, -38\}, \{0, 50, -32\}\}$$

be a set of base blocks under F and  $\mathcal{T}_2 = \{$ 

$$\{1, 38, 3\}, \{1, 44, 15\}, \{1, 50, 27\}, \{1, 56, 39\}, \{1, 62, 51\}, \{1, 32, 63\}, \{0, 1, 68\}, \{0, 19, 44\}, \{0, 7, 20\}, \{1, 2, 69\}, \{1, 20, 45\}, \{1, 8, 21\}\}$$

be a set of base blocks under E.

It is easily checked that  $\mathcal{T}_1$  under F and  $\mathcal{T}_2$  under E form a 3-GDD of type  $24^3$ .

Second, by Lemma 2.2, we will partition  $\mathcal{T}_1$  into  $\mathcal{A}_1$  and  $\mathcal{B}_1$ , and partition  $\mathcal{T}_2$  into  $\mathcal{A}_2$  and  $\mathcal{B}_2$  as follows.

$$\begin{split} \mathcal{A}_1 &= \{\{1,9,-55\},\{1,57,-31\},\{1,33,-7\},\{0,8,-62\},\{0,14,-50\},\{0,26,-8\}\};\\ \mathcal{A}_2 &= \{\{0,1,68\},\{0,19,44\},\{0,7,20\},\{1,38,3\},\{1,44,15\},\{1,50,27\}\};\\ \mathcal{B}_1 &= \{\{0,56,-2\},\{0,62,-26\},\{0,38,-56\},\{0,32,-14\},\{0,2,-38\},\{0,50,-32\}\};\\ \mathcal{B}_2 &= \{\{1,2,69\},\{1,20,45\},\{1,8,21\},\{1,56,39\},\{1,62,51\},\{1,32,63\}\}. \end{split}$$

Finally, by Lemma 2.2 and Lemma 2.4, we will arrange  $\mathcal{P}_{\mathcal{A},i}$  and  $\mathcal{P}_{\mathcal{B},i}$  to form an OGDD of type  $24^4$ .

The following pairs under F come from  $\mathcal{B}_1$  under the subgroup F and  $\mathcal{B}_2$  under the subgroup E.

$$\begin{array}{lll} \{0,2+6s\}:s=9,10,6,5,0,8\\ \{4,0+6s\}:s=1,5,10,3,7,6\\ \{3,5+6s\}:s=11,7,3,6,8,10\\ \{1,2+6s\}:s=0,3,1,9,10,5\\ \{5,0+6s\}:s=11,4,2,10,11,6\\ \{2,3+6s\}:s=11,4,2,9,10,5\\ \{4,5+6s\}:s=11,4,2,9,10,5\\ \end{array}$$

Arrange  $\mathcal{P}_{\mathcal{A},i}$ ,  $i=1,2,\ldots,24$  using the above pairs to obtain the following  $\mathcal{A}_3$ :

$$\mathcal{A}_3 = \{\{\infty_1, 0, 56\}, \{\infty_1, 1, 69\}, \{\infty_1, 4, 71\}, \{\infty_2, 0, 62\}, \{\infty_2, 1, 45\}, \{\infty_2, 4, 29\}, \\ \{\infty_3, 0, 38\}, \{\infty_3, 1, 21\}, \{\infty_3, 4, 17\}, \{\infty_4, 0, 32\}, \{\infty_4, 5, 1\}, \{\infty_4, 3, 4\}, \\ \{\infty_5, 0, 2\}, \{\infty_5, 5, 49\}, \{\infty_5, 3, 22\}, \{\infty_6, 0, 50\}, \{\infty_6, 5, 25\}, \{\infty_6, 3, 10\},$$

```
 \{\infty_{7}, 2, 16\}, \{\infty_{7}, 1, 39\}, \{\infty_{7}, 5, 6\}, \{\infty_{8}, 2, 58\}, \{\infty_{8}, 1, 51\}, \{\infty_{8}, 5, 24\}, \\ \{\infty_{9}, 2, 52\}, \{\infty_{9}, 1, 63\}, \{\infty_{9}, 5, 12\}, \{\infty_{10}, 2, 28\}, \{\infty_{10}, 3, 71\}, \{\infty_{10}, 0, 67\}, \\ \{\infty_{11}, 2, 34\}, \{\infty_{11}, 3, 47\}, \{\infty_{11}, 0, 25\}, \{\infty_{12}, 2, 64\}, \{\infty_{12}, 3, 23\}, \{\infty_{12}, 0, 13\}, \\ \{\infty_{13}, 4, 6\}, \{\infty_{13}, 3, 41\}, \{\infty_{13}, 1, 2\}, \{\infty_{14}, 4, 30\}, \{\infty_{14}, 3, 53\}, \{\infty_{14}, 1, 20\}, \\ \{\infty_{15}, 4, 60\}, \{\infty_{15}, 3, 65\}, \{\infty_{15}, 1, 8\}, \{\infty_{16}, 4, 18\}, \{\infty_{16}, 5, 43\}, \{\infty_{16}, 2, 69\}, \\ \{\infty_{17}, 4, 42\}, \{\infty_{17}, 5, 55\}, \{\infty_{17}, 2, 27\}, \{\infty_{18}, 4, 36\}, \{\infty_{18}, 5, 67\}, \{\infty_{18}, 2, 15\}, \\ \{\infty_{19}, 1, 56\}, \{\infty_{19}, 3, 58\}, \{\infty_{19}, 5, 60\}, \{\infty_{20}, 1, 62\}, \{\infty_{20}, 3, 64\}, \{\infty_{20}, 5, 66\}, \\ \{\infty_{21}, 1, 32\}, \{\infty_{21}, 3, 34\}, \{\infty_{21}, 5, 36\}, \{\infty_{22}, 0, 55\}, \{\infty_{22}, 2, 57\}, \{\infty_{22}, 4, 59\}, \\ \{\infty_{23}, 0, 61\}, \{\infty_{23}, 2, 63\}, \{\infty_{23}, 4, 65\}, \{\infty_{24}, 0, 31\}, \{\infty_{24}, 2, 33\}, \{\infty_{24}, 4, 35\}\}.
```

The following pairs under F come from  $A_1$  under the subgroup F and  $A_2$  under the subgroup E.

```
 \begin{array}{lll} \{0,2+6s\}:s=3,7,11,4,2,1\\ \{4,0+6s\}:s=9,11,8,0,2,4\\ \{3,5+6s\}:s=4,5,1,0,9,2\\ \{1,2+6s\}:s=8,7,6,11,4,2\\ \{5,0+6s\}:s=5,8,3,9,0,7\\ \{2,3+6s\}:s=3,1,6,7,0,8 \end{array} \\ \begin{array}{lll} \{2,4+6s\}:s=0,1,6,11,7,3\\ \{1,3+6s\}:s=1,9,5,0,2,4\\ \{5,1+6s\}:s=3,2,5,10,6,1\\ \{3,4+6s\}:s=7,6,8,11,4,2\\ \{0,1+6s\}:s=1,3,8,0,7,6\\ \{4,5+6s\}:s=1,8,3,0,7,6 \end{array}
```

Arrange  $\mathcal{P}_{\mathcal{B},i}$ ,  $i=1,2,\ldots,24$  using the above pairs to obtain the following  $\mathcal{B}_3$ .

```
\mathcal{B}_3 = \{\{\infty_1, 4, 54\}, \{\infty_1, 3, 5\}, \{\infty_1, 1, 50\}, \{\infty_2, 4, 66\}, \{\infty_2, 3, 59\}, \{\infty_2, 1, 44\}, \\ \{\infty_3, 4, 48\}, \{\infty_3, 3, 17\}, \{\infty_3, 1, 38\}, \{\infty_4, 2, 70\}, \{\infty_4, 3, 29\}, \{\infty_4, 0, 7\}, \\ \{\infty_5, 2, 46\}, \{\infty_5, 3, 35\}, \{\infty_5, 0, 19\}, \{\infty_6, 2, 22\}, \{\infty_6, 3, 11\}, \{\infty_6, 0, 49\}, \\ \{\infty_7, 4, 0\}, \{\infty_7, 5, 61\}, \{\infty_7, 2, 21\}, \{\infty_8, 4, 12\}, \{\infty_8, 5, 37\}, \{\infty_8, 2, 9\}, \\ \{\infty_9, 4, 24\}, \{\infty_9, 5, 7\}, \{\infty_9, 2, 39\}, \{\infty_{10}, 0, 26\}, \{\infty_{10}, 5, 19\}, \{\infty_{10}, 3, 46\}, \\ \{\infty_{11}, 0, 14\}, \{\infty_{11}, 5, 13\}, \{\infty_{11}, 3, 40\}, \{\infty_{12}, 0, 8\}, \{\infty_{12}, 5, 31\}, \{\infty_{12}, 3, 52\}, \\ \{\infty_{13}, 0, 20\}, \{\infty_{13}, 1, 9\}, \{\infty_{13}, 4, 11\}, \{\infty_{14}, 0, 44\}, \{\infty_{14}, 1, 57\}, \{\infty_{14}, 4, 53\}, \\ \{\infty_{15}, 0, 68\}, \{\infty_{15}, 1, 33\}, \{\infty_{15}, 4, 23\}, \{\infty_{16}, 2, 4\}, \{\infty_{16}, 1, 3\}, \{\infty_{16}, 5, 30\}, \\ \{\infty_{17}, 2, 10\}, \{\infty_{17}, 1, 15\}, \{\infty_{17}, 5, 48\}, \{\infty_{18}, 2, 40\}, \{\infty_{18}, 1, 27\}, \{\infty_{18}, 5, 18\}, \\ \{\infty_{19}, 0, 1\}, \{\infty_{19}, 2, 45\}, \{\infty_{19}, 4, 5\}, \{\infty_{20}, 0, 43\}, \{\infty_{20}, 2, 3\}, \{\infty_{20}, 4, 47\}, \\ \{\infty_{21}, 0, 37\}, \{\infty_{21}, 2, 51\}, \{\infty_{21}, 4, 41\}, \{\infty_{22}, 1, 68\}, \{\infty_{22}, 3, 70\}, \{\infty_{22}, 5, 54\}, \\ \{\infty_{23}, 1, 26\}, \{\infty_{23}, 3, 28\}, \{\infty_{23}, 5, 0\}, \{\infty_{24}, 1, 14\}, \{\infty_{24}, 3, 16\}, \{\infty_{24}, 5, 42\}\}.
```

**Theorem 2.5** There exists an OGDD of type  $24^4$  and furthermore there exists an OGDD of type  $g^4$  for all positive integers  $g \equiv 0 \pmod{4}$ .

*Proof.* Define a 3-GDD of type  $24^4$  by developing the three sets of base blocks:  $A_1$  under the subgroup F,  $A_2$  under the subgroup E and  $A_3$  under the subgroup F.

Form a second 3-GDD by developing the three sets of base blocks:  $\mathcal{B}_1$  under the subgroup F,  $\mathcal{B}_2$  under the subgroup E and  $\mathcal{B}_3$  under the subgroup F. It is readily checked that the two 3-GDDs are orthogonal (see Appendix C).

The question that still remains open is whether there is any value of  $g \equiv 2 \pmod{4}$  for which an OGDD of type  $g^4$  exists.

#### Acknowledgments

I would like to acknowledge the support of the Natural Science Foundation of China under Grant 19971043. I would like to thank the referees for their valuable suggestions.

### Appendix A

Let  $X = Z_{8h}$ ,  $H = \{0, 4, 8, ..., 8h - 4\}$  be a subgroup of  $Z_{8h}$ , and  $G_i = H + i$ , i = 0, 1, 2, 3. In the following we will show

**Theorem 3.1** There is no OGDD of type  $(2h)^4$  for which all blocks are developed by base blocks under  $Z_{8h}$ .

Assume that  $\mathcal{A}$  and  $\mathcal{B}$  are two sets of base blocks under  $Z_{8h}$  for an OGDD of type  $(2h)^4$ , for which the four groups are  $G_0, G_1, G_2$  and  $G_3$ .

Without loss of generality, we can let

$$\mathcal{A} = \{\{0, a_i, a_i + b_i\} : i = 0, 1, \dots, h - 1\}$$

be the base blocks of the first 3-GDD, and

$$\mathcal{B} = \{\{0, a_i, a_i + d_i\} : i = 0, 1, \dots, h - 1\}$$

be the base blocks of the second 3-GDD, where

$$a_i = 4i + 2, \ b_i, d_i \equiv 1, 3 \pmod{4}, \ i = 0, 1, \dots, h - 1.$$

From the orthogonality of an OGDD, it is easy to see that

(i) 
$$\{b_i, a_i + b_i, d_i, a_i + d_i : i = 0, 1, 2, \dots, h - 1\} = \{1, 3, 5, \dots, 8h - 1\};$$

(ii) 
$$d_i - b_i \equiv 2 \pmod{4}$$
.

Without loss of generality, we can let

$$b_i \equiv 1 \pmod{4}, i = 0, 1, \dots, s - 1;$$
  $b_j \equiv 3 \pmod{4}, j = s, s + 1, \dots, h - 1.$ 

Hence

$$a_i + b_i \equiv 3 \pmod{4}, i = 0, 1, \dots, s - 1;$$
  
 $a_j + b_j \equiv 1 \pmod{4}, j = s, s + 1, \dots, h - 1.$ 

By (ii)

$$d_i \equiv 3 \pmod{4}, i = 0, 1, \dots, s - 1;$$
  $d_j \equiv 1 \pmod{4}, j = s, s + 1, \dots, h - 1.$ 

Hence

$$a_i + d_i \equiv 1 \pmod{4}, i = 0, 1, \dots, s - 1;$$
  
 $a_i + d_i \equiv 3 \pmod{4}, j = s, s + 1, \dots, h - 1.$ 

By (i), the sum of all numbers which is 1 modulo 4 is

$$\Sigma b_i + \Sigma (a_i + b_j) + \Sigma d_j + \Sigma (a_i + d_i) \equiv (8h - 2)h \pmod{8h}.$$

By (i), the sum of all numbers which is 3 modulo 4 is

$$\Sigma b_j + \Sigma (a_i + b_i) + \Sigma d_i + \Sigma (a_j + d_j) \equiv (8h - 2)h \pmod{8h}.$$

It is clear that the left sides of the above two equalities are the same; this forces  $(8h-2)h \equiv (8h+2)h \pmod{8h}$ , that is,  $4h \equiv 0 \pmod{8h}$ , which is impossible.

### Appendix B

Let  $X = Z_{6h}$ ,  $H = \{0, 3, 6, ..., 6h-3\}$  be a subgroup of  $Z_{6h}$ , and  $G_i = H+i$ , i = 0, 1, 2. In the following we will show

**Theorem 4.1** There is no 3-GDD of type  $3^{2h}$  for which all blocks are developed by base blocks under  $Z_{6h}$ .

Assume that  $\mathcal{A}$  is a set of base blocks under  $Z_{6h}$  for a 3-GDD of type  $3^{2h}$ , for which the three groups are  $G_0, G_1, G_2$ .

It is easy to see that the number of base blocks is 2h/3, so  $h \equiv 0 \pmod{3}$ . It is clear that one base block yields four or zero odd differences, so  $h \equiv 0 \pmod{2}$ . Hence h = 6n. Without loss of generality, we can let

$$\mathcal{A} = \{\{0, a_i, a_i + b_i\} : i = 0, 1, \dots, 4n - 1\}$$

be the base blocks of the 3-GDD, where

$$a_i \equiv b_i \equiv 1 \pmod{6}, \ i = 0, 1, \dots, 3n - 1;$$
  
 $a_j \equiv b_j \equiv 2 \pmod{6}, \ j = 3n, 3n + 1, \dots, 4n - 1.$ 

Since

$${a_i, b_i, a_i + b_i, a_j, b_j, 36n - (a_j + b_j) : i = 0, 1, \dots, 3n - 1, \ j = 3n, 3n + 1, \dots, 4n - 1}$$
  
=  ${6k + 1, 6k + 2 : k = 0, 1, \dots, 6n - 1},$ 

we have

$$\Sigma(a_i+b_i)+\Sigma a_j+\Sigma b_j+\Sigma(36n-a_j-b_j)\equiv\Sigma a_i+\Sigma b_i\pmod{36n}.$$

Hence

$$2 + 8 + \ldots + 36n - 4 \equiv 1 + 7 + \ldots + 36n - 5 \pmod{36n}$$
.

That is,  $6n \equiv 0 \pmod{36n}$ , which is impossible.

### Appendix C

Let 
$$A = \{A + g : A \in A_1 \cup A_3, g \in F\} \cup \{A + g : A \in A_2, g \in E\},\ \mathcal{B} = \{B + g : B \in \mathcal{B}_1 \cup \mathcal{B}_3, g \in F\} \cup \{B + g : B \in \mathcal{B}_2, g \in E\}.$$

The following seven tables show that  $\mathcal{A}$  and  $\mathcal{B}$  satisfy the two orthogonal conditions. The first table means

$$\{0,4,5\},\{0,28,47\},\ldots,\{0,23,49\},\{0,\infty_1,56\},\{0,\infty_2,62\},\ldots,\{0,\infty_{24},31\}\in\mathcal{A}$$

and  $\{4, 5, \infty_{19}\}$ ,  $\{28, 47, \infty_{15}\}$ , ...,  $\{23, 49, \infty_{12}\}$ ,  $\{\infty_1, 56, 7\}$ ,  $\{\infty_2, 62, 19\}$ , ...,  $\{\infty_{24}, 31, 44\} \in \mathcal{B}$ . Since the 36 points,  $\infty_{19}, \infty_{15}, \ldots, \infty_{12}, 7, 19, \ldots, 44$ , are distinct and in different groups with 0, we have that condition (i) holds with

$$\{x,y\} \in \{\{4,5\}, \{28,47\}, \dots, \{23,49\}, \{\infty_1,56\}, \{\infty_2,62\}, \dots, \{\infty_{24},31\}\}$$

and the condition (ii) holds with z = 0.

The last table means

$$\{\infty_1, 0, 56\}, \{\infty_1, 1, 69\}, \{\infty_1, 4, 71\} \in \mathcal{A}$$

and

$$\{0, 56, 70\}, \{1, 69, 2\}, \{4, 71, 3\} \in \mathcal{B}.$$

Hence

$$\{\infty_1, 0, 56\} + g, \{\infty_1, 1, 69\} + g, \{\infty_1, 4, 71\} + g \in \mathcal{A}, g \in F$$

and

$$\{0, 56, 70\} + g, \{1, 69, 2\} + g, \{4, 71, 3\} + g \in \mathcal{B}, g \in \mathcal{F}.$$

Since the 36 points, 70 + g, 2 + g, 3 + g:  $g \in F$ , are distinct and in different groups with  $\infty_1$ , we have that condition (i) holds with

$$\{x,y\} \in \{\{0,56\}+g,\{1,69\}+g,\{4,71\}+g:g \in F\}$$

and condition (ii) holds with  $z = \infty_1$ .

#### 0 orthogonality

| 4, 5              | $\infty_{19}$ | 28,47             | $\infty_{15}$ | 52, 59            | $\infty_{13}$ |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 7,20              | $\infty_{24}$ | 19,44             | $\infty_{23}$ | 1, 68             | $\infty_{22}$ |
| 8, 10             | $\infty_{16}$ | 14, 22            | $\infty_{17}$ | 26,64             | $\infty_{18}$ |
| 35, 37            | $\infty_9$    | 29,43             | $\infty_{10}$ | 23, 49            | $\infty_{12}$ |
| $\infty_1, 56$    | 7             | $\infty_2, 62$    | 19            | $\infty_3, 38$    | 1             |
| $\infty_4, 32$    | 28            | $\infty_5, 2$     | 46            | $\infty_6, 50$    | 70            |
| $\infty_7,71$     | 55            | $\infty_8, 53$    | 13            | $\infty_9,65$     | 67            |
| $\infty_{10}, 67$ | 53            | $\infty_{11}, 25$ | 17            | $\infty_{12}, 13$ | 59            |
| $\infty_{13}, 70$ | 5             | $\infty_{14}, 46$ | 23            | $\infty_{15}, 16$ | 35            |
| $\infty_{16}, 58$ | 56            | $\infty_{17}, 34$ | 26            | $\infty_{18}, 40$ | 2             |
| $\infty_{19}, 17$ | 16            | $\infty_{20}, 11$ | 40            | $\infty_{21}, 41$ | 4             |
| $\infty_{22}, 55$ | 50            | $\infty_{23}, 61$ | 14            | $\infty_{24}, 31$ | 44            |

### 1 orthogonality

| 9,17              | $\infty_6$    | 57,41             | $\infty_2$    | 33,65             | $\infty_5$    |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 0,68              | $\infty_{15}$ | 54, 26            | $\infty_{14}$ | 66, 14            | $\infty_{13}$ |
| 38, 3             | $\infty_9$    | 71, 36            | $\infty_{24}$ | 44, 15            | $\infty_{19}$ |
| 59, 30            | $\infty_{17}$ | 50, 27            | $\infty_{21}$ | 47, 24            | $\infty_{22}$ |
| $\infty_1, 69$    | 71            | $\infty_2, 45$    | 29            | $\infty_3, 21$    | 35            |
| $\infty_4, 5$     | 51            | $\infty_5, 29$    | 69            | $\infty_6, 53$    | 45            |
| $\infty_7, 39$    | 20            | $\infty_8, 51$    | 44            | $\infty$ 9,63     | 26            |
| $\infty_{10}, 6$  | 32            | $\infty_{11}, 48$ | 62            | $\infty_{12},60$  | 68            |
| $\infty_{13}, 2$  | 54            | $\infty_{14}, 20$ | 48            | $\infty_{15}, 8$  | 12            |
| $\infty_{16}, 35$ | 60            | $\infty_{17}, 23$ | 66            | $\infty_{18}, 11$ | 24            |
| $\infty_{19}, 56$ | 27            | $\infty_{20}, 62$ | 63            | $\infty_{21}, 32$ | 9             |
| $\infty_{22}, 18$ | 41            | $\infty_{23}, 12$ | 17            | $\infty_{24}, 42$ | 5             |

### 2 orthogonality

| 66, 4             | $\infty_2$    | 60, 10            | $\infty_1$    | 48,40             | $\infty_8$    |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 3,70              | $\infty_{22}$ | 6, 7              | $\infty_{19}$ | 21,46             | $\infty_{23}$ |
| 30,49             | $\infty_5$    | 9,22              | $\infty_{24}$ | 54, 61            | $\infty_4$    |
| 37, 39            | $\infty_{16}$ | 31,45             | $\infty_{17}$ | 25, 51            | $\infty_{18}$ |
| $\infty_1, 18$    | 40            | $\infty_2, 12$    | 22            | $\infty_3, 36$    | 64            |
| $\infty_4, 42$    | 49            | $\infty_5, 0$     | 19            | $\infty_6, 24$    | 1             |
| $\infty_7, 16$    | 12            | $\infty_8, 58$    | 66            | $\infty_9, 52$    | 0             |
| $\infty_{10}, 28$ | 57            | $\infty_{11}, 34$ | 69            | $\infty_{12}, 64$ | 15            |
| $\infty_{13}, 1$  | 9             | $\infty_{14}, 55$ | 39            | $\infty_{15}, 67$ | 27            |
| $\infty_{16}, 69$ | 67            | $\infty_{17}, 27$ | 13            | $\infty_{18}, 15$ | 61            |
| $\infty_{19}, 19$ | 18            | $\infty_{20}, 13$ | 42            | $\infty_{21}, 43$ | 6             |
| $\infty_{22}, 57$ | 52            | $\infty_{23},63$  | 16            | $\infty_{24}, 33$ | 46            |

# $\bf 3$ orthogonality

| 07 11             |               | 10 50             | 1             | 10.05             |               |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 67, 11            | $\infty_7$    | 19, 59            | $\infty_8$    | 43, 35            | $\infty_{11}$ |
| 2,70              | $\infty_4$    | 56, 28            | $\infty_5$    | 68, 16            | $\infty_6$    |
| 40, 5             | $\infty_{21}$ | 1,38              | $\infty_3$    | 46, 17            | $\infty_{20}$ |
| 61, 32            | $\infty_2$    | 52, 29            | $\infty_{14}$ | 49, 26            | $\infty_1$    |
| $\infty_1, 7$     | 56            | $\infty_2, 31$    | 2             | $\infty_3, 55$    | 20            |
| $\infty_4, 4$     | 8             | $\infty_5, 22$    | 50            | $\infty_6, 10$    | 62            |
| $\infty_7, 37$    | 53            | $\infty_8, 25$    | 65            | $\infty_9, 13$    | 11            |
| $\infty_{10}, 71$ | 13            | $\infty_{11}, 47$ | 55            | $\infty_{12}, 23$ | 49            |
| $\infty_{13}, 41$ | 34            | $\infty_{14}, 53$ | 4             | $\infty_{15},65$  | 46            |
| $\infty_{16}, 8$  | 10            | $\infty_{17}, 50$ | 58            | $\infty_{18}, 62$ | 28            |
| $\infty_{19}, 58$ | 59            | $\infty_{20}, 64$ | 35            | $\infty_{21}, 34$ | 71            |
| $\infty_{22}, 20$ | 25            | $\infty_{23}, 14$ | 61            | $\infty_{24}, 44$ | 31            |

# 4 orthogonality

| 66, 2             | $\infty_{12}$ | 54,68             | $\infty_{11}$ | 12, 38            | $\infty_{10}$ |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 5,72              | $\infty_{23}$ | 8, 9              | $\infty_{20}$ | 23, 48            | $\infty_{16}$ |
| 32, 51            | $\infty_7$    | 11, 24            | $\infty_{18}$ | 56, 63            | $\infty_8$    |
| 39,41             | $\infty_1$    | 33,47             | $\infty_3$    | 27,53             | $\infty_4$    |
| $\infty_1, 71$    | 69            | $\infty_2, 29$    | 45            | $\infty_3$ , 17   | 3             |
| $\infty_4, 3$     | 29            | $\infty_5, 57$    | 17            | $\infty_6, 69$    | 5             |
| $\infty_7, 62$    | 9             | $\infty_8, 20$    | 27            | $\infty_9, 26$    | 63            |
| $\infty_{10}, 50$ | 24            | $\infty_{11}, 44$ | 30            | $\infty_{12}, 14$ | 6             |
| $\infty_{13}, 6$  | 26            | $\infty_{14}, 30$ | 2             | $\infty_{15}, 60$ | 56            |
| $\infty_{16}, 18$ | 65            | $\infty_{17}, 42$ | 71            | $\infty_{18}, 36$ | 23            |
| $\infty_{19}, 21$ | 50            | $\infty_{20}, 15$ | 14            | $\infty_{21}, 45$ | 68            |
| $\infty_{22}, 59$ | 36            | $\infty_{23}, 65$ | 60            | $\infty_{24}, 35$ | 0             |

# 5 orthogonality

| 61,69             | $\infty_{13}$ | 37, 21            | $\infty_{14}$ | 13, 45            | $\infty_{15}$ |
|-------------------|---------------|-------------------|---------------|-------------------|---------------|
| 4, 0              | $\infty_7$    | 58, 30            | $\infty_3$    | 70, 18            | $\infty_9$    |
| 42, 7             | $\infty_{21}$ | 3,40              | $\infty_{11}$ | 48, 19            | $\infty_{20}$ |
| 63, 34            | $\infty_{10}$ | 54, 31            | $\infty_6$    | 51, 28            | $\infty_{12}$ |
| $\infty_1, 10$    | 60            | $\infty_2, 52$    | 42            | $\infty_3, 64$    | 36            |
| $\infty_4, 1$     | 66            | $\infty_5, 49$    | 30            | $\infty_6, 25$    | 48            |
| $\infty_7, 6$     | 10            | $\infty_8, 24$    | 16            | $\infty_9, 12$    | 64            |
| $\infty_{10}, 9$  | 52            | $\infty_{11}, 33$ | 70            | $\infty_{12}, 57$ | 34            |
| $\infty_{13}, 39$ | 31            | $\infty_{14}, 27$ | 43            | $\infty_{15}, 15$ | 55            |
| $\infty_{16}, 43$ | 45            | $\infty_{17}, 55$ | 69            | $\infty_{18}, 67$ | 21            |
| $\infty_{19}, 60$ | 61            | $\infty_{20}, 66$ | 37            | $\infty_{21}, 36$ | 1             |
| $\infty_{22}, 22$ | 27            | $\infty_{23}, 16$ | 63            | $\infty_{24}, 46$ | 33            |

#### $\infty$ orthogonality

| $\infty_1$    | 0,56  | 70 | $\infty_1$    | 1,69  | 2  | $\infty_1$    | 4,71  | 3  |
|---------------|-------|----|---------------|-------|----|---------------|-------|----|
| $\infty_2$    | 0,62  | 46 | $\infty_2$    | 1,45  | 20 | $\infty_2$    | 4,29  | 57 |
| $\infty_3$    | 0,38  | 16 | $\infty_3$    | 1,21  | 8  | $\infty_3$    | 4,17  | 69 |
| $\infty_4$    | 0,32  | 58 | $\infty_4$    | 5, 1  | 6  | $\infty_4$    | 3, 4  | 71 |
| $\infty_5$    | 0, 2  | 34 | $\infty_5$    | 5,49  | 24 | $\infty_5$    | 3, 22 | 47 |
| $\infty_6$    | 0,50  | 40 | $\infty_6$    | 5, 25 | 12 | $\infty_6$    | 3, 10 | 23 |
| $\infty_7$    | 2, 16 | 18 | $\infty_7$    | 1,39  | 56 | $\infty_7$    | 5, 6  | 1  |
| $\infty_8$    | 2,58  | 12 | $\infty_8$    | 1,51  | 62 | $\infty_8$    | 5,24  | 49 |
| $\infty_9$    | 2,52  | 36 | $\infty_9$    | 1,63  | 32 | $\infty_9$    | 5,12  | 25 |
| $\infty_{10}$ | 2,28  | 42 | $\infty_{10}$ | 3,71  | 4  | $\infty_{10}$ | 0,67  | 71 |
| $\infty_{11}$ | 2,34  | 0  | $\infty_{11}$ | 3,47  | 22 | $\infty_{11}$ | 0, 25 | 53 |
| $\infty_{12}$ | 2,64  | 24 | $\infty_{12}$ | 3,23  | 10 | $\infty_{12}$ | 0, 13 | 65 |
| $\infty_{13}$ | 4,6   | 62 | $\infty_{13}$ | 3,41  | 58 | $\infty_{13}$ | 1, 2  | 69 |
| $\infty_{14}$ | 4,30  | 20 | $\infty_{14}$ | 3,53  | 64 | $\infty_{14}$ | 1,20  | 45 |
| $\infty_{15}$ | 4,60  | 26 | $\infty_{15}$ | 3,65  | 34 | $\infty_{15}$ | 1,8   | 21 |
| $\infty_{16}$ | 4, 18 | 50 | $\infty_{16}$ | 5,43  | 60 | $\infty_{16}$ | 2,69  | 1  |
| $\infty_{17}$ | 4,42  | 44 | $\infty_{17}$ | 5,55  | 66 | $\infty_{17}$ | 2,27  | 55 |
| $\infty_{18}$ | 4,36  | 14 | $\infty_{18}$ | 5,67  | 36 | $\infty_{18}$ | 2,15  | 67 |
| $\infty_{19}$ | 1,56  | 39 | $\infty_{19}$ | 3,58  | 41 | $\infty_{19}$ | 5,60  | 43 |
| $\infty_{20}$ | 1,62  | 51 | $\infty_{20}$ | 3,64  | 53 | $\infty_{20}$ | 5,66  | 55 |
| $\infty_{21}$ | 1,32  | 63 | $\infty_{21}$ | 3,34  | 65 | $\infty_{21}$ | 5,36  | 67 |
| $\infty_{22}$ | 0,55  | 17 | $\infty_{22}$ | 2,57  | 19 | $\infty_{22}$ | 4,59  | 21 |
| $\infty_{23}$ | 0,61  | 11 | $\infty_{23}$ | 2,63  | 13 | $\infty_{23}$ | 4,65  | 15 |
| $\infty_{24}$ | 0, 31 | 41 | $\infty_{24}$ | 2,33  | 43 | $\infty_{24}$ | 4,35  | 45 |

#### References

- [1] C.J. Colbourn and J.H. Dinitz, *The CRC Handbook of Combinatorial Designs*, Boca Raton, New York, London, CRC Press, Inc. 1996.
- [2] P. Dukes, Orthogonal 3-GDDs with four groups, Australas. J. Combin. 26 (2002), 225– 232.
- [3] C.J. Colbourn, P.B. Gibbons, R. Mathon, R.C. Mullin and A. Rosa, The spectrum of orthogonal Steiner triple systems, *Canadian J. Math.* 46 (1994), 239–252.
- [4] C.J.Colbourn and P.B. Gibbons, Uniform Orthogonal Group Divisible Designs with Block Size Three, New Zealand J. Math. 27, 1 (1998), 15–33.
- [5] D.R. Stinson and L. Zhu, Orthogonal Steiner triple systems of order 6t + 3, Ars Combinatoria 31 (1991), 33-64.
- [6] Xuebin Zhang, Construction of orthogonal group divisible designs, J. Combin. Math. Combin. Computing 20 (1996), 121-128.
- [7] Xuebin Zhang, Construction for OGDD of type 4<sup>4</sup>, Ars Combinatoria, to appear.

(Received 17 Nov 2004)