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1 Introduction

A graph G is a set V U £, where V is any finite non-empty set, and £ is a set of
unordered pairs of elements of V. The elements of V and £ are the vertices and
edges, respectively, of G. We say that u and v are the end-points of the edge {u, v},
and that this edge joins u and v. Every edge has exactly two (distinct) vertices as
its end-points, and there is at most one edge joining any two vertices. We let E,
G and V be the cardinalities of £, G and V), respectively, so that G = E + V. A
labelling of a graph G is a bijection A : {1,2,...,G} — G. The graph G is said to be
vertex-magic if there is a labelling A, and an integer k, called the magic-constant for
A, such that for every vertex v,

Aw)+ D> Me) =k (1)

vEe,e€l

We call the left-hand side of (1) the weight of v and we denote it by w(v); this is
the sum of the labels of v and all of the edges that end at v. The definition of a
vertex-magic labelling of a graph was introduced in [3], but we refer the reader to
[2] and [4] for a survey of various types of labellings of graphs. In [2], Gallian writes
“Despite the unabated procession of papers, there are few general results on graph
labelings. Indeed, the papers focus on particular classes of graphs and methods, and
feature ad hoc arguments.” The purpose of this paper is to establish several general
results on vertex-magic graphs.

First we recall that for any connected graph G, V —1 < E < %V(V — 1), where
these bounds are best possible (equality occurs on the left if and only if G is a tree,
and on the right if and only if G is a complete graph). The degree d(v) of a vertex
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v is the number of edges that contain v. Throughout, and without further mention,
we shall assume that G has no isolated vertices; that is, d(v) > 1 for each v. Our
first result shows that if a vertex-magic graph G has a vertex of small degree, then
it has relatively few edges; for example, if G has at least one vertex of degree one,
then £ < 2V. Note that this shows how a local feature of a vertex-magic graph can
influence its global structure.

Theorem 1. Let G be a vertex-magic graph with magic constant k, and let dy =
min, d(v). Then k < (1 +do)(G —do/2), and E < (14 dp)V.

There is another way to express the last inequality in Theorem 1. If we count
the ends of all of the edges in G, we see that ) d(v) = 2E. Thus the average value
of d(v) is 2E/V, so that in any vertez-magic graph, the average degree is less than
2 4 2dy, where dqy s the smallest degree.

Next we consider vertex-magic graphs that have a vertex of degree one. It is
known that if a vertex-magic tree T has ¢ internal vertices (of degree greater than
one) and p ends (vertices of degree one) then p < 2¢ or, equivalently, ¢ > V/3 ([4],
page 91). Thus, in any vertex-magic tree, at least one third of the vertices must have
degree at least two. As V = E + 1 in any tree, it is not clear whether V or E is
the appropriate term in any general form of this inequality. We shall now derive
a similar inequality that applies to all vertex-magic graphs with a vertex of degree
one, and we shall see that it is F rather than V that arises in the inequality. As
E >V — 1 we obtain essentially the same inequality as for trees, but in general,
E may be significantly larger than V. Note, however, that E cannot be too much
larger that V' for Theorem 1 implies that for a vertex-magic graph with a vertex of
degree one, £ < 2V.

Theorem 2. Let G be a vertex-magic graph with a vertex of degree one, and let q be
the number of vertices of degree at least two. Then ¢ > E/3 > (V —1)/3.

2 The proof of Theorem 1

Throughout this section we let G be a vertex-magic graph with the magic constant k
arising from the labelling A\, and we use the notation £, V, E, V, G and w as above.
We begin with two simple inequalities that exist for any vertex-magic graph. If we
sum both sides of (1) over each vertex, we obtain

VE=> M) +2) Me)=(1+--+G)+ > Ae).
veV eel eel

As the sum of the labels on the edges is at least 1+ -+ + E, and at most (V + 1) +
-+ (V 4+ E), we see that

G(G+1)+E(E+1)<2VEk < G(G+1) + E(E+1) +2EV. (2)
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This double inequality, which is well-known, gives upper and lower bounds for the
magic constant k in terms of F and V/, and it restricts £ to at most £ + 1 possible
values.

Suppose now that G has a vertex of degree d, and apply (1) to that vertex. Then
k is the sum of d + 1 distinct numbers taken from 1,2,..., G, so that

E<GH(G—=1)+---+(G—=d)=(d+1)(G—d/2). (3)

If we take d to be the smallest degree, namely dy, this gives the first inequality in
Theorem 1. We remark that there are many circumstances in which the bound in (3)
is better than the upper bound for & given in (2). Indeed, the bound in (3) depends
linearly in E for a given V, whereas the dependence on E in (2) is quadratic. We
shall illustrate this point with some examples later.

Next, we combine (2) and (3) and obtain

G(G+1)+EE+1) <V(d+1)(2G - d),

and as G = E + V this implies that
2FE*4+2E - 2dVE < (2d + 1)V? — (&®* +d + 1)V,
and hence
(2E+1-dV)? = (dV = 1)? < 2[(2d + 1)V* = (d* +d + 1)V].
This simplifies to give
(E+1-dV)’ < (d* +4d+2)V? =2V (d+1)* +1 < (d+2)*V?, (4)

from which it follows that

2E <2E+1<dV 4+ (d+2)V = (2d+2)V.

The second inequality in Theorem 1 now follows if we take d to be the minimal degree
dy. O

We remark that our proof of Theorem 1 yields slightly more than is given in
Theorem 1. For example, if dy = 1 then (4) yields

QE+1-V)?2 < (TV -1)(V -1) < TV

so that E < $(1+/7)V =1.8229---V.

3 The proof of Theorem 2

The inequality (3) shows that if G has a vertex of degree one then k£ < 2G — 1. More
generally, suppose that G has exactly p vertices, say ui, ..., u,, of degree one, and g,
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where ¢ = V' — p, vertices of degree at least two, say vi,...v,. Let e; be the unique
edge ending at uj. As an edge cannot have both ends of degree one (for this would
violate the assumption that G is vertex magic) we see that e,...,e, are distinct.
Thus

P
Z (u;) +Me))] G+ (G —1)+ (G- [2p - 1]).
We deduce that if G has p vertices of degree one, then

k<2G—(2p—-1)=2E+2¢+1. (5)

Next, we obtain a lower bound on k. By considering the ¢ vertices vy, ..., v, of
degree at least two, we see that

k=Y w(vy). (6

Now each term A(v;) occurs in the sum on the right of (6), as does A(e) for every
edge e (otherwise there would be an edge whose two end-points are of degree one).
Thus the sum on the right of (6) certainly includes E + ¢ distinct numbers taken
from 1,2,...,G. Thus

gk>1+2+4 -+ (E+q) =XE+q(E+q+1). (7)
If we now eliminate k from (5) and (7) we obtain the inequality

3¢ +(2E+1)g> E* + E.

Thus
2FE +1\? _ 16E?+16E +1 4E +1\°
q-+ > > ,
6 36 6
and Theorem 2 follows immediately. ]

4 Some examples

The ideas used in this paper are already implicit in the literature, but here we
have deliberately avoided referring to particular classes of graphs. Nevertheless, our
results do apply to classes of graphs that have already been studied. For example, the
inequalities (5) and (7) are sufficient to show that if a disjoint union of ¢ stars with
ni,...,n; rays, respectively, is vertex-magic then (5) and (7) lead to the inequality
N?+ N(1 - 2t) < 3t* +t, where N = 3~ n;. This inequality occurs on the first line
of page 88 in [4]; thus (5) and (7) contain a proof of Theorem 3.13 in [4], namely
that if a disjoint union of stars is vertex-magic then the average number of rays in
these stars is less than three. This result is best possible as, for any ¢, there exist a
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vertex-magic disjoint union of ¢ stars with exactly 3t — 1 edges ([4], page 89). Note,
however, that this result is about the average number of rays in the star; the average
degree in a union of stars is always less than two (because E < V).

Given a graph G we form a new graph, which we call a pendant P(G), by attaching
a single edge to a vertex of G (and, of course, a vertex of degree one at the other end
of the edge). The complete graph K, is the graph with n vertices and all possible
n(n—1)/2 edges, and K, is vertex-magic if and only if n # 2 ([2], Theorem 3.1, p.66
and Theorem 3.17, p.93). Here, we shall show that the pendant P(K,) is vertex-
magic if and only if n = 2,3,4. As observed earlier, this illustrates the impact of
having a vertex of low degree in a graph. First, as P(K;) = K,, P(K) is not vertex-
magic. Let us now assume that P(K,) is vertex-magic. Asd =1,V =n+1 and
E =14n(n—1)/2, (4) yields an inequality for n which is easily seen to be satisfied
only for n < 4. Thus if n # 2,3,4 then P(K,) is not vertex-magic. The figure shows
that for n = 2,3,4 P(K,) is vertex-magic. We note that for the graph P(Kj), the
well-known inequalities (2) yield 22 < k < 28. By contrast, the inequality (3) yields
k< 23.

As another class of examples consider the graph formed by supending one of the
five Platonic solids in the manner described above. First, the graph of a suspended
tetrahedron is vertex-magic, for this is P(K,). For a suspended octahedron, F = 13
and V' = 7, and as this implies that 2V (2G—1) < G(G+1)+E(E+1), we see that the
suspended octahedron is not vertex-magic. Likewise, for the suspended icosahedron
we have V = 13 and E = 31. As E > 2V this too is not vertex-magic. The
reader may like to consider whether or not the suspended cube and dodecahedron
are vertex-magic.

It is known that if a wheel with n spokes is vertex-magic then n < 11 ([4],
Theorem 3.6). However, a calculation shows that if a suspended wheel with n spokes
is vertex-magic, then n < 8. Finally, Theorem 1 shows that in any vertex-magic
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graph G the degree d of a vertex cannot be too small compared with the degrees of
the other vertices. In [1] the author showed that we also have the inequality

14E* + 16E + 4 < 36E?

d+2)?<
(d+2)" < Vv Vv

= (3d)*V,

where d is the average degree. Thus, with a given V', the degree of a vertex cannot
be too large compared with the degrees of the other vertices.
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