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Abstract

A word of the form XX --- XY = X™Y where X is not empty and Y is
a prefix of X is called a (%)—povver7 where | X| is the length of the
word X. Here we give an explicit description of the powers that occur in

the Thue-Morse word.

1 Introduction

If A is a set of symbols then a word over A is any finite or infinite string of symbols
of A. The set of all finite words over A is denoted A*, and A¥ is the set of all infinite
words over A. Under the operation of concatenation of words A* is a monoid. If
the word w is the concatenation of the words x,u and y, i.e., w = zuy, then u is a
subword of w and we write u < w or w > u.

A morphism from A} to A} is a mapping ¢: A] — Aj such that p(wv) =
e(w)p(v) for all w,v € Aj, where juxtaposition of words denotes concatenation.
Let ¢: {0,1}* — {0,1}* be the morphism that is uniquely determined by stipu-
lating that ¢(0) = 01 and ¢(1) = 10. The Thue-Morse word is then defined as t
= lim, & ¢"(0) = 0110100110010110. . ., that is, t is the infinite binary word with
successively longer prefixes ¢(0) = 01, ¢?(0) = 0110, ¢*(0) = 01101001, and so on.
Allouche and Shallit [1] give more information on the Thue-Morse word.

A word of the form XX --- XY = X"Y where X is not empty and Y is a prefix
of X is called a (%)—power7 where | X| is the length of the word X. For example,
abbab is a (5)-power, and abbcabbcabb is an (4)-power. A 2-power is usually called a
square, a 3-power is a cube and so on. No r-power with r > 2 occurs as a subword of
t, and this well known fact is usually expressed by saying that t contains no overlap,
that is, t contains no subword of the form aXaXa, where a is a single symbol and
X is a (possibly empty) word. However t does contain squares. In fact if XX is a
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subword of t then |X| = 2" or 3-2" for some n > 0, and these lengths are all achieved
(this follows easily from Lemma 3, parts (Y), (N2) and (E1)).
P

Now if w = X"Y is a (%)-power then we shall say that w is a (£)-power with

n|X|+|Y]
P

multiplier . For example, aa is a ( )-power with multiplier 1, but abcabc is a

(2)-power with multiplier 3. We have just noted that t has ()-powers as subwords
but only with the multipliers 2" or 3-2" for some n > 0. In particular t has no
(1)-power occurring with a positive integer multiplier, but it does have a (£)-power
occurring with multiplier 1. Clearly a fraction £ with ged(p,q) = 1 can only occur
with a positive integer rnultlpher Given a word w we define Multw () to be the
set of all positive multipliers of all ( )-powers that occur in the word w. Note
that two different fractions may represent the same rational number and yet have
different sets of multipliers for a given word w, e.g., Mult¢(2) = {2",3-2": n > 0}
whereas Multy (%) = {%,%5:n > 0}. Clearly if r € Multy() then (apply the
morphism) 2r € Multt(f)7 so if Multt(q) is nonempty then 1t is infinite, and if
Multy(2) contains a positive integer then it contains infinitely many integers. We
are primarily interested in fractions that occur with integer multipliers, so we define
the exponent set of w, denoted E(w), as

E(w )_{— Multw( )mN#@}

Considerable attention has been focused on the critical exponent e(w) = sup E(w).
For instance Mignosi and Pirillo [8] determine e(f) for the Fibonacci word, f, and
Dejean [5] conjectures the value of inf e(w) over all words w on an n-letter alphabet.
Carpi (4] determines Multy (3) for the Kolakoski word, k, and as a consequence
determines e(k). However, to the best of our knowledge, no one has yet given a
complete determination of w for some (interesting) word w. Our main result is the
explicit determination of the powers in E(t).

Theorem 1 Let 1 < ™ < 2 be rational. Let m = n+k and n = = 2*Mn, with n,

odd. A ( )-power occurs in the Thue-Morse word with a positive integer multiplier
if and only ifk <322 +1 and

13-2j+a. 15-29 +a

o 1<a< 2,200 U{——1<a< 2, >0}

23

Moreover, if a (%)—power occurs in the Thue-Morse word with a positive integer
multiplier, then it occurs in the Thue-Morse word with multiplier 1.

2 Basic structural features

We review some basic structural features of the Thue-Morse word.

Let ¢(0) = 01, p(1) = 10. Then »**(0) is a palindrome for n > 1, hence if s is a
finite word in t then the reverse of s is also a word in t = limy,_,,, ¢"(0). Alternatively
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let 5 be the complement of the binary word s (e.g., 011010 = 100101), if s; = 0 and
Sp = Sp—15p—1 for n > 1 then we also have t = lim,_,o, s,. Since 5, < t for each n
it follows that if s <t then 5 < t.

For a finite binary word s in ¢ the orbit of s, O(s), consists of all other words that
can be obtained from s by complementing and reversing, for example O(10010) =
{10010,01001,01101,10110}. For a set, S, of binary words we let O(S) = Uzes0(s).
The orbit of the empty word has one element, all other orbits have two or four
elements. Then all of the words in an orbit occur in t, or they all do not occur in t.

Note that ¢(t) = t. Given s < t = totitaty ... = @(to)p(t1)p(ts) ... we say s is
in phase if |s| is even and s consists of images of ¢. More precisely, s is in phase if s
= titit1 .. tiy2n—1 and the index i is even, so that s = @(t;...tj4,_1) where j = i/2.
The important thing about subwords in t that are in phase is that they are images
of shorter subwords of t.

Any subword in t of odd length is always out of phase, and subwords 00, 11 are
never in phase in t. We say s = t;...ty <t begins in phase if i is even, and ends in
phaseif k is odd. Following Lothaire [7, p. 114] we call a binary word s synchronizing
if s<q t and if all of its occurrences in t begin in phase, or if all of its occurrences in t
begin out of phase. Clearly 00 and 11 are synchronizing words, hence any subword
of t that has 00 or 11 as a subword is also synchronizing. The following lemma is
now easy to see.

Lemma 2 If s € {0,1,01,10,010,101} then s may begin in or out of phase in t.
Any other binary word s either is not a subword of t or is a synchronizing word.

We now proceed to tabulate some common structures of t. The notation Z =
X(n)Y indicates that Z has prefix X and suffix Y, and that |Z]| = |X|+n + |Y].
For example 1001011 = 10(3)11. In Table 1 take n > 0 in addition to any other
restrictions on n listed there. Letters x, y, z stand for single symbols, and X stands
for a word. We note that Fitzpatrick [6] also gives some of the entries (f)-(m).

Entries (a)-(e) are checked by observing that any subword of t of length 5 or less
appears in one of ©*(00), ¢?(10), p?(01) or ¢?(11).

If for some A > 0 we have t; = t;;a for all ¢ then t would be periodic, a
contradiction. It follows from this and the symmetries of t that t contains both
0(n)1 and 1(n)0 for each n > 0. Similarly if ¢; # t;.a for all i then 2A would be a
period of t, a contradiction, hence t has subwords of the form 0(n)0 and 1(n)1 for
each n > 0. Thus t has a subword of the form z(n)y for any choice of z, y and n > 0
and entry (f) is established.

Entry (g) need only be established for z = 0 due to the symmetries of t.
For brevity let X 5 Y mean ¢(X) = Y. From (f) and the recursions 0(k)0 %
01(2k)01 = 0(2k + 1)01 and 1(k)0 5 10(2k)01 > 0(2k)01 entry (g) holds for yz =
01. If yz = 10 then (g) follows similarly by applying ¢ to 1(k)1 and 1(k)0. If
yz = 00 then we use what we have proved so far together with the recursions
0(n)10 5 01(2r)1001 > 0(2n + 2)00, 1(n)10 5 10(21)1001 > 0(2n + 1)00. For
the last case where yz = 11 let N = {n|0(n)11 < t}. Then the recursions 0(n)01 %
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Structure in t  Restrictions

(a) € 0({0})

(b) ay € 0({00,01})

(c) wyz € 0({001,010})

(d) azyzw € 0({0010,0011,0101,0110})
(&) zyzwt € 0({00101,00110,01001})
(f)  2(n)y -

(g) xz(n)yz nZ0ife=y==z

(h) 01(n)01 -

(i) 01(n)10 n#1l

(i)  00(n)01 n#£2-(4F 1), k>0

(k) 00(n)10 nA 4k =2 k>0

1) 00(n)11 n =2k, k#2
(m) 00(n)00 n=2k k%0

n X2+ i

0) X2 |1X] = 27, 327

n>1

zy(n — 2)xy nz2
xyz(n —3)xyz n 23, n#11,13

o]

TETTT
— o=
8
—

3
—_

—

8

=

Table 1: Some common structures in t

01(2n)0110 > 0(2n +2)11, 0(n)01 5 0110(47)01101001 > 0(4n + 1)11 and 0(n)11 5
0110(4n)10011001 > 0(4n + 3)11 show that if n € N then 2n+2,4n+1,4n+3 € N,
so applying induction completes this last case of (g).

Entry (h) follows from entry (g) and the recursions 0(k)01 5 01(2k)0110 >
01(2k)01, 0(k)11 5 01(2k)1010 > 01(2k + 1)01.

Entry (i) follows from (f) and the recursions 0(k)1 % 01(2k)10, 0(k)00 5
01(2k)0101 > 01(2k + 1)10, and we note that by (e), 01(1)10 A t.

For (j), (k) put Ny = {n]00(n)01 <t} and N; = {n|00(n)10 < t}. Let X &V
mean that X is of even length and is in phase, and that ¢(Y) = X. In this case Y is a
subword of t. If 00(2k)10<it and k > 0 then we have 10,01, (2k —2),01,01 < 10(k —
1)00, so 0 # 2k € Ny implies k — 1 € Np. If 00(2k)01 < t and & > O then similarly
10,01, (2k — 2),10,10 & 10(k — 1)11, hence 00(k — 1)10 < t, so 2k € Ny implies
E—1€ Ni. Applying ¢ to 00(k — 1)zy gives the converse(s), so 2k € N; if and only if
k—1¢€ Ni_;. Now Ny, N1 both contain all odd positive integers since we may reverse
the subwords in (g) and for any & > 0 we have 10(k)0 2 1001(2k)01 > 00(2k + 1)01
and 10(k)1 % 1001(2k)10 > 00(2k + 1)10. Finally 0 ¢ Ny and 2 & N, so (j), (k)
follow by induction.

For (1) note that 00(n)11 < t implies that the O0(rn)1 portion is in phase, hence
n = 2k is necessary. However if 00(4)11 <t then 1001(2)0110 <~ 10(1)01 <t, contrary
to (i) and the symmetries of t. Finally using (g) we get 10(k)01 % 1001(2k)0110 >
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00(2k + 2)11, k # 1.

For (m) note that Lemma 2 implies 00(2k + 1)00 # t. Now (m) follows from the
complement of (h) and the recursion 10(k)10 % 1001(2k)1001 > 00(2k 42)00, k > 0

Entry (n) says that t contains no power £ > 2. Both (n) and (o) were known to
Thue [11]. In entries (p) and (q) we mean that the structure exists for some choice
of symbols z, y, so these entries follow immediately from (f) and (g) respectively.

For (r) let n € N if and only if zyz(n — 3)zyz< t for some zyz. By (h) and
01(k)01 % 0110(2k)0110 > 011(2k + 1)011 we have 2k +4 € N for k > 0. Also
00(2k)11 % 0101(4k)1010, the latter has 101(4%k)101 and 010(4k + 2)010, so (1)
implies 4k + 3,4k +5€ N for k > 0, k # 2.

Now if w = zyz(10)zyz < t then zyz is not a synchronizing subword, so by
Lemma 2 we may assume w.l.o.g. that zyz = 010. Should w begin in phase then
01,01(8)10,10 < 00(4)11 < t contrary to (1). Should w begin out of phase then
10,10(10)01,01 < 11(5)00 <1 t, again contrary to (1). Therefore n # 13.

Similarly if w = zyz(8)xzyz < t then zyz is not a synchronizing subword, so
again we may assume w.l.o.g. that zyz = 010. Should w begin in phase then
01,01(6)10,10 < 00(3)11 < t contrary to (1). Should w begin out of phase then
10,10(8)01,01 < 11(4)00 <it, again contrary to (1). Therefore n # 11, and the proof
of the last entry is complete.

3 Finding the powers

It is our goal to find a description of the exponent set {£: Multy(2)NN # 0}. Closely
related to this set is

L(t)={(n,k)jn 2k >0and XYX <t, |X| =k, |XY|=n}.

It is useful to call a subword XY X of t with |X| =k and |XY| =n an (n, k)-word.
Given a pair (n,k) we ask, 7is (n,k) € L(t) ?” In Lemma 3 below part (Y) gives
some pairs for which the answer is "yes,” parts (N1),(N2) give some pairs for which
the answer is "no,” and for the other pairs parts (E1), (E2) show how to replace
(n,k) by an ”equivalent” pair for which the answer to the question is the same as

for (n, k).

Lemma 3 Letn >k > 0, then

(Y) (n,k) € ()1fk<3and(n k) # (11,3),(13,3).

(N1) (n,b) ¢ L(t) if (n, k) = (11.3), (13,3).

(N2) (n,k) & L(t )1fnlsoddandk24

(E1) If n=k=0 (mod 2) then (n,k) € L(t) if and only if (n/2,k/2) € L(t).

(E2) If n = 0 (mod 2) and k = 1 (mod 2) then (n,k) € L(t) if and only if
(n.+1) € L(t).

Proof: (Y), (N1): These follow from the entries (p)-(r) of Table 1.
(N2): By Lemma 2 subwords of t of length 4 or more are synchronizing so n must
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be even for such k.
For (E1) both n, k are even, so we can bring into phase any out of phase (n, k)-word
in t by a left shift. Applying ¢! then gives a (n/2,k/2)-word in t. Clearly the
construction is reversible.
For (E2)let X1Y X, <t be an (n,k)-word, |X;| = k. W.lo.g. take X;Y X, to be in
phase (perform a left shift if necessary). Since n is even both X; end out of phase,
hence at their ends they split the same 2-block, (image under ¢ of a single symbol) so
the X; are followed by the same letter in t. Therefore X;aY’'Xsa <1t where Y = aY”,
so (n,k+1) € L(t). Conversely it is clear that (n,k+1) € L(t) implies (n, k) € L(t).
d
Lemma 3 immediately gives an algorithm for deciding when n and k are such
that t contains an (n, k)-word.

Preamble:
Y ={(n,k)|n > kand £k =0,1,2}U
{(n,3)|n > 3 and n # 11,13}

N = {(n,k)|n odd and n > k > 4}U
{(n,3)|n = 11,13}

f(n,k) = (n/2,k/2) for n even, k even,
f(n,k)=(n/2,(k+1)/2) for n even, k odd.
Algorithm A:
(1) Input (u,v) « (n,k)
(2) If (u,v) €Y return ’(n,k) € L(t)’ and HALT
(3) If (u,v) € N return ’(n,k) ¢ L(t)’ and HALT
(@) (u,v) « f(u,v)
(5) GOTO (2)

We can now classify the set L(t).

Lemma 4 Let a, = 3-2" +1 for v > 0, and let ny be odd. Then
(i) (2"n1, k) € L(t) whenever k 2 a,,

(i1) (2"ny, k) € L(t) whenever k < 2/ny and k < a,,

unless ny = 11,13 and a, — 2" < k < a,.

Proof: Write fi(n,k) = f(... f(n,k)...) for f applied j times to (n, k), j > 0, where
f is as in Algorithm A.

If & > a, then f(2"ni, k) = (n1,k1) and k; > 4, hence (2"ny, k) ¢ L(t) by
Algorithm A and (i) is proved.

Now let £ < 2n; and k < a,, and let f“(2"ny, k) = (n1, k). Itk < a, — 27
then 0 < &y < 2, and then (2”ny, k) € L(t) by Algorithm A. If on the other hand
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a, — 2" < k < a, then k; = 3, and then Algorithm A gives (2“ny, k) € L(t) unless
n1 = 11 or ny = 13. This proves (ii). O

As we observed in the introduction, a power E E E(w) need not occur in w with
multiplier 1, for example the Kolakoski word has al 1 power but not with multiplier 1.
However, it is true that all powers that occur in the Thue-Morse word with a positive
integer multiplier have an occurrence with multiplier 1. This is the key point of the
next lemma.

Lemma 5 If ™ € E(t) then 1 € Multy(%).

Proof: By entry (n) of Table 1 we know that m < 2n, so write m = n + k, where
k < n. First we will show that there is an odd integer ¢ € Multg(™). Since
T ¢ E(t) there is a positive integer ¢ such that (nf,k() € L(t). Now if £ is even
then (n(é),k(g)) € L(t) by Lemma 3, part (E1), and then g is also a multiplier for
2 " and this is how ¢ can be reduced to an odd number.

Write n = 2Yny, where ny is odd, and as in Lemma 4 let a, = 3-2¥ + 1. We
consider three cases depending on how large k is relative to a,.
(1) We have k < a, —2". Then (n, k) € L(t) by Lemma 4, and in this case 7 clearly
has 1 as a multiplier.
(2) We have a, — 2" < k < a,. Then there is an odd ¢ such that (2”-n,¢, k¢) € L(t).
Here n,¢ is odd, so we cannot have ¢ > 3 otherwise k¢ > a, and this contradicts
Lemma 4(i). Therefore ¢ = 1, as desired.
(3) We have k > a,. In fact this case cannot happen, otherwise taking ¢ to be an odd
multiplier we get (2”-ny¢, k) € L(t) with k¢ > a, and n,¢ odd, again contradicting
Lemma 4().

In all cases we find a multiplier of 1, and the proof is complete. O

By Lemma 5 we see that a ( )-power occurs in t with positive integer multiplier
if and only if (n,m —n) € L(t), and then Lemma 3 can be applied to give an explicit
description of the exponent set of the Thue-Morse word.

Theorem 6 Let 1 < @ < 2 be rational. Let m = n+ k and n = 2"Mny with ny
odd. A ( )-power occurs in the Thue-Morse word with a positive integer multiplier
if and only if k< 3-2/0 41 and

m 13-27 +a 15-27 +a i
g¢{ﬁ~1<a 20t U{—F— 130 11<a<?,j >0}
Moreover, if a (%)—power occurs in the Thue-Morse word with a positive integer

multiplier, then it occurs in the Thue-Morse word with multiplier 1.

To understand Theorem 6 intuitively we imagine t being shifted 2” bits at a
time. There are then only two possible incoming blocks of this length, which we
think of as waves. Once a particular binary word of length & is long enough then
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its position among the waves, in other words its phase, becomes fixed. However,
because the powers % and 12 are absent from t, this phenomenon is not the only
factor determining E(t). In Figure 1 some other (absent) powers arising from 1} are

indicated, which we find by following Algorithm A backwards.

14

AL A

54 55

A AR A

105 106 107 108 109 110 1ll 112
88 83 88 83 88 83 88 88

S

Figure 1: Powers not in t originating from 14

The powers in Figure 1 are of the form 1B2%4a ] < g g 27,5 > 0, and they lie

11.27 ° i
in the intgrval (£2,4]. Similarly }g gives rise to absent powers of the form 151':?_]2?‘1,
1<a< 2,20, that lie in the interval (lg, 2]. Incidentally E(t) is dense in [1, 2],

since a square of length 2n in t gives 14 % € E(t) for each 0 < a < n and t contains
arbitrarily long squares.

We remark that for abelian powers the problem is trivial, where a word XY is an
abelian ‘X“;}Y‘ power if X = Y'X’ and Y’ is a permutation of Y. Note that abelian
powers are rationals r with 1 < r < 2. Given r = p/q in this range, it is not hard to

see that the prefix of t of length 2p is an abelian r-power.

4 Conclusion

It seems that the calculation of E(w) for a w that is a fixed point of a "nice” mor-
phism could be carried out along similar lines to our calculation of E(t). Certainly
if the morphism is uniform (images of all letters have the same length) one can look
for synchronizing subwords and an algorithm like algorithm A, leading to a ”phase
inequality” which powers in E(w) must satisfy. One would then hope to find a short
list of absent powers which satisfy the phase inequality and such that any other ab-
sent power that satisfies the phase inequality could be traced to one of these powers
by following the algorithm backwards.

More challenging is to find a good description of E(f), where f is the Fibonacci
infinite word. The morphism describing f is not uniform, so phase considerations
may not be useful, but f is also a Sturmian word so perhaps this fact can be exploited.

Most challenging of all would be to calculate E(k), where k is the Kolakoski
word. Unlike t or f, the word k is not the (encoded or unencoded) fixed point of a
morphism. Multipliers for k are a mystery, e.g., 3 is the smallest integer multiplier
in Mult(%). One wonders if Carpi’s [4] demonstration of the finiteness of Multy (2)
indicates that all fractional powers occurring in k have finitely many multipliers.
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We leave these as open problems for the reader to solve.
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