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Abstract

This paper shows that for any two vertices u and v of the hypercube
Q. with at most n — 2 faulty edges there exists a fault-free uv-path of
length [ with dg, (u,v) +2 <1< 2" —1 and 2|(l — dg,(u,v)), and that
every non-faulty edge of the folded hypercube F@, with at most n — 1
faulty edges lies on a fault-free cycle of every even length from 4 to 2"
and, furthermore, also every odd length from n+1 to 2" — 1 if n is even.
These improve some known results and are all optimal.

1 Introduction

It is well-known that when the underlying topology of an interconnection network
is modelled by a connected graph G = (V, E), where V is the set of processors and E
is the set of communication links in the network, the study of the structure of G is of
quite great interest. A cycle structure, which is a fundamental topology for parallel
and distributed processing, is suitable for local area networks and for the development
of simple parallel algorithms with low communication cost. A cycle structure can
also be used as a control/data flow structure for distributed computation in arbitrary
networks.

A graph G is pancyclic if it contains a cycle of every length from 3 to |V(G)|.
The concept of pancyclicity has been extended to vertex-pancyclicity and edge-
pancyclicity. A graph G is vertex (resp. edge)-pancyclic if every vertex (resp. edge)
lies on a cycle of every length from 3 to |V(G)|. It is clear that an edge-pancyclic
graph is vertex-pancyclic and, hence, pancyclic. A graph G is panconnected if for
any two different vertices v and v in G there exists a uv-path of length [ with
de(u,v) <1 < |V(G)| — 1, where dg(u,v) is the distance between u and v in G.

* The work was supported partially by NNSF of China (No.10271114).
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Since a bipartite graph contains no cycles of odd length, a bipartite graph G is edge-
bipancyclic if every edge of G lies on a cycle of every even length from 4 to |V(G)|,
and bipanconnected if for any two different vertices u and v in G there exists a uv-
path of length  with dg(u,v) <1 < |V(G)| — 1 and 2|(I — dg(u,v)). A graph G is
k-edge-fault-tolerant panconnected (edge-pancyclic) if the resulting graph by deleting
any k edges from G is panconnected (edge-pancyclic). A subgraph of G is fault-free
if it contains no faulty edges in G.

The bipancyclicity of the hypercubes has been investigated by Saad and Schultz
[5]. Recently, Li et al. [3] showed that the hypercube @, is (n —2)-edge-fault-tolerant
edge-bipancyclic for n > 2.

In this paper, we consider the hypercube @), and folded hypercube F(@Q, with
faulty edges. We show that for any two different vertices u and v of @), with at most
n — 2 faulty edges there exists a fault-free uv-path of length [ with dg, (u,v) +2 <
1 < 2" —1and 2|(l — dg,(u,v)). We also show that every non-faulty edge of FQ,
with at most n — 1 faulty edges lies on a fault-free cycle of every even length from 4
to 2™ and, moreover, also every odd length from n + 1 to 2" — 1 if n is even.

As consequences of our results, we immediately obtain Li et al’s result that @,
is bipanconnected and (n — 2)-edge-fault-tolerant edge-bipancyclic [3], and Wang’s
result that FQ, is (n — 1)-edge-fault-tolerant Hamiltonian [7].

The proofs of our results are given in Section 2 and Section 3, respectively.
Throughout this paper, we follow Xu [8] for graph-theoretical terminology and no-
tation not defined here.

2 Edge-fault-tolerant bipanconnectivity of @),

The n-dimensional hypercube @, is a graph with 2" vertices, each vertex with
a distinct binary string u,...usu; on the set {0,1}. Two vertices are linked by
an edge if and only if their strings differ in exactly one bit. As a topology for
an interconnection network of a multiprocessor system, the hypercube structure is a
widely used and well-known interconnection model since it possesses many attractive
properties [5, 8]. In particular, @, is vertex-transitive and edge-transitive.

By the definition, for any k& € {1,2,...,n}, @, can be expressed as ), = Ly ® Ry,
where Ly and Ry are the two (n — 1)-subcubes of @, induced by the vertices where
the k-th position is 0 and 1, respectively. We call edges between L, and Ry to be
k-dimensional, which form a perfect matching of @,. Clearly, for any edge e of Q,,
there is some k € {1,2,...,n} such that e is k-dimensional. For convenience, we
will write L and R instead of L,, and R,, respectively. Use uy and ug to denote two
vertices in L and R, respectively, linked by the n-dimensional edge u,ug in Q,.

Lemma 2.1 (Saad and Schultz [5]) Let w and v be two vertices in @, and
dg, (u,v) = d. Then there exist n internally disjoint wv-paths in @, such that d of
them are of length d, which lie in a d-dimensional subcube, otherwise of length d+ 2.

Lemma 2.2 If Q3 has exactly one faulty edge, then there exists a fault-free path
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of length [ joining any two different vertices v and v for any [ with dg, (u,v)+2 <1< 7
and 2[(I — dg, (u,v)).

Proof Without loss of generality, we may suppose that the faulty edge is 3-
dimensional since Q)3 is edge transitive. Let Q3 = L ® R, where both L and R are
fault-free. Let u and v be any two vertices in Q3.

Case 1 Both u and v are in L or R. Without loss of generality, we may assume
that v = uy and v = vy in L.

If dg,(ug,vr) = 1 then, by Lemma 2.1, there are two upvg-paths in L, one of
them is of length 1 and the other of length 3. For I > 5, let P, = (uy,x,yrL,v1)
be a upvy-path of length 3 in L. Since there is only one faulty edge between L and
R, at least one of two sets of edges {urur,vrzr} and {yryr,vivr} is fault-free.
Without loss of generality, we may assume {urug,zrxg} is fault-free. Then there is
a ugrg-path Pg of length [ in R for [ =1 or 3. Thus P = (ur,ug, Pr, %R, 21, YL, VL)
is a fault-free uyvy-path of length 5 or 7 in Qs.

If dg,(ug,vr) = 2, by Lemma 2.1, there are two internally disjoint uyvg-paths
of length 2 in L. Since there is only one faulty edge between L and R, there is a
path Pp = (ug,zr,vr) such that at least one of two sets of edges {upug, zrzr} and
{zrzR,vvR} is fault-free. Without loss of generality, we may assume {zpzg,v,vR}
is fault-free. Then there is an xgvg-path P of length [ in R for [ = 1 or 3. Thus
P = (up,zp, 2R, Pr,vgr,vy) is a fault-free uv -path of length 4 or 6 in Q3.

Case 2 If u and v are in different parts. Without loss of generality, we may
assume that u =uy, € L and v =vg € R.

If dg, (ug,vg) = 1, by Lemma 2.1, there are two internally disjoint wvg-paths
of length 3 in Q3. We may assume P = (uy,2,Zr,vg) is fault-free. There are
a upzp-path P, in L and an xgvg-path Pk in R, both are of length 3. Thus
(up, Pr,zp,zr,vr)and (ug, Pr, ©1, g, Pr, vg) are two fault-free u ,vz-paths of length
5 and 7, respectively, in Q3.

If dg, (ur,vg) = 2, by Lemma 2.1, there are two internally disjoint uzvg-paths of
length 2 in Q3. Without loss of generality, we may assume P = (uy, vy, vg) is a fault-
free path. Then there is a upvg-path Pp of length 3 in L and, thus, (ur, Pr,vr,vr
is a fault-free uyvg-path of length 4. Let Py = (ur,xr,yr,vr) be the ugvy-path of
length 3 in L. Since there is only one faulty edge between L and R, at least one
of {upup,x,zr} and {yLyr,vivr} is fault-free. If {uyug, z xR} is fault-free, then
(up,ur,Tr,TL, YL, Yr, vr) is a fault-free uyvg-path of length 6. If {yLyr,vLvr} is
fault-free, there is a yrvp-path Pg of length 3 in R, thus (uy, 2L, YL, Yr, Pr,vgr) is a
fault-free uyvg-path of length 6.

If dg, (ur,vg) = 3 then, since uy, has two neighbors in L, there are two internally
disjoint uyvg-paths P, = (up, 2, Tr,vr) and Py = (up,yr,Yr, vr) of length 3 in Q3.
We may assume P, is fault-free. There are a upyp-path P of length 3 in L and a
yrug-path Pg of length 3 in R. Thus (ur, Pr,yr,yr,vr) and (ur, Pr,yr, Yr, Pr,VR)
are fault-free upvg-paths of length 5 and 7 in @3, respectively.

The lemma is proved. 1
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Theorem 2.3 If @, (n > 2) has at most n — 2 faulty edges, then for any two
different vertices u and v there exists a fault-free uv-path of length [ with dg, (u,v)+
2<1<2"—1 and 2|(l —dg, (u,v)). Moreover, there must exist a fault-free uv-path
of length dg, (u,v) if dg, (u,v) > n — 1.

R Qn_1 L&Qn-1 R Qn-1

(2)

L>=Qn-1

(¢)

Figure 1:  Illustrations for Theorem 2.3

Proof Obviously the latter conclusion is true. In fact, by Lemma 2.1, there
are dg, (u,v) internally disjoint uv-paths of length dg, (v, v), at least one of which is
fault-free since dg, (u,v) > n — 1 and @, has at most n — 2 faulty edges.

We now prove the former conclusion by induction on n > 2. Obviously, the
conclusion holds for n = 2. By Lemma 2.2, the conclusion is true for n = 3. Assume
that the conclusion is true for any & with 3 < k < n. Let F be a set of faulty
edges in Q,. Then |F| < n — 2 by the hypothesis For 1 < i < n, let F; denote

the set of i-dimensional edges in F. Thus, Z |Fi| = |F|, without loss of generality
by the edge-transitivity of @), we assume that |Fi| < |Fp] < ... < |F,|. With the
expression Q, = L® R, we use F;, and Fr to denote the set E(L) NF and E(R)NF
respectively. Hence, F = F, U F, U Fg and |Fr| + |Fgr| < n - 3.

Let u and v be two arbitrary vertices in @,. To prove that there exists a fault-free
uv-path of length [ with dg, (u,v)+2 <1< 2" — 1 and 2|(I — dg, (u,v)), we need to
consider the location of the vertices v and v.
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Case 1 Both u and v are in L or R. Without loss of generality, we may assume
that v = u;, and v = vy, are in L.

Ifdg, (ug,vr)+2 <1< 2" '—1and 2|(I—dg, (u,v)) then, since |F| < n—3, there
exists a upvp-path of length [ in L — F, by the induction hypothesis. In particular,
we use P, = (up,...,%L,Yr,-..,vs) to denote the longest fault-free u,v,-path in L
and £(Pr) to denote its length. Then 2|(e(Pp) — do, (u,v)) and e(P) = 2"~1 — 2 if
do, (u,v) is even or 2”71 — 1 if dg, (u,v) is odd.

If 2"t <1 < 2" —1 and 2|( — dg,(u,v)), let I' = 1 —e(Py) — 1, then I' is
odd and 1 < I' < 2"7' — 1. Since ¢(P;) > 2*"' -2 and =2 = 2*2 — 1 >
n — 2 for n > 4, there is an edge zrpyr on the path Pp such that the set of edges
{zLZr, yLYr, Tryr} is fault-free. By the induction hypothesis, there is a fault-free
zryr-path Pr of odd length I’ in R, where Py consist of a single edge zryg if I’ = 1.
Thus, (up,..., %5, Zr, PryYr, YL, - - -,V1) s a fault-free u v, -path of length [ in @,
(see Fig. 1 (a)).

Case 2 If u and v are in different parts. Without loss of generality, we may
assume that u = u;, € L and v = vg € R.

Subcase 2.1 If dg, (up,vg) = 1, then vg = ug. In this case, [ is odd with
3 <1 < 2" —1. Since there are n — 1 internally disjoint upug-paths of length 3
by Lemma 2.1 and there are at most n — 2 faulty edges in @Q,, there must exist a
upug-path of length 3 in Q, — F. Let (ur,xr,zg,ug) be a fault-free uyug-path. By
the induction hypothesis, there exist a fault-free u,z -path Py of odd length I with
1<!'"< 2!~ 1in L and a fault-free zgup-path P of odd length (I — ' — 1) in
R, where Pp, consist of a single edge upzy if I' = 1 and Pg consist of a single edge
xzgug if | —1'—1=1. Thus, (ur, Py, 2L, 2R, Pr,ug) is a fault-free u,ug-path of odd
length { with 3 <1< 2" —1 (see Fig. 1 (b)).

Subcase 2.2 dg,(ur,vg) = 2. In this case, [ is even with 4 < [ < 2" — 2. By
Lemma 2.1 there are n internally disjoint ujvg-paths in @), such that two of them
are of length 2, otherwise of length 4.

We can choose a fault-free ujvg-path of length four. In fact, suppose that P; =
(ur, i, Yi, 2i,0R) (i = 1,2,...,n—2) are n— 2 internally disjoint uyvg-paths of length
four in @, such that each of them contains at least one faulty edge. Then every such
a path contains exactly one faulty edge and, hence, all faulty edges must be in these
paths since |F| < n —2. Since |FL|+|Fg| < n—3, there is some ¢ with 1 <7 <n—2
such that the only one faulty edge in P; is n-dimensional that is either x;y; or y;2;.
Since dg, (z;, 2;) = 2, by Lemma 2.1 there exists a 2-dimensional subcube in which
there are two internally disjoint x;z;-paths of length two, one of which is (x4, y;, 2)
and the other, say, (z;,y}, ), is not contained in P; for each j = 1,2,...,n—2. Then
(ur, i, Y}, 2i,0R) is a fault-free uyvg-path of length four, as required.

Without loss of generality, we assume (up, 2., Zr,yr,vr) is a fault-free uyvg-
path. Note dg, (ur,z) = 1 and dg, (¢r,vr) = 2, |Fr| < n—3 and |Fg| < n—3.
By the induction hypothesis, there are a fault-free upz-path P of odd length '
in L with 3 <1’ < 2" ! — 1 and a fault-free zzvg-path Py of even length [ in R,
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where I" =1 —1' — 1 with 4 <" < 2" ' — 2. Iflet P, = upzy when !’ =1 and let
Pr = (2R,yr,vg) when I"” = 2, then (ug, P, vr,xg, Pr, vg) is a fault-free uvg-path
of even length [ with 4 <1< 2" — 2 (see Fig. 1 (c)).

Subcase 2.3 dg, (ur,vr) > 3. Let dg, (ur,vg) = k. Then dg, (ug,vg) =k — 1,
by Lemma 2.1, there are n — 1 internally disjoint ugvg-paths R; = (ug,¥i,---,VR)
(t = 1,2,...,n — 1) in R such that £ — 1 of them are of length k — 1, otherwise
of length £ +1. We use z; (1 = 1,2,...,n — 1) to denote the neighbors of y;
(t=1,2,...,n—=1)in L. Clearly x; (i = 1,2,...,n—1) are the n — 1 neighbors of u,
in L. Hence P, = (up, ®i, Y - - - ,vr) (¢ =1,2,...,n— 1) are n — 1 internally disjoint
upvg-paths such that £ — 1 of them are of length &, otherwise of length % + 2. Since
|F| < n—2, there is some 7 with 1 < i < n — 1 such that P; is a fault-free uyvg-path
of length k or k + 2. By the induction hypothesis, there are a fault-free upz;-path
Pp, of length I' in L with 1 <" <2"' — 1 and 2|(I’ — 1) and a fault-free y;ug-path
Pg of length 1" in R with k& <" <2"* — 1 and 2|(I" — k), from which the required
length u vgr-path can be constructed (see Fig. 1 (d)).

This completes the proof of the theorem. ]

This result is optimal in the following sense. Let n — 1 faulty edges all be incident
to the same vertex x. Hence there is only one fault-free edge incident to x. There is
no uwv-path of length 2" — 2 or 2" — 1 for any pair of vertices u and v different from z.

From Theorem 2.3, the following result, due to Li et al [3], can be obtained
immediately.

Corollary 2.4 For any n > 2, @, is bipanconnected and (n — 2)-edge-fault-
tolerant edge-bipancyclic.

3 Edge-fault-tolerant edge-pancyclicity of F (@),

As a variant of the hypercube, the n-dimensional folded hypercube F'Q,,, proposed
first by El-Amawy and Latifi [1], can be obtained from the hypercube @, by adding
an edge, called a complementary edge, between any pair of complementary vertices
U= Up...Ustty and & = Uy . .. UslUy, where u; = 1 — u; for i = 1,2,...,n. We denote
the set of complementary edges by E.. To distinguish them from the edges in Q,,
we call edges in @, regular edges and denote the set of i-dimensional regular edges
by E; fori=1,2,...,n.

It has been shown that F@), is (n + 1)-regular (n + 1)-connected, vertex- and
edge-transitive. F'@Q, is also superior to @, in some properties. For example, it has
diameter [ﬂ, about half the diameter of @, [1]. Thus, the folded hypercube FQ, is
an enhancement on the hypercube Q,,. As a result, the study of the folded hypercube
has recently attracted much attention of researchers [1, 2, 4, 6, 7].

Lemma 3.1 For n > 2, every edge e of FQ, lies on n cycles Cy,C,...,C, of
length n + 1 such that C; N C; = {e} for i,j = 1,2,...,n and i # j.
Proof Let e = uu be a complementary edge. Since dg, (u,u) = n, by Lemma
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2.1, there are n internally disjoint u@i-paths P; (i = 1,2,...,n) of length n in FQ,, —
E. = Q. Then C; = P+ ¢ (i = 1,2,...,n) are required cycles. Since FQ, is
edge-transitive, the conclusion also holds for any regular edge. The lemma follows. 1

Lemma 3.2 There is an automorphism o of FQ, such that o(E;) = E; for any
i,j €{1,2,...,n,c}.

Proof Ifi,j € {1,2,...,n} and i < j, let o be a mapping from V(FQ,) to
itself defined by o(zy, ... 2j...¢;...21) = (Ty ... 2 ... Tj...21) for any z,, ... 2z €
V(FQ,). Clearly, 0 € Aut (FQ,) and o(E;) = E;, o(E;) = E;.

If i = ¢,j = n, let 0 be a mapping from V(FQ,) to itself defined by

o(lu) = la
Clearly, o0 € Aut (FQ,) and o(E,) = E,,0(E,) = E..
If i =c¢,j # n,let o, € Aut (FQ,) such that 0,(E.) = E,, o), € Aut(FQ,)

such that o), (E,) = E;. Then 0,0, € Aut (FQ,) and ¢,0,(E,) = E;. The lemma is
proved. ]

{ o(0u) = Ou for any v € V(Qn_1)-

Like @,, we can express FQ, as L ® R, where L = @, and R = Q,_1, the
complementary edge uw is between L and R for any u € V(FQ,). Let F be a set of
faulty edges in FQ, with |[F|<n—-1,F.=FNE.and F;=FNE;for1<i<n.
Thus, E |F;|+|F.| = |F|. By Lemma 3.2, without loss of generality, we assume that
|F.| > |F | > ... > |Fi|. Moreover, we use F, and Fg to denote the set E(L) N F
and E(R)NF respectively. Hence, F = F,UF, UF.U Fy and |F,| + |Fr| <n —3.

Lemma 3.3 If FQ, has at most n — 1 faulty edges for n > 3, then every
non-faulty edge lies on a fault-free cycle of even length [ with 4 <[ < 27,

L2Qn-1 R=Qn-1 L1 = Qn-1 R1 2 Qn-1
U e U
m €
Pr, Pr, -
UR LR
z,
PR,
(a) (b)

Figure 2:  Illustrations for Lemma 3.3

Proof Let F be a set of faulty edges of FQ,, with |F| < n—1and |F,| > |F,| >

. > |F1]. Let e be any non-faulty edge of FQ, and [ any even integer with 4 <1 <

2" If e is an regular edge then, since FQ,,— E. = Q),, and |F — F.| < n—2, the lemma

follows immediately by Corollary 2.4. We now suppose that e is a complementary
edge.
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To complete the proof of the lemma, we need to construct a cycle of length [
containing e. Let e = uu, where w € L and @ € R. Let Ny be the set of neighbors
of win L. Then (u,z,Z,@,u) is a cycle of length 4 containing e for each « € Ny.

Case 1 1If there is some x € Ny, such that the cycle (u,z,Z, 4, u) is fault-free
then, by Theorem 2.3, there are a fault-free uz-path P of odd length !’ in L with
1 <I' <2771 — 1 and a fault-free Zu-path Pg of odd length (" in R with 1 < " <
27~ — 1. Thus, (u, P, =, T, Pg,u,u) is a fault-free cycle of length | = I' +1" + 2 with
4 <1 < 2™ containing e(see Fig. 2 (a)).

Case 2 For each z € Ny, the cycle (u,z,Z,u,u) is faulty. Since |F.| > |F,| >
...>|F|and [Ny =n—-1,|F,|=0and F = F, = {¢Z : = € N;}. Hence the
cycle C = (u,ug, U, 4, u) is a fault-free cycle of length 4. Considering the expression
FQ, = L, ® Ry, we can reduce this case to Case 1 (see Fig. 2 (b)).

This completes the proof of the lemma. 1

It is well known that F@Q, is a bipartite graph if and only if n is odd. There are
odd cycles in F@Q, if n is even and the shortest odd cycle is of length n + 1.

Lemma 3.4 If FQ, has at most n — 1 faulty edges for any even integer n > 2,
then every non-faulty edge e lies on a fault-free cycle of odd length [ with n + 1 <
[<2m—1.

Proof It is easy to check that the conclusion holds for n = 2. We assume n > 4
below. Let F be an arbitrary set of faulty edges in FQ, with |F| <n — 1. Let e be
any non-faulty edge of FQ, and e € E;, i € {1,2,...,n,c}. Let [ be any odd integer
with n+1 <1 < 2" —1. To prove the lemma, we need to construct a cycle of length
[ containing e.

Case 1 If |F;| > 1, by Lemma 3.2 there is an automorphism of FQ, mapping E;
to E.. Then the edge e is complementary and |F.| > 1. Without loss of generality,
assume e = u@i, where v € L and @ € R. Then dg,(u,%) =n. Since FQ, — E. = Q,
and |F — F.| < n—2, by Theorem 2.3, there is a fault-free u@i-path P of length [ — 1
in FQ, with n <1 —1 < 2" —2. Thus, (u, P,@,u) is a fault-free cycle of length [
containing e with n +1 <7 < 2" — 1.

Case 2 If |F;| = 0, we can choose j,k € {1,2,...,n,c} and j # i,k # i such
that |F}| + |Fi| > 2. By Lemma 3.2 there is an automorphism of F'Q), mapping E;
to E, and mapping Ej, to E,. Then the edge ¢ € L or ¢ € R and |Fp|+ |Fg| < n—3.
Without loss of generality, we assume e = urvy € L. Since |F| < n — 1, by Lemma
3.1, there is a fault-free cycle of length n + 1 containing e. For n+3 <1< 271 +1,
there are three subcases to be considered.

Subcase 2.1 Either {upti,vivr} or {v 0L, upur} is fault-free. Without loss
of generality, we assume {uf,v,vg} is fault-free. By Theorem 2.3, there is a
fault-free vgiiz-path Pg of even length I, in R with n — 2 < [, < 2" ! — 2. Thus,
(ug,vr,vr, Pr,tr,ur) is a fault-free cycle of length | = I, + 3 containing e with
n+1<1<2" +1 (see Fig. 3 (a)).
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L=Qn1 R Qn-1 L&Qn-1 R Qn-1
u P,
ur UL UR
€
e
Pr L
UL UR
rL ‘L
(b)
(a)
L=Qn-1 R Qn-1 L= Qn-1 R2Qn-1
YL
YR
urL L zZL
€
P €
vL R wr,
vL,
T Py
L

(c) (d)

Figure 3:  Illustrations for Lemma 3.4

Subcase 2.2 At least one of {urur,vivr} and at least one of {vy v, urup} are
faulty, but there is at least one non-faulty edge in {urug,urtr, vLvr,vrvL}. We may
assume urug is non-faulty. There is a neighbor x, of vy, in L such that {vizr, v.%1}
is fault-free since vy has n — 2 neighbors in L apart from w,, which are incident
with at most n — 3 edges in F. Clearly, dg, (ur,z) = 2 and dg, (T, ug) = n — 3.
By Theorem 2.3, there is a fault-free Z ug-path Pg of odd length I, in R with
n—1<1ly <2"' —1. Thus (ug,vr, 2L, %1, Pr,ur,ur) is a fault-free cycle of length
l =1y + 4 containing e with n +3 <1 < 271 + 3 (see Fig. 3 (b)).

Subcase 2.3 Alledgesin {urtr,vLvR, vi0L,urur} are faulty. Thenn > 5. There
are a neighbor z;, of vy, and a neighbor y;, of uz in L such that {vizy, 21Zr,uryr,
yryr} is fault-free. Note dg, (v1,yr) = 3 and dg, (Zr,yr) = n —4. By Theorem 2.3,
there is a fault-free Z y -path Pg of even length [, in R withn —2 <, <271 -2,
Thus, (YL, uL, v, L, T, Pr,yr,yL) is a fault-free cycle of length | = I, 45 containing
e with n+3 <1< 2" + 3 (see Fig. 3 (c)).

For 27! +1 <1 < 2* — 1. By Corollary 2.4, there is a fault-free even cycle
Cy, of length I; containing e in L with 4 <l —n+1<1; < 2" Sincel; —1 >
I—n >2"14+1—-n >n—1, there is an edge 2wy on Oy apart from e with
either {zp2g, wpw} or {zZL, wywg} is fault-free. Assume {zpzg, wywy} is fault-
free and let P, = Cf, — zpwy. Then dg, (2r,wr) = n — 2. By Theorem 2.3, there is
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a fault-free zzwr-path Pg of even length Iy in R with n — 2 < I, < 271 — 2. Thus,
(21, Pr,wr, @y, Pr, 2r, z1) is a fault-free cycle of length [ = I 4+ I, + 1 containing e
with 2771 +3 <1< 2" — 1 (see Fig. 3 (d)).

This completes the proof of the lemma. 1

Combining Lemma 3.3 and Lemma 3.4, we obtain the following theorem imme-
diately.

Theorem 3.5 For n > 3, if n is odd, then F@Q, is (n — 1)-edge-fault-tolerant
edge-bipancyclic; if n is even and F@Q, has at most n — 1 faulty edges, then every
non-faulty edge of F@Q, lies on a fault-free cycle of every even length from 4 to 2"
and every odd length from n + 1 to 2™ — 1.

Corollary 3.6 (Wang [7]) FQ, is (n — 1)-edge-fault-tolerant Hamiltonian.
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