The second largest eigenvalue of trees

SHANG-WANG TAN JI-MING GUO

Department of Mathematics
University of Petroleum
Dongying 257061
China
tswang@sina.com

Abstract

Let T be a tree of order 2n+1 and edge independence number n. In this paper, a tight upper bound for the second largest eigenvalue of T is obtained. This result can play an important role in investigating the third largest eigenvalue of trees.

1 Introduction

Let G be a simple graph with vertex set $\{v_1, v_2, \dots, v_n\}$. Its adjacency matrix is defined to be the $n \times n$ matrix $A(G) = (a_{ij})_{n \times n}$, where $a_{ij} = 1$ if v_i is adjacent to v_j ; and $a_{ij} = 0$ otherwise. The characteristic polynomial of G is just $\det(\lambda I - A(G))$, which is denoted by $\phi(G, \lambda)$ or $\phi(G)$. Since A(G) is real symmetric, all of its eigenvalues are real. We assume, without loss of generality, that they are ordered in non-increasing order, that is,

$$\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G),$$

and $\lambda_k(G)$ is called the kth largest eigenvalue of G.

Two distinct edges in G are independent if they are not adjacent in G. A set of pairwise independent edges of G is called a matching in G, while a matching of maximum cardinality is called a maximum matching in G and the number of edges in a maximum matching of G is called the edge independence number of G. Let M(G) be a matching and v a vertex of G. If v is incident to an edge in M(G), then v is called saturated by M(G). If each vertex of G is saturated by M(G), then M(G) is called a perfect matching of G. If graphs G and G are isomorphic, we write $G \cong H$, and $G \ncong H$ otherwise.

For a tree T with order 2n and a perfect matching, $\lambda_1(T)$, $\lambda_2(T)$ and $\lambda_n(T)$ have been completely studied and their precise upper and lower bounds have been obtained (see [1–7]). For a tree T with order 2n + 2 and edge independence number n, the tight upper bound for $\lambda_2(T)$ were also obtained in [8]. Let T be a tree of order

2n+1 and edge independence number n. In this paper, a tight upper bound for the second largest eigenvalue of T is obtained. This result can play an important role in investigating the third largest eigenvalue of trees.

Throughout this paper, let o(G) and i(G) denote the order and edge independence number of a graph G, respectively. For positive integers n and m, let $T_{n,m}^{(1)}(n \geq 2m)$, $T_{n,m}^{(2)}(m \geq 2, n \geq 2m+1)$ and $T_{2m+1,m}^{(3)}$ be the three trees shown in Fig. 1. For a positive integer n and a real number r such that $n^2 \geq r$, let $\delta_{n,r}, \beta_{n,r}$ and γ_n be defined as follows:

$$\delta_{n,r} = \sqrt{\frac{1}{2}(n + \sqrt{n^2 - r})}, \quad \beta_{n,r} = \sqrt{\frac{1}{2}(n - \sqrt{n^2 - r})}, \quad \gamma_n = \sqrt{n + 1 + \frac{1}{2n}}.$$

Lemma 1.1 [9] Let e = uv be an edge of a simple graph G and C(e) the set of all cycles containing edge e. Then

$$\phi(G,\lambda) = \phi(G-uv) - \phi(G-u-v) - 2\sum_{Z \in C(e)} \phi(G-V(Z)).$$

Lemma 1.2 [5] Let T be a tree such that o(G) = n and i(G) = m. Then

$$\lambda_1(T) \le \sqrt{\frac{1}{2}(n-m+1+\sqrt{(n-m+1)^2-4(n-2m+1)})},$$

and the equality holds if and only if $T \cong T_{n,m}^{(1)}$, where

$$\phi(T_{n,m}^{(1)},\lambda) = \lambda^{n-2m}(\lambda^2-1)^{m-2}[\lambda^4-(n-m+1)\lambda^2+(n-2m+1)].$$

Lemma 1.3 [6,7] Let T be a tree such that o(T) = n and i(T) = m.

(i) Let $m \geq 2$, $n \geq \max\{2m+1,6\}$ and $T \ncong T_{n,m}^{(1)}$. Then $\lambda_1(T) \leq \lambda_1(T_{n,m}^{(2)})$, and the equality holds if and only if $T \cong T_{n,m}^{(2)}$, where $\lambda_1(T_{n,m}^{(2)})$ is the largest root of the equation

$$(x^2-2)[x^4-(n-m)x^2+(n-2m-1)]-2=0.$$

(ii) Let n = 2m + 1 and $T \notin \{T_{2m+1,m}^{(1)}, T_{2m+1,m}^{(2)}\}$. Then $\lambda_1(T) \leq \sqrt{m+1}$, and the equality holds if and only if $T \cong T_{2m+1,m}^{(3)}$.

Remark The results in Lemma 1.3 (i) do not hold for m=1 and (m,n)=(2,5), but they were not excluded in [6]. In fact, $m \geq 2$ is required by the definition of $T_{n,m}^{(2)}$ and $T_{n,m}^{(1)} \cong T_{n,m}^{(2)}$ for (m,n)=(2,5).

Lemma 1.4 [10] Let T be a tree with order n. Then for any positive integer k such that $1 \le k \le \frac{n}{2}$, there exists a vertex subset $V' \subseteq V(T)$ with k-1 vertices such that all components of T-V' have order not exceeding $\frac{n}{k}$.

Lemma 1.5 [9](Cauchy interlacing theorem) Let G be a graph with order n, V' be a vertex subset with k vertices of G. Let G - V' be the subgraph of G obtained by deleting all the vertices in V' together with their incident edges. Then

$$\lambda_i(G) \ge \lambda_i(G - V') \ge \lambda_{i+k}(G), \quad i = 1, 2, \dots, n - k.$$

2 On the second largest eigenvalue of trees

Lemma 2.1 If $n \geq 3$, then $\lambda_1(T_{2n,n-1}^{(2)}) < \sqrt{n+1}$.

Proof According to Lemma 1.3, $\lambda_1(T_{2n,n-1}^{(2)})$ is the largest root of the equation $f(\lambda) = 0$, where

$$f(\lambda) = (\lambda^2 - 2)[\lambda^4 - (n+1)\lambda^2 + 3] - 2.$$

= $(\lambda^4 - 2\lambda^2 + 3))[\lambda^2 - (n+1)] + 3n - 5.$

Since $f(\lambda) > 0$ for $\lambda \ge \sqrt{n+1}$, we have $\lambda_1(T_{2n,n-1}^{(2)}) < \sqrt{n+1}$.

This completes the proof. \Box

Lemma 2.2 Let T be a tree, M a maximum matching of T and assume that T satisfies one of the following conditions:

- ${\rm (i)}\ o(T)=2n, i(T)=n-1\ and\ T\not\cong T^{(1)}_{2n,n-1};$
- (ii) o(T) < 2n and T has only two vertices not saturated by M;
- (iii) $o(T) \leq 2n$ and T has at most one vertex not saturated by M.

If $n \geq 3$, then $\lambda_1(T) < \sqrt{n+1}$.

Proof Firstly, assume that T satisfies condition (i). By Lemma 1.3 (i) and Lemma 2.1, we have

$$\lambda_1(T) \le \lambda_1(T_{2n,n-1}^{(2)}) < \sqrt{n+1}.$$

Secondly, assume that T satisfies condition (ii). It is obvious that o(T) is an even number. If o(T) = 2s, then $s \le n - 1$ and i(T) = s - 1. By Lemma 1.2, we have

$$\lambda_1(T) \le \delta_{s+2,12} \le \delta_{n+1,12} < \sqrt{n+1}$$
.

Finally, assume that T satisfies condition (iii). If M is a perfect matching, then o(T) is an even number. If o(T)=2s, then $s\leq n$ and i(T)=s. From Lemma 1.2, we have

$$\lambda_1(T) \le \delta_{s+1,4} \le \delta_{n+1,4} < \sqrt{n+1}.$$

If T has only one vertex not saturated by M, then o(T) is an odd number. If o(T) = 2s + 1, then $s \le n - 1$ and i(T) = s. By Lemma 1.2, we have

$$\lambda_1(T) \le \delta_{s+2.8} \le \delta_{n+1.8} < \sqrt{n+1}$$
.

This completes the proof. \square

Fig. 2.

Theorem 2.3 Let T be a tree such that o(T) = 4n + 1, i(T) = 2n and $n \ge 2$. Let $F_1, F_2, W_{4n+1}^{(1)}$ and $W_{4n+1}^{(2)}$ be the four trees shown in Fig. 2.

(i) $\lambda_2(T) \leq \lambda_2(W_{4n+1}^{(1)})$, and the equality holds if and only if $T \cong W_{4n+1}^{(1)}$, where $\lambda_2(W_{4n+1}^{(1)})$ is the second largest root of the following equation

$$[\lambda^4 - (n+2)\lambda^2 + 2][\lambda^4 - (n+2)\lambda^2 + 1] - \lambda^2 = 0.$$

(ii) Let $T \ncong W_{4n+1}^{(1)}$.

If n=2, then $\lambda_2(T)\leq \frac{\sqrt{5}+1}{2}$, and the equality holds if and only if $T\in \{F_1,F_2\}$.

If $n \geq 3$, then $\lambda_2(T) \leq \lambda_2(W_{4n+1}^{(2)})$, and the equality holds if and only if $T \cong W_{4n+1}^{(2)}$, where $\lambda_2(W_{4n+1}^{(2)})$ is the second largest root of the following equation

$$(\lambda^2-1)^2[\lambda^4-(n+2)\lambda^2+2][\lambda^4-(n+1)\lambda^2+1] = \lambda^2[\lambda^4-(n+2)\lambda^2+3](\lambda^4-n\lambda^2+1).$$

Proof For n = 2, the required result follows by the table of trees on 9 vertices (see [11]).

Suppose now that $n \geq 3$ and $T \notin \{W_{4n+1}^{(1)}, W_{4n+1}^{(2)}\}$. We next prove the following two claims.

Claim 1 $\lambda_2(T) \leq \sqrt{n+1}$.

Take k=2 in Lemma 1.4. Then there is a vertex $v \in V(T)$ such that each component of T-v, say $T_i (i=1,2,\cdots,l)$, is of order at most 2n. By Lemma 1.5, we have

$$\lambda_2(T) \le \lambda_1(T - v) = \max\{\lambda_1(T_1), \lambda_1(T_2), \cdots, \lambda_1(T_l)\}. \tag{1}$$

Let M be a maximum matching of T - v, then there exist at most two vertices of T - v not saturated by M. We distinguish the following two cases.

Case 1 Each component T_i of T-v has at most one vertex not saturated by M.

Since each $T_i(i=1,2,\cdots,l)$ satisfies the condition (iii) of Lemma 2.2, by (1) and Lemma 2.2, Claim 1 holds.

Case 2 There exists a component of T-v such that it has two vertices not saturated by M.

Without loss of generality, suppose that T_1 has only two vertices not saturated by M, then all the other components of T-v have a perfect matching. Obviously the order of T_1 is an even number. If $o(T_1) = 2s_1$, then $s_1 \leq n$ and $o(T_1) = s_1 - 1$.

Case 2.1 Assume $T_1 \ncong T_{2n,n-1}^{(1)}$.

In this case, $s_1 \leq n-1$, or $s_1 = n$ and $T_1 \ncong T_{2n,n-1}^{(1)}$. So T_1 satisfies the condition (ii) or (i) of Lemma 2.2, while each $T_i (i \geq 2)$ satisfies the condition (iii) of Lemma 2.2. Hence by Lemma 2.2 and (1), Claim 1 holds.

Case 2.2 Assume $T_1 \cong T_{2n.n-1}^{(1)}$

Let a be the unique vertex being adjacent to v in T_1 , then a is one of two vertices of T_1 not saturated by M. It is obvious that T-a has only two components, say \tilde{T}_1 and \tilde{T}_2 . Without loss of generality, suppose that \tilde{T}_1 does not contain the vertex v. Then $\tilde{T}_1 = T_1 - a \cong T_{2n-1,n-1}^{(1)}$, $o(\tilde{T}_2) = 2n+1$ and $i(\tilde{T}_2) = n$. If $\tilde{T}_2 \cong T_{2n+1,n}^{(1)}$, then $T \cong W_{4n+1}^{(1)}$; if $\tilde{T}_2 \cong T_{2n+1,n}^{(2)}$, then $T \cong W_{4n+1}^{(2)}$. But this contradicts $T \not\in \{W_{4n+1}^{(1)}, W_{4n+1}^{(2)}\}$. Hence $\tilde{T}_2 \not\in \{T_{2n+1,n}^{(1)}, T_{2n+1,n}^{(2)}\}$. By Lemma 1.2 and Lemma 1.3(iii), we have

$$\lambda_1(\tilde{T}_1) = \lambda_1(T_{2n-1,n-1}^{(1)}) = \delta(n+1,8) < \sqrt{n+1}.$$

$$\lambda_1(\tilde{T}_2) \le \lambda_1(T_{2n+1,n}^{(3)}) = \sqrt{n+1}.$$

Hence by Lemma 1.5, we have

$$\lambda_2(T) \le \lambda_1(T - u) = \max\{\lambda_1(\tilde{T}_1), \lambda_1(\tilde{T}_2)\} \le \sqrt{n+1}.$$

By the above discussion of Cases 1 and 2, we complete the proof of Claim 1. Claim 2 $\lambda_2(W_{4n+1}^{(1)}) > \lambda_2(W_{4n+1}^{(2)})$.

According to Lemma 1.1 and $\phi(T_{n,m}^{(1)},\lambda)$, we have

$$\begin{split} \phi(W_{4n+1}^{(1)}) &= \phi(W_{4n+1}^{(1)} - av) - \phi(W_{4n+1}^{(1)} - a - v) \\ &= \phi(T_{2n,n-1}^{(1)} \bigcup T_{2n+1,n}^{(1)}) - \phi(T_{2n-1,n-1}^{(1)} \bigcup T_{2n,n}^{(1)}) \\ &= \lambda(\lambda^2 - 1)^{2n-4} f(\lambda), \\ \phi(W_{4n+1}^{(2)}) &= \phi(W_{4n+1}^{(2)} - vc) - \phi(W_{4n+1}^{(2)} - v - c) \\ &= \phi(T_{2n+1,n}^{(1)} \bigcup T_{2n,n}^{(1)}) - \phi(P_1 \bigcup T_{2n,n-1}^{(1)} \bigcup T_{2n-2,n-1}^{(1)}) \\ &= \lambda(\lambda^2 - 1)^{2n-6} g(\lambda), \end{split}$$

where

$$f(\lambda) = [\lambda^4 - (n+2)\lambda^2 + 2][\lambda^4 - (n+2)\lambda^2 + 1] - \lambda^2.$$

$$g(\lambda) = (\lambda^2 - 1)^2[\lambda^4 - (n+2)\lambda^2 + 2][\lambda^4 - (n+1)\lambda^2 + 1]$$

 $-\lambda^{2}[\lambda^{4} - (n+2)\lambda^{2} + 3][\lambda^{4} - n\lambda^{2} + 1].$

Since

$$f(0) = 2 > 0, \quad f(\beta_{n+2,8}) = -\beta_{n+2,8}^2 < 0,$$

$$f(\sqrt{n+1+\frac{1}{n}}) = \frac{n^2(n-1)^2 + 1}{n^3} > 0,$$

$$f(\delta_{n+2,12}) = -\delta_{n+2,12}^2 + 2 < 0,$$

$$f(\sqrt{n+3}) = n^2 + 8n + 17 > 0.$$

we have

$$\sqrt{n+1+\frac{1}{n}} < \lambda_2(W_{4n+1}^{(1)}) < \delta_{n+2,12}.$$
 (2)

Since

$$\begin{split} g(0) &= 2 > 0, \ g(\beta_{n,4}) = -\beta_{n,4}^2[1-\beta_{n,4}^2]^2[1-2\beta_{n,4}^2] < 0, \\ g(\beta_{n,8}) &= \beta_{n,8}^2 \left\{ 2[1-\beta_{n,8}^2][1-\beta_{n,8}^4] + 1 - 2\beta_{n,8}^2 \right\} > 0, \\ g(1) &= -(n-2)^2 < 0, \ g(\sqrt{n+1}) = 2(n^2-2n-2) > 0, \\ g(\gamma_n) &= -\frac{16n^7(2n^2-11n+23) + 8n^4(42n^2+49n+12) + 4n^2(11n-1) - 1}{64n^6} < 0, \\ g(\sqrt{n+2}) &= n(2n^2-13) + 4(n^2-6) > 0, \end{split}$$

we have

$$\sqrt{n+1} < \lambda_2(W_{4n+1}^{(2)}) < \gamma_n. \tag{3}$$

By Equation (2) and (3), we have

$$\delta_{n+2,12} > \lambda_2(W_{4n+1}^{(1)}) > \sqrt{n+1+\frac{1}{n}} > \gamma_n > \lambda_2(W_{4n+1}^{(2)}).$$
 (4)

Combining Claims 1 and 2, the proof follows. \square

Remark 2.1 (i) There are only two trees, P_5 and $T_{5,2}^{(1)}$, with order 4n+1 and edge independence number 2n for n=1, and $\lambda_2(P_5) > \lambda_2(T_{5,2}^{(1)})$.

(ii) By (4), we have $\lambda_2(W_{4n+1}^{(1)}) > \gamma_n > \delta_{n+1,12} > \lambda_2(W_{4(n-1)+1}^{(1)})$. This indicates that $\lambda_2(W_{4n+1}^{(1)})$ is strictly increasing in $n(n \ge 2)$.

Lemma 2.4 Let T be a tree such that $o(T) \leq 2n - 1$, M be a maximum matching of T and there are at most two vertices of T not saturated by M. If $n \geq 2$, then

$$\lambda_1(T) \le \delta_{n+1,8} = \sqrt{\frac{1}{2}(n+1+\sqrt{(n+1)^2-8})}.$$

Proof Clearly $i(T) \leq n-1$. Since there are at most two vertices of T not saturated by M, we have $i(T) \geq \frac{o(T)-2}{2}$. So we obtain

$$o(T) - i(T) + 1 \le o(T) - \frac{o(T) - 2}{2} + 1 = \frac{1}{2}o(T) + 2$$
$$\le \frac{2n - 1}{2} + 2 = n + 1 + \frac{1}{2}.$$

This implies that $c = o(T) - i(T) + 1 \le n + 1$. So by Lemma 1.2, we have

$$\begin{split} \lambda_1(T) & \leq \sqrt{\frac{1}{2}(c + \sqrt{c^2 - 4c + 4i(T)})} \\ & \leq \sqrt{\frac{1}{2}(n + 1 + \sqrt{(n+1)^2 - 4(n+1) + 4(n-1)})} = \delta_{n+1,8}. \end{split}$$

This completes the proof. \square

Fig. 3.

Theorem 2.5 Let T be a tree such that o(T) = 4n - 1, i(T) = 2n - 1 and $n \ge 2$. Then

$$\lambda_2(T) \le \sqrt{\frac{1}{2}(n+1+\sqrt{(n+1)^2-8})}$$
, (5)

and the equality holds if T is one of the trees shown in Fig. 3.

Proof Take k=2 in Lemma 1.4. Then there exists one vertex $v \in V(T)$ such that each component of T-v, say $T_i (i=1,2,\cdots,l)$, is of order at most 2n-1. By Lemma 1.5, we have

$$\lambda_2(T) \le \lambda_1(T - v) = \max\{\lambda_1(T_1), \lambda_1(T_2), \dots, \lambda_1(T_l)\}.$$
 (6)

Let M be a maximum matching of T-v, then T-v has at most two vertices not saturated by M. So each $T_i (i=1,2,\cdots,l)$ has at most two vertices not saturated by M. Hence from Lemma 2.4 and (6), (5) follows.

On the other hand, by Lemma 1.2, we easily find

$$\lambda_1(W_{4n-1}^{(i)} - v) = \lambda_2(W_{4n-1}^{(i)} - v) = \lambda_1(T_{2n-1}^{(1)}) = \delta_{n+1.8}.$$

By Lemma 1.5, we have

$$\lambda_1(W_{4n-1}^{(i)} - v) \ge \lambda_2(W_{4n-1}^{(i)}) \ge \lambda_2(W_{4n-1}^{(i)} - v).$$

Hence we have

$$\lambda_2(W_{4n-1}^{(i)}) = \delta_{n+1,8} = \sqrt{\frac{1}{2}(n+1+\sqrt{(n+1)^2-8})} \, (1 \le i \le 4).$$

This completes the proof. \square

Remark 2.2 (i) P_3 is the unique tree on order 4n-1 and edge independence 2n-1 for n=1.

(ii) We conjecture that $W_{4n-1}^{(i)}(i=1,2,3,4)$ are all trees such that the equality of (5) holds.

Acknowledgements

We would like to thank the referee for giving many valuable comments and suggestions on improving this paper.

References

- [1] J.Y. Shao and Y.Hong, Bounds on the smallest positive eigenvalue of trees with a perfect matching (in Chinese). Science Bulletin 1991, 18: 1361–1364.
- [2] G.H. Xu, On the spectral radius of trees with perfect matchings, in: Combinatorics and Graph Theory 1997, World Scientific, Singapore.
- [3] J.M. Guo and S.W. Tan, A conjecture on the second largest eigenvalue of a tree with perfect matchings. LAA, 2002, 347: 9–15.
- [4] J.M. Guo and S.W. Tan, A note on the second largest eigenvalue of a tree with perfect matchings. LAA, 2004, 380: 125–134.
- [5] J.M. Guo and S.W. Tan, On the spectral radius of trees. LAA, 2001, 329: 1–8.
- [6] S.W Tan and J.M. Guo, The largest eigenvalues on trees. Journal of the University of Petroleum (in Chinese), 2002, 6: 113–117.
- [7] Y.P. Hou and J.S. Li, Bounds on the largest eigenvalues of trees with a given size of matching. LAA, 2002, 342: 203–217.
- [8] S.W. Tan and J.M. Guo, On the second largest eigenvalue of trees. J. Math. Res & Exposition(in Chinese), 2004, 3.
- [9] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs. Academic Press. New York, 1980.
- [10] J.Y Shao, Bounds on the kth eigenvalues of trees and forests. LAA, 1991, 149: 19-34.
- [11] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969.

(Received 2 Sep 2004; revised 17 July 2005)