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Abstract

Let T be a tree of order 2n + 1 and edge independence number n. In
this paper, a tight upper bound for the second largest eigenvalue of T
is obtained. This result can play an important role in investigating the
third largest eigenvalue of trees.

1 Introduction

Let G be a simple graph with vertex set {vi,ve, -, v,}. Its adjacency matrix
is defined to be the n x n matrix A(G) = (aij)nxn, where a;; = 1 if v; is adjacent
to vj; and a;; = 0 otherwise. The characteristic polynomial of G is just det(\ —
A(G)), which is denoted by ¢(G, A) or ¢(G). Since A(G) is real symmetric, all of its
eigenvalues are real. We assume, without loss of generality, that they are ordered in
non-increasing order, that is,

M(G) 2 X (G) > -+ > X(G),

and \x(G) is called the kth largest eigenvalue of G.

Two distinct edges in G are independent if they are not adjacent in G. A set
of pairwise independent edges of G is called a matching in G, while a matching of
maximum cardinality is called a maximum matching in G and the number of edges in
a maximum matching of G is called the edge independence number of G. Let M(G)
be a matching and v a vertex of G. If v is incident to an edge in M(G), then v is
called saturated by M(G). If each vertex of G is saturated by M(G), then M(G) is
called a perfect matching of G. If graphs G and H are isomorphic, we write G = H,
and G 2 H otherwise.

For a tree T' with order 2n and a perfect matching, A\i(7"), A2(7") and \,(T) have
been completely studied and their precise upper and lower bounds have been obtained
(see [1-7]). For a tree T with order 2n + 2 and edge independence number n, the
tight upper bound for A»(T') were also obtained in [8]. Let T be a tree of order
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2n + 1 and edge independence number n. In this paper, a tight upper bound for the
second largest eigenvalue of T is obtained. This result can play an important role in
investigating the third largest eigenvalue of trees.

m3<n2m+l m—2: X i n—2m moo:

T, T4, )

Fig. 1.

Throughout this paper, let o(G) and i(G) denote the order and edge independence
number of a graph G, respectively. For positive integers n and m, let TT(Ll),L(n > 2m),

T»(m > 2,n > 2m + 1) and T2(§3+1,m be the three trees shown in Fig. 1. For a
positive integer n and a real number r such that n? > r, let 0,8y, and v, be
defined as follows:

1 1 / 1
Onr = §(n+vn2_7')7 Bur = §(n—vn2—r), Tn = n+1+%-

Lemma 1.1 [9] Let e = uv be an edge of a simple graph G and C(e) the set of all
cycles containing edge e. Then

6(G,N) = (G —w) — 4G —u-v) =2 Y 9(G - V(2)).

ZeC(e)

Lemma 1.2 [5] Let T be a tree such that o(G) =n and i(G) = m. Then

1
M(T) < \/Q(n—m+1+\/(n—m+1)2 —4(n —2m+1)),
and the equality holds if and only if T = T7(L,17)n, where

(T N) = AN = D)™ N = (n— m 4+ DA + (n — 2m + 1)].
Lemma 1.3 [6,7] Let T be a tree such that o(T) = n and i(T) = m.

(i) Let m > 2,n > max{2m + 1,6} and T % T\}),. Then A (T) < M(T{2,), and
the equality holds if and only if T = TT(L?T)H, where Al(TT(L?)n) 15 the largest root of the
equation

(2* = 2)z* = (n—m)2x* + (n—2m —1)] =2 =0.

(ii) Let n=2m+1 and T ¢ {TZ('rln)+l,m7T2(Zn)+l,m}' Then A\ (T) < v/m+1, and the
equality holds if and only if T = TQ(S’,BH,m.
Remark The results in Lemma 1.3 (i) do not hold for mm = 1 and (m,n) = (2,5),

but they were not excluded in [6]. In fact, m > 2 is required by the definition of
T”(f) and Tr(blgn = T(?T)n for (m,n) = (2,5).

m n
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Lemma 1.4 [10] Let T be a tree with order n. Then for any positive integer k such
that 1 < k < %, there exists a vertex subset V' CV(T) with k — 1 vertices such that
all components of T — V' have order not exceeding 3.

Lemma 1.5 [9](Cauchy interlacing theorem) Let G be a graph with order n, V' be
a vertex subset with k vertices of G. Let G — V' be the subgraph of G obtained by
deleting all the vertices in V' together with their incident edges. Then

2 On the second largest eigenvalue of trees

Lemma 2.1 Ifn > 3, then Al(TQ(fL?n,l) <+vn+1

Proof According to Lemma 1.3, /\1(T2(i?n,1) is the largest root of the equation
f(A) =0, where

FO) =\ =2\ =(n+ 1)\ +3]-2.
=\ =222+ 3) [N - (n+1)]+3n — 5.

Since f(\) > 0 for A > v/n + 1, we have Al(TZ(i?n,l) <y/n+1
This completes the proof. O
Lemma 2.2 Let T be a tree, M a maximum matching of T and assume that T
satisfies one of the following conditions:
(i) o(T) = 2n,i(T) =n— 1 and T £ T3, 13
(i) o(T) < 2n and T has only two vertices not saturated by M;
(iii) o(T) < 2n and T has at most one vertex not saturated by M.
If n >3, then \(T) < v/n+ 1.
Proof Firstly, assume that T satisfies condition (i). By Lemma 1.3 (i) and Lemma
2.1, we have

M(T) € M(Tiey) < VRt L.

Secondly, assume that T satisfies condition (ii). It is obvious that o(T’) is an even
number. If o(T) = 2s, then s <n — 1 and i(T) = s — 1. By Lemma 1.2, we have

M(T) < 651012 < Opy112 < Vn+ 1.

Finally, assume that 71" satisfies condition (iii). If M is a perfect matching, then
o(T') is an even number. If o(T") = 2s, then s < n and ¢(T") = s. From Lemma 1.2,
we have

)‘I(T) < 6s+1,4 < 6n+1,4 <vn+1l

If T has only one vertex not saturated by M, then o(T) is an odd number. If
o(T) =2s+1, then s <n —1and i(T) = s. By Lemma 1.2, we have

M(T) < 0sq28 < ny18 < Vn+1
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This completes the proof. O

F1 F2

Witk Wit
Fig. 2.
Theorem 2.3 Let T be a tree such that o(T) = 4n + 1,i(T) = 2n and n > 2. Let
Fy Fy, W4(ﬂlb)+1 and Wﬁll be the four trees shown in Fig. 2.

1) Ao < A , and the equality holds if and only 1 = , where
D) M(T) < MWL), and th lity holds if and only if T = W |, wh
/\Z(W‘l(rlblrl) 15 the second largest root of the following equation

M= (n+ 2N+ 2]\ = (n+2)A +1] - A2 =0.

(i) Let T % Wik,
If n =2, then \(T') < ‘/52“, and the equality holds if and only if T € {Fy, Fx}.
Ifn >3, then X\y(T) < /\Z(Wzl(fblrl), and the equality holds if and only if T = W4(72L)+1,

where /\Z(W‘l(fblrl) 18 the second largest root of the following equation

(A =12 A = (n+2)N+ 2]\ = (n+ DA+ 1] = N[N = (n+2)A* + 3)(A* —nA* +1).

Proof For n = 2, the required result follows by the table of trees on 9 vertices (see
1),

Suppose now that n > 3 and T ¢ {Wﬁbll,WﬁLl}. We next prove the following
two claims.
Claim 1 X\(T) < /n+ 1.

Take & = 2 in Lemma 1.4. Then there is a vertex v € V(T) such that each

component of T' — v, say Ti(i = 1,2,---,1), is of order at most 2n. By Lemma 1.5,
we have

)\Q(T) S Al(T — U) = IIlELX{Al(Tvl)7 Al(TQ), T ,)\1(1})} (1)

Let M be a maximum matching of T' — v, then there exist at most two vertices of

T — v not saturated by M. We distinguish the following two cases.

Case 1 Each component T; of T — v has at most one vertex not saturated by M.
Since each T;(i = 1,2, -, 1) satisfies the condition (iii) of Lemma 2.2, by (1) and

Lemma 2.2, Claim 1 holds.
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Case 2 There exists a component of T'— v such that it has two vertices not saturated
by M.

Without loss of generality, suppose that 77 has only two vertices not saturated by
M, then all the other components of T' — v have a perfect matching. Obviously the
order of T} is an even number. If o(7}) = 2s;, then s; < n and i(7}) = 51 — L.

Case 2.1 Assume T} 2 Tz(}jn_l-

In this case, sy < n —1,or sy =n and T} 2 T2(71L?7L—1' So T} satisfies the condition
(ii) or (i) of Lemma 2.2, while each T;(i > 2) satisfies the condition (iii) of Lemma
2.2. Hence by Lemma 2.2 and (1), Claim 1 holds.

Case 2.2 Assume T} = Tz(}jn_l-

Let a be the unique vertex being adjacent to v in 77, then a is one of two vertices
of Ty not saturated by M. It is obvious that 7' — a has only two components,
say T, and T,. Without loss of generality, suppose that T, does not contain the
vertex v. Then T, = T) — a = TZ(? 11> (TZ) = 2n+1 and L(TQ) =n. If

= T2(71L)+1 n, then T = I/VASL)Jr17 if Ty = T2(TZL)+1,”, then T = Wzl(fblrl But this contradicts

T & {W, §2)+17Wﬁ)+1}~ Hence Ty & {Tix 10 Taph1n}- By Lemma 1.2 and Lemma
1.3(iii), we have

M(Th) = M(T) 1 ey) = 8(n+1,8) < Vi + 1.

(D) < /\1(T2(2)+1,n) =vn+l
Hence by Lemma 1.5, we have
)\2(T) S )\1(T - u) = maX{)\l(Tl),)\l(Tg)} S vn + 1.

By the above discussion of Cases 1 and 2, we complete the proof of Claim 1.
Claim 2 o(Wih1) > M (Wi,).
According to Lemma 1.1 and ¢(T),, \), we have

S(Winh1) = $(Wiihy — av) = g(Wiihy — a = v)

O Loty U Tk 1n) — H(T51s UTon)
AN = 1) (),

HWihy — ve) — G(Wihy — v —©)

é(

A(

S(Wit)

T2(T1LL—1 n U T27L n (b Pl U T2(71L?7L—1 U T2(71L)—2,7L—1)
)\2 )2n—eg(>\)’

FO) =M = (4222 + 2]\ — (n+2)A% + 1] — A%,

g(N) = (V2 = L[ = (n+ 2N+ 2N — (n + DA? + 1]
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=N\ = (n +2)A2 + 3]\ — A2+ 1].

Since
f(O) = 2 > 07 f(ﬂn+2,8) - _/83,4»2,8 < 07
1 2p—1)2+1
fyfnt14 Hy =R
n n
f(5n+2,12) = _52+2,12 +2< 07
f(Vn+3)=n>+8n+17 >0,
we have
1 (1)
n + 1 + ﬁ < >\2(W4n+1) < 6n+2,12~ (2)
Since
9(0) =2>0, g(Bna) = _/32,4[1 - /32,4}2[1 - 2/32,4} <0,
9(Bas) = Brs {201 = BLsl1 = Brel +1 =284} > 0,
g(1)=-(n—-2*<0, g(v/n+1)=2(n*—-2n-2)>0,
16n7(2n? — 11n + 23) + 8n*(42n* + 49n + 12) + 4n*(1ln — 1) — 1
9(T) = = 5 <0,
64n
g(v/n+2) =n(2n* — 13) + 4(n* — 6) > 0,
we have

V1< M(Witht) < 7. (3)

By Equation (2) and (3), we have

1
Snsz1a > Na(Witky) >4/n+1+ — > > A (W), (4)

Combining Claims 1 and 2, the proof follows. O
Remark 2.1 (i) There are only two trees, P5 and T5(,12)a with order 4n + 1 and edge
independence number 2n for n = 1, and Ay(P5) > )\2(T5(,12)).

(i) By (4), we have Ay(Wirh)) > Y > Gny112 > )\Q(Wi(li_l)ﬂ). This indicates that
)\2(W4(T1LL_1) is strictly increasing in n(n > 2).
Lemma 2.4 Let T be a tree such that o(T) < 2n — 1, M be a mazimum matching
of T and there are at most two vertices of T not saturated by M. If n > 2, then

M(T) < Grars = \/;(n +1+/m+172—38).
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Proof Clearly i(T) < n— 1. Since there are at most two vertices of T' not saturated
by M, we have i(T") > W So we obtain

o(T) -2 1

o(T) = i(T) +1 < o(T) = Z5—=+1 = 50(T) +2

2n -1 1
2= 1+ 2.
5 + n+ +2

This implies that ¢ = o(T) — ¢(T) + 1 < n+ 1. So by Lemma 1.2, we have
1 :
M(T) < \/5(0 +1/2 —de+ 44(T))

< \/%(” +1+ \/(n +1)? —4(n+1) +4(n — 1)) = dp415.

<

This completes the proof. O

Win Wiy

Fig. 3.

Theorem 2.5 Let T be a tree such that o(T) =4n -1, {(T) =2n—1 and n > 2.
Then

AolT) g\/;(n+1+ (n+17-8), (5)

and the equality holds if T is one of the trees shown in Fig. 3.

Proof Take k = 2 in Lemma 1.4. Then there exists one vertex v € V(T') such
that each component of T'— v, say T;(: = 1,2,---,1), is of order at most 2n — 1. By
Lemma 1.5, we have

M(T) < M(T = v) = max{\ (T1), M (T2), -+, M (Th) }- (6)

Let M be a maximum matching of 7' — v, then T — v has at most two vertices not
saturated by M. So each T;(¢ = 1,2,---,1) has at most two vertices not saturated
by M. Hence from Lemma 2.4 and (6), (5) follows.

On the other hand, by Lemma 1.2, we easily find
)\I(Wz;(ib)_1 —v) = )\2(sz(2—1 —v) = )\I(Tz(i)—1,n—1) = Ont1s-
By Lemma 1.5, we have

M(WE_y =) > MWL) > MW, —v).
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Hence we have

; 1 .
Mo(Wii1) = Onas = \/5<n+ L4+y/(n+1)2-8)(1<i<4).

This completes the proof. O

Remark 2.2 (i) P; is the unique tree on order 4n — 1 and edge independence 2n — 1
forn =1.

i1) We conjecture that W (i), 1= ].7 2, 37 4) are all trees such that the equality of
4n—1
(5) holds.
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