Uniform coverings of 2-paths with 6-cycles in the complete graph

MIDORI KOBAYASHI*

School of Administration and Informatics University of Shizuoka Shizuoka 422-8526 Japan

GISAKU NAKAMURA

Research Institute of Educational Development
Tokai University
Shibuyaku Tokyo 151-0063
Japan

Abstract

Let $n \geq 6$. There exists a uniform covering of 2-paths with 6-cycles in K_n if and only if $n \equiv 0, 1, 2 \pmod{4}$.

1 Introduction

Let K_n be the complete graph on n vertices. A path of length l, or an l-path, is the graph induced by the edges $\{v_i, v_{i+1}\}$ $(0 \le i \le l-1)$, where the vertices v_i $(0 \le i \le l)$ are all different. It is denoted by $[v_0, v_1, \ldots, v_l]$.

A uniform covering of the 2-paths in K_n with l-paths [l-cycles] is a set S of l-paths [l-cycles] having the property that each 2-path in K_n lies in exactly one l-path [l-cycle] in S. For a given integer $l \geq 3$, only the following cases of the problem of constructing a uniform covering of the 2-paths in K_n with l-paths or l-cycles have been solved:

- 1. with 3-cycles,
- 2. with 3-paths [1],
- 3. with 4-cycles [2],
- 4. with 4-paths [3],
- 5. with 5-paths [4, 5],
- 6. with 6-paths [6].

^{*} This research was supported in part by Grant-in-Aid for Scientific Research (C) Japan.

In this paper, we solve the problem in the case of 6-cycles, that is, we prove:

Theorem 1.1 Let $n \ge 6$. There exists a uniform covering of 2-paths with 6-cycles in K_n if and only if $n \equiv 0, 1, 2 \pmod{4}$.

There are no known cases where the necessary conditions on n are not sufficient for the existence of a uniform covering of 2-paths in K_n .

2 The case n is small

In this section, we construct a uniform covering of 2-paths with 6-cycles in K_n when n is small.

Proposition 2.1 There exists uniform coverings of 2-paths with 6-cycles in K_n when n = 6, 8, 9, 10, 12, 13.

Proof. Let $V_n = \{\infty, 0, 1, 2, \dots, n-2\}$ be the vertex set of K_n . We define the vertex permutations α_n , β_n , γ_n in K_n : $\alpha_n = (\infty)(0\ 1\ 2\ \cdots\ n-2)$, $\beta_n = (\infty\ 0\ 1\ 2\ \cdots\ n-2)$, $\gamma_n = (\infty)(0)(1\ 2\ \cdots\ n-2)$.

 $(1) \ n = 6$

Put $C_1 = (\infty, 0, 2, 3, 4, 1)$ and $C_2 = (\infty, 0, 4, 1, 3, 2)$. Then $\{\alpha_n^j C_i | 1 \le i \le 2, 0 \le j \le 4\}$ is a uniform covering of 2-paths with 6-cycles in K_6 .

 $(2) \ n = 8$

Put $C_1 = (\infty, 0, 6, 1, 5, 2)$, $C_2 = (\infty, 0, 5, 2, 4, 3)$, $C_3 = (\infty, 0, 4, 3, 1, 6)$ and $C_4 = (1, 6, 5, 2, 3, 4)$. Then $\{\alpha_n^j C_i | 1 \le i \le 4, 0 \le j \le 6\}$ is a uniform covering of 2-paths with 6-cycles in K_8 .

(3) n = 9

Put $C_1 = (2, 0, 3, 6, \infty, 7), C_2 = (2, 0, 7, \infty, 3, 6), C_3 = (2, 0, 5, 4, 6, 3), C_4 = (1, 0, \infty, 6, 5, 3), C_5 = (2, 7, 6, 3, 4, 5)$ and $C_6 = (1, 2, 7, 4, 6, \infty)$. Then $\{\gamma_n^j C_i | 1 \le i \le 6, 0 \le j \le 6\}$ is a uniform covering of 2-paths with 6-cycles in K_9 .

(4) n = 10

Put $C_1 = (0,7,2,4,3,5), C_2 = (\infty,1,4,3,6,8), C_3 = (0,1,5,2,6,7), C_4 = (\infty,4,3,8,2,5), C_5 = (\infty,0,6,4,2,8)$ and $C_6 = (\infty,2,0,4,8,6)$. Then $\{\beta_n^j C_i | 1 \le i \le 6, 0 \le j \le 9\}$ is a uniform covering of 2-paths with 6-cycles in K_{10} .

(5) n = 12

Put $C_1=(0,4,3,10,9,2), C_2=(5,6,1,7,8,\infty), C_3=(0,8,6,9,7,4), C_4=(10,1,2,3,5,\infty), C_5=(0,1,9,8,5,6), C_6=(4,7,3,10,2,\infty), C_7=(0,5,1,7,3,8), C_8=(9,2,4,6,10,\infty), C_9=(0,9,4,6,1,10)$ and $C_{10}=(3,8,5,2,7,\infty).$ Then $\{\alpha_n^jC_i|1\leq i\leq 10,0\leq j\leq 10\}$ is a uniform covering of 2-paths with 6-cycles in K_{12} .

(6) n = 13

Put $C_1 = (2, 11, 6, 7, 4, 9), C_2 = (2, 11, 10, 3, 7, 6), C_3 = (1, 9, 11, 2, 5, 8), C_4 = (2, 11, 7, 6, 5, 8), C_5 = (1, 11, 2, 10, 3, 6), C_6 = (2, \infty, 10, 3, 8, 7), C_7 = (1, \infty, 7, 9, 10, 8), C_8 = (2, 4, 9, 0, \infty, 10), C_9 = (1, 2, 5, 0, 4, 9), C_{10} = (3, 10, 0, 8, 4, 9), C_{11} = (1, 11, 0, 3, 5, \infty), C_{12} = (10, \infty, 9, 4, 6, 0) \text{ and } C_{13} = (1, \infty, 3, 4, 0, 9). \text{ Then } \{\gamma_n^j C_i | 1 \le i \le 13, 0 \le j \le 10\} \text{ is a uniform covering of 2-paths with 6-cycles in } K_{13}. \square$

3 Main proposition

Proposition 3.1 Let $m \geq 6$ and n = m + 8. If there exists a uniform covering of 2-paths with 6-cycles in K_m , then there exists a uniform covering of 2-paths with 6-cycles in K_n .

Proof. Let V_m , V_8 and V_n be the vertex sets of K_m , K_8 and K_n , respectively. Put $V_8 = \{a, b, c, d, e, f, g, h\}$ and $V_n = V_m \cup V_8$.

There exist uniform coverings of 2-paths with 6-cycles in K_m and K_8 . Let \mathcal{U}_1 and \mathcal{U}_2 be the coverings in K_m and K_8 , respectively. Then the 2-paths in K_m and the 2-paths in K_8 are covered with $\mathcal{U}_1 \cup \mathcal{U}_2$. The set of 2-paths in K_n which are not covered with $\mathcal{U}_1 \cup \mathcal{U}_2$ is $\Pi_1 \cup \Pi_2 \cup \Pi_3 \cup \Pi_4$, where,

$$\begin{split} &\Pi_{1} = \{[u, x, v] \mid u, v \in V_{8}, u \neq v, x \in V_{m}\}, \\ &\Pi_{2} = \{[u, v, x] \mid u, v \in V_{8}, u \neq v, x \in V_{m}\}, \\ &\Pi_{3} = \{[x, u, y] \mid u \in V_{8}, x, y \in V_{m}, x \neq y\}, \\ &\Pi_{4} = \{[u, x, y] \mid u \in V_{8}, x, y \in V_{m}, x \neq y\}. \end{split}$$

If \mathcal{C} is a set of cycles in K_n and Γ is a set of vertex permutations in K_n , we define $\Gamma \mathcal{C} = \{ \gamma C | \gamma \in \Gamma, C \in \mathcal{C} \}$. A path Q is contained in a cycle C if Q is a subgraph of C. More generally, a path Q is contained in a set of cycles \mathcal{C} if Q is contained in one of the cycles of \mathcal{C} . Define $\pi(\mathcal{C}) = \{ [x, y, z] \mid [x, y, z] \text{ is contained in } \mathcal{C} \}$.

(I) Construction of a set of 6-cycles C in K_n such that $\pi(C) = \Pi_1 \cup \Pi_2$.

Let $V_m = \{0, 1, 2, ..., m-1\}$, where addition in V_m is modulo m. We denote by ρ the vertex permutation $(a)(b\ c\ d\ e\ f\ g\ h)$ of K_8 . We can extend ρ to a vertex permutation of K_n by defining $\rho(x) = x$ for $x \in V_m$. Put $P = \{\rho^j | 0 \le j \le 6\}$. For $0 \le i \le m-1$, define

$$R_1(i) = (b, i, d, h, i + 1, g),$$

 $R_2(i) = (a, b, i, f, e, i + 1),$

so that $R_1(i)$ and $R_2(i)$ are 6-cycles in K_n . Put $\mathcal{R} = P\{R_1(i), R_2(i) | 0 \le i \le m-1\}$.

Claim 3.1 $\pi(\mathcal{R}) = \Pi_1 \cup \Pi_2$.

Proof. It is trivial that $\pi(\mathcal{R}) \subseteq \Pi_1 \cup \Pi_2$, so we will show that $\pi(\mathcal{R}) \supseteq \Pi_1 \cup \Pi_2$.

First we show that $\pi(\mathcal{R}) \supseteq \Pi_1$. Let $Q = [u, x, v] \ (u, v \in V_8, u \neq v, x \in V_m)$ be any element in Π_1 .

When u=a or v=a, we can consider Q=[a,x,v] without loss of generality. We have $\rho^jQ=[a,x,e]$ for some j $(0 \le j \le 6)$. Then ρ^jQ is contained in $R_2(x-1)$. Hence ρ^jQ is contained in $\{R_2(i)|0 \le i \le m-1\}$. Therefore Q is contained in $P\{R_2(i)|0 \le i \le m-1\}$, so Q is contained in \mathcal{R} .

When $u, v \neq a$, we have $\rho^j(\{u, v\}) = \{g, h\}, \{b, d\}$ or $\{b, f\}$ for some j $(0 \leq j \leq 6)$. If $\rho^j(\{u, v\}) = \{g, h\}, \rho^j Q$ is contained in $R_1(x - 1)$. If $\rho^j(\{u, v\}) = \{b, d\}, \rho^j Q$ is contained in $R_1(x)$. If $\rho^j(\{u, v\}) = \{b, f\}, \rho^j Q$ is contained in $R_2(x)$. In all cases, Q is contained in R.

Next we show that $\pi(\mathcal{R}) \supseteq \Pi_2$. Let $Q = [u, v, x] \ (u, v \in V_8, u \neq v, x \in V_m)$ be any element in Π_2 .

When u=a, we have $\rho^jQ=[a,b,x]$ for some j $(0 \le j \le 6)$. Then ρ^jQ is contained in $R_2(x)$. So Q is contained in \mathcal{R} .

When v=a, we have $\rho^jQ=[b,a,x]$ for some j $(0 \le j \le 6)$. Then ρ^jQ is contained in $R_2(x-1)$. So Q is contained in \mathcal{R} .

When $u, v \neq a$, we have $\rho^j(u, v) = (e, f), (f, e), (b, g), (g, b), (d, h)$ or (h, d) for some j ($0 \leq j \leq 6$), where (,) is an ordered pair. If $\rho^j(u, v) = (e, f), \rho^j Q$ is contained in $R_2(x)$. If $\rho^j(u, v) = (f, e), \rho^j Q$ is contained in $R_2(x - 1)$. If $\rho^j(u, v) = (b, g), \rho^j Q$ is contained in $R_1(x - 1)$. If $\rho^j(u, v) = (g, b), \rho^j Q$ is contained in $R_1(x)$. If $\rho^j(u, v) = (d, h), \rho^j Q$ is contained in $R_1(x - 1)$. If $\rho^j(u, v) = (h, d), \rho^j Q$ is contained in $R_1(x)$. In all cases, Q is contained in R. This completes the proof. \square

(II) Construction of a set of 6-cycles \mathcal{C} in K_n such that $\pi(\mathcal{C}) = \Pi_3 \cup \Pi_4$.

Let λ be the vertex permutation $(a\ b\ c\ d)(e\ f\ g\ h)$ in K_8 . We can extend λ to a vertex permutation of K_n by defining $\lambda(x) = x$ for $x \in V_m$. Put $\Lambda = \{\lambda^j | 0 \le j \le 3\}$. (1) The case m is odd.

Assume m is odd and put r=(m-1)/2. Let $V_m=\{0,1,2,\ldots,m-1\}$, where addition in V_m is modulo m. Let τ be the vertex permutation $(0\ 1\ 2\ \cdots\ m-1)$ in K_m . We can extend τ to a vertex permutation of K_n by defining $\tau(u)=u$ for $u\in V_8$. Put $\Gamma=\{\tau^j|0\leq j\leq m-1\}$.

Define 6-cycles S_i $(1 \le i \le r)$ as follows:

$$\begin{split} S_i &= \begin{cases} (0,a,-(i+1),-1,e,i+1) & (i:\text{ odd, } 1 \leq i \leq r-2) \\ (0,e,-(i+2),-1,a,i) & (i:\text{ even, } 2 \leq i \leq r-2), \end{cases} \\ S_{r-1} &= \begin{cases} (0,e,-1,-r,a,1) & (m \equiv 1 \pmod{4}) \\ (0,e,-1,r,a,r-1) & (m \equiv 3 \pmod{4}), \end{cases} \\ S_r &= \begin{cases} (0,a,1,-(r-1),e,r) & (m \equiv 1 \pmod{4}) \\ (0,a,r,r-1,e,-r) & (m \equiv 3 \pmod{4}). \end{cases} \end{split}$$

Put $S = \Lambda \Gamma \{S_i | 1 \le i \le r\}$.

Claim 3.2 When m is odd, we have $\pi(S) = \Pi_3 \cup \Pi_4$.

Proof. It is trivial that $\pi(S) \subseteq \Pi_3 \cup \Pi_4$, so we will show that $\pi(S) \supseteq \Pi_3 \cup \Pi_4$.

Assume $m \equiv 1 \pmod 4$. We show that $\pi(\mathcal{S}) \supseteq \Pi_3$. The 2-path [x, a, y] with y - x = k $(2 \le k \le r)$ is contained in $\Gamma\{S_i | 1 \le i \le r - 1\}$. The 2-path [x, a, y] with y - x = 1 is contained in ΓS_r . The 2-path [x, e, y] with y - x = k $(3 \le k \le r)$ is contained in $\Gamma\{S_i | 1 \le i \le r - 2\}$. The 2-path [x, e, y] with y - x = 1 is contained in ΓS_{r-1} . The 2-path [x, e, y] with y - x = 2 is contained in ΓS_r . Hence we have $\pi(\mathcal{S}) \supseteq \Pi_3$.

We now show that $\pi(S) \supseteq \Pi_4$. The 2-path [a, x, y] with $y-x = \pm k$ $(1 \le k \le r-1)$ is contained in $\Gamma\{S_i | 1 \le i \le r-1\}$. The 2-path [a, x, y] with $y-x = \pm r$ is contained in ΓS_r . The 2-path [e, x, y] with $y-x = \pm k$ $(1 \le k \le r-1)$ is contained in $\Gamma\{S_i | 1 \le i \le r-1\}$. The 2-path [e, x, y] with $y-x = \pm r$ is contained in ΓS_r . Hence we have $\pi(S) \supseteq \Pi_4$. Therefore we have $\pi(S) \supseteq \Pi_4$.

When $m \equiv 3 \pmod{4}$, we have $\pi(\mathcal{S}) \supseteq \Pi_3 \cup \Pi_4$ in the same way. \square

(2) The case m is even.

Assume m is even and put r = (m-2)/2. Let $V_m = \{\infty\} \cup \{0, 1, 2, \dots, m-2\}$, where addition in $V_m \setminus \{\infty\}$ is modulo m-1. Let σ be the vertex permutation $(\infty)(0\ 1\ 2\ \cdots\ m-2)$ in K_m . We can extend σ to a vertex permutation of K_n by defining $\sigma(u) = u$ for $u \in V_8$. Put $\Sigma = \{\sigma^j | 0 \le j \le m-2\}$.

Define 6-cycles T_i $(1 \le i \le r+1)$ as follows:

$$\begin{split} T_i &= \begin{cases} (0,a,-(i+1),-1,e,i+1) & (i: \text{ odd, } 1 \leq i \leq r-2) \\ (0,e,-(i+2),-1,a,i) & (i: \text{ even, } 2 \leq i \leq r-2), \end{cases} \\ T_{r-1} &= \begin{cases} (0,e,-1,r,a,r-1) & (m \equiv 0 \pmod{4}) \\ (0,e,-1,-r,a,r) & (m \equiv 2 \pmod{4}), \end{cases} \\ T_r &= \begin{cases} (0,a,r,\infty,e,-r) & (m \equiv 0 \pmod{4}) \\ (0,a,-r,\infty,e,r) & (m \equiv 2 \pmod{4}), \end{cases} \\ T_{r+1} &= (0,e,2,\infty,a,1). \end{split}$$

When m = 6, we have r = 2 and then we have only T_{r-1}, T_r and T_{r+1} . Put $\mathcal{T} = \Lambda \Sigma \{T_i | 1 \le i \le r+1\}$.

Claim 3.3 When m is even, we have $\pi(\mathcal{T}) = \Pi_3 \cup \Pi_4$.

Proof. It is trivial that $\pi(\mathcal{T}) \subseteq \Pi_3 \cup \Pi_4$, so we will show that $\pi(\mathcal{T}) \supseteq \Pi_3 \cup \Pi_4$.

Assume $m \equiv 0 \pmod 4$. We show that $\pi(\mathcal{T}) \supseteq \Pi_3$. The 2-path [x,a,y] with y-x=k $(2 \le k \le r-1)$ is contained in $\Sigma\{T_i|1 \le i \le r-2\}$. The 2-path [x,a,y] with y-x=1 is contained in ΣT_{r-1} . The 2-path [x,a,y] with y-x=r is contained in ΣT_r . The 2-path $[\infty,a,x]$ is contained in ΣT_{r+1} . The 2-path [x,e,y] with y-x=k $(3 \le k \le r)$ is contained in $\Sigma\{T_i|1 \le i \le r-2\}$. The 2-path [x,e,y] with y-x=1 is contained in ΣT_{r-1} . The 2-path $[\infty,e,x]$ is contained in ΣT_r . The 2-path [x,e,y] with [x,e,y] with [x,e,y] with [x,e,y] with [x,e,y] with [x,e,y] hence we have [x,e,y] and [x,e,y]

We now show that $\pi(\mathcal{T})\supseteq \Pi_4$. The 2-path [a,x,y] with $y-x=\pm k$ $(1\leq k\leq r-1)$ is contained in $\Sigma\{T_i|1\leq i\leq r-1,i=r+1\}$. The 2-path [a,x,y] with $y-x=\pm r$ is contained in $\Sigma\{T_i|r-1\leq i\leq r\}$. The 2-paths $[a,x,\infty]$ and $[a,\infty,x]$ are contained in $\Sigma\{T_i|r\leq i\leq r+1\}$. The 2-path [e,x,y] with $y-x=\pm k$ $(1\leq k\leq r-1)$ is contained in $\Sigma\{T_i|1\leq i\leq r-1,i=r+1\}$. The 2-path [e,x,y] with $y-x=\pm r$ is contained in $\Sigma\{T_i|r-1\leq i\leq r\}$. The 2-paths $[e,x,\infty]$ and $[e,\infty,x]$ are contained in $\Sigma\{T_i|r-1\leq i\leq r\}$. Hence we have $\pi(\mathcal{T})\supseteq \Pi_4$. Therefore we have $\pi(\mathcal{T})\supseteq \Pi_3\cup \Pi_4$.

When $m \equiv 2 \pmod{4}$, we have $\pi(\mathcal{T}) \supseteq \Pi_3 \cup \Pi_4$ in the same way.

Thus we complete the proof of Claim 3.3. \Box

When m is odd, put $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{R} \cup \mathcal{S}$, and when m is even, put $\mathcal{U} = \mathcal{U}_1 \cup \mathcal{U}_2 \cup \mathcal{R} \cup \mathcal{T}$. Then we have the claim.

Claim 3.4 \mathcal{U} is a uniform covering of 2-paths with 6-cycles in K_n .

Proof. \mathcal{U} is a set of 6-cycles in K_n . By Claims 3.1, 3.2 and 3.3, each 2-path in K_n is contained in \mathcal{U} . By counting the number of 6-cycles in \mathcal{U} , we find that each 2-path in K_n appears exactly once in \mathcal{U} . Therefore the claim holds. \square

We have completed the proof of Prop. 3.1. \square

4 A proof of Theorem 1.1

We prove Theorem 1.1. Let $n \geq 6$. Assume that there is a uniform covering \mathcal{C} of 2-paths with 6-cycles in K_n . Since there are n(n-1)(n-2)/2 2-paths in K_n and 6 2-paths in a 6-cycle, n(n-1)(n-2) is divisible by 12. Therefore we have $n \equiv 0, 1, 2 \pmod{4}$.

To show the converse, we denote by A_n the following statement for an integer $n(\geq 6)$, A_n : There exists a uniform covering of 2-paths with 6-cycles in K_n . Put $N=\{n|n\equiv 0,1,2\pmod 4,n\geq 6\}$. By Prop. 2.1, for $n\in\{6,8,9,10,12,13\}$, A_n holds. By Prop. 3.1, for $n\in\{m+8|m=6,8,9,10,12,13\}$, A_n holds. Put $M=\{m+8i|m=6,8,9,10,12,13,\ i\geq 1\}$. By applying Prop. 3.1 repeatedly, A_n holds for all $n\in M$. Since M=N, A_n holds for all $n\equiv 0,1,2\pmod 4$, $n\geq 6$.

This completes the proof of Theorem 1.1.

References

- K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000), 100–121.
- [2] K. Heinrich and G.Nonay, Exact coverings of 2-paths by 4-cycles, J. Combin. Theory Ser. A 45 (1987), 50-61.
- [3] M. Kobayashi and G. Nakamura, Uniform coverings of 2-paths by 4-paths, Australas. J. Combin. 24 (2001), 301–304.
- [4] M. Kobayashi, G. Nakamura and C. Nara, Uniform coverings of 2-paths with 5-paths in K_{2n} , Australas. J. Combin. **27** (2003), 247–252.
- [5] M. Kobayashi, G. Nakamura and C. Nara, Uniform coverings of 2-paths with 5-paths in the complete graph, Discrete Mathematics 299 (2005), 154–161.
- [6] J. Akiyama, M. Kobayashi and G. Nakamura, Uniform coverings of 2-paths with 6-paths in the complete graph, J. Akiyama et al. (Eds.) IJCCGGT 2003, Lecture Notes in Computer Science, Springer-Verlag, 3330 (2005), 25–33.

(Received 24 Aug 2004)