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Abstract

Let n > 6. There exists a uniform covering of 2-paths with 6-cycles in
K, if and only if n = 0,1,2 (mod 4).

1 Introduction

Let K, be the complete graph on n vertices. A path of length I, or an [-path, is the
graph induced by the edges {v;,v;11} (0 < i < 1—1), where the vertices v; (0 <7 <)
are all different. It is denoted by [vo, v1, .. ., v].

A uniform covering of the 2-paths in K, with [-paths [l-cycles] is a set S of I-
paths [[-cycles] having the property that each 2-path in K, lies in exactly one [-path
[l-cycle] in S. For a given integer [ > 3, only the following cases of the problem of
constructing a uniform covering of the 2-paths in K, with [-paths or [-cycles have
been solved:

1. with 3-cycles,

. with 3-paths [1],
. with 4-cycles [2],
. with 4-paths [3],
. with 5-paths [4, 5],
6. with 6-paths [6].

U= W N
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In this paper, we solve the problem in the case of 6-cycles, that is, we prove:

Theorem 1.1 Let n > 6. There exists a uniform covering of 2-paths with 6-cycles
in K, if and only if n=0,1,2 (mod 4).

There are no known cases where the necessary conditions on n are not sufficient
for the existence of a uniform covering of 2-paths in K.

2 The case n is small

In this section, we construct a uniform covering of 2-paths with 6-cycles in K, when
n is small.

Proposition 2.1 There exists uniform coverings of 2-paths with 6-cycles in K, when
n=26,8,9,10,12,13.

Proof. Let V,, = {0,0,1,2,...,n—2} be the vertex set of K. We define the vertex
permutations au,, Bn, Y in Kp: = (00)(012 -+ n=2), 5, =(00012 --- n—2),
Yo = (0)(0)(1 2 -+ n—2).

(I)n=6
Put C; = (00,0,2,3,4,1) and Cy = (00,0,4,1,3,2). Then {adCy]1 <i<2,0<j <
4} is a uniform covering of 2-paths with 6-cycles in Kg.

2)n=28
Put ¢y = (00,0,6,1,5,2), Cy = (0,0,5,2,4,3), C3 = (0,0,4,3,1,6) and Cy =
(1,6,5,2,3,4). Then {aiCy|1 <4 < 4,0 < j < 6} is a uniform covering of 2-paths
with 6-cycles in K.

B)n=9
Put C; = (2,0,3,6,00,7),Cy = (2,0,7,00,3,6),C5 = (2,0,5,4,6,3),Cs = (1,0,
,6,5,3),C5 = (2,7,6,3,4,5) and Cs = (1,2,7,4,6,00). Then {7JC;|1 <i < 6,0 <
j <6} is a uniform covering of 2-paths with 6-cycles in Ky.

(4) n =10
Put ¢, = (0,7,2,4,3,5),Cy = (0,1,4,3,6,8),C3 = (0,1,5,2,6,7), Cy = (00,4,
3,8,2,5), Cs = (00,0,6,4,2,8) and C5 = (0,2,0,4,8,6). Then {BICi|1 < i
6,0 < j <9} is a uniform covering of 2-paths with 6-cycles in K.

(5)n =12
Put ¢y =(0,4,3,10,9,2), Cy = (5,6,1,7,8,00), C3 = (0,8,6,9,7,4), Cy = (10, 1,
3,5,00), Cs = (0,1,9,8,5,6), Cs = (4,7,3,10,2,00), C7 = (0,5,1,7,3,8), Cs
(9,2,4,6,10,00), Cy = (0,9,4,6,1,10) and Cyy = (3,8,5,2,7,00). Then {adC;|1
i <10,0 < j <10} is a uniform covering of 2-paths with 6-cycles in K.

(6) n =13
Put ¢, = (2,11,6,7,4,9), Cy = (2,11,10,3,7,6), C3 = (1,9,11,2,5,8), Cy =
(2,11,7,6,5,8), Cs = (1,11,2,10,3,6), Cs = (2,00,10,3,8,7), Cr = (1,00,7,9, 10,
8), Cs = (2,4,9,0,00,10), Cy = (1,2,5,0,4,9), C1o = (3,10,0,8,4,9), Cy; = (1,11,
0,3,5,00), C1a = (10,00,9,4,6,0) and Cy3 = (1,00,3,4,0,9). Then {1IC;] 1 <i <
13,0 < j < 10} is a uniform covering of 2-paths with 6-cycles in K;3. O
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3 Main proposition

Proposition 3.1 Let m > 6 and n = m + 8. If there exists a uniform covering
of 2-paths with 6-cycles in K,,, then there exists a uniform covering of 2-paths with
6-cycles in K.

Proof. Let V,,, Vs and V,, be the vertex sets of K,,, Kg and K,, respectively. Put
Ve ={a,b,c,d,e, f,g9,h} and V,, = V;, U V4.

There exist uniform coverings of 2-paths with 6-cycles in K,, and Kg. Let U,
and U be the coverings in K, and Kg, respectively. Then the 2-paths in K, and
the 2-paths in Ky are covered with U; UU,. The set of 2-paths in K, which are not
covered with Uy U U, is TI; U TI, U II3 U 1y, where,

I, = {[u,x,v] | u,v € Vg,u# v,z € Vp},
IL, = {[u,v,2] | u,v € Vg,u# v,z € Vp},
I3 = {[z,u,y] | u € Vo, 2,y € Vi, x # y},
Iy = {[u,2,y] | u€ Vs, 2,y € Vi, x #y}.

If C is a set of cycles in K, and I is a set of vertex permutations in K, we define
I'C = {yC|y € T,C € C}. A path @ is contained in a cycle C' if @ is a subgraph of
C. More generally, a path @ is contained in a set of cycles C if @ is contained in one
of the cycles of C. Define 7(C) = {[z,¥, 2] | [z,¥, #] is contained in C}.

(I) Construction of a set of 6-cycles C in K, such that «(C) =II; U II,.

Let V;, = {0,1,2,...,m — 1}, where addition in V}, is modulo m. We denote
by p the vertex permutation (a)(bcde f g h) of Ks. We can extend p to a vertex
permutation of K, by defining p(x) = x for x € V;,. Put P = {p’|0 < j < 6}. For
0<i<m-—1, define

Ry(i) = (b,i,d,h,i+1,9),

Ry(i) = (a,b,4, f,e,i+ 1),
so that Ry(¢) and Ry (i) are 6-cycles in K,,. Put R = P{R(¢), Ry(2)|0 <i < m —1}.
Claim 3.1 n(R) =II; UTL,.

Proof. Tt is trivial that #(R) C II; UII,, so we will show that 7(R) 2 IT; U II,.

First we show that 7(R) 2 II;. Let @ = [u,z,v] (u,v € Vs,u # v,z € Vp,,) be
any element in II;.

When v = a or v = a, we can consider Q = [a, z,v] without loss of generality.
We have p’Q = [a, z,e] for some j (0 < j < 6). Then p/Q is contained in Ry(x — 1).
Hence p/Q is contained in {Ry(i)[0 < i < m — 1}. Therefore Q is contained in
P{Ry(i)]0 <1 <m — 1}, so Q is contained in R.

When u,v # a, we have p? ({u,v}) = {g, h}, {b,d} or {b, f} for some j (0 < j < 6).
If p/({u,v}) = {g,h}, p’Q is contained in R(z — 1). If p/({u,v}) = {b,d}, p’Q is
contained in Ry(z). If p/({u,v}) = {b, f}, p’Q is contained in Ry(z). In all cases, Q
is contained in R.

Next we show that 7(R) D IlI,. Let Q = [u,v,z] (u,v € Vs,u # v,z € V) be
any element in II,.
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When u = a, we have p/Q = [a,b,z] for some j (0 < j < 6). Then pQ is
contained in Ry(x). So @ is contained in R.

When v = a, we have p/Q = [b,a,z] for some j (0 < § < 6). Then p/Q is
contained in Ry(z — 1). So @ is contained in R.

When u,v # a, we have p/(u,v) = (e, f),(f,€),(b,9),(g,b),(d,h) or (h,d) for
some j (0 < j < 6), where (, )is an ordered pair. If p/ (u,v) = (e, f), p?Q is contained
in Ry(z). If pP(u,v) = (f,e), p’Q is contained in Ry(z — 1). If pi(u,v) = (b,g),
PQ is contained in Ry(z — 1). If p/(u,v) = (g,b), p'Q is contained in R,(x). If
P’ (u,v) = (d, h), p’Q is contained in Ry(z —1). If p/(u,v) = (h,d), p’Q is contained
in Ry(z). In all cases, @ is contained in R. This completes the proof. O
(IT) Construction of a set of 6-cycles C in K, such that 7(C) = I3 U Il4.

Let A be the vertex permutation (a b ¢ d)(e f g h) in Kg. We can extend A to a
vertex permutation of K, by defining A(z) = z for x € Vj,,. Put A = {M|0 < j < 3}.
(1) The case m is odd.

Assume m is odd and put r = (m —1)/2. Let V;, = {0,1,2,...,m — 1}, where
addition in V;, is modulo m. Let 7 be the vertex permutation (0 1 2 --- m—1) in
K. We can extend 7 to a vertex permutation of K, by defining 7(u) = u for u € Vj.
Put I'= {770 < j <m — 1}.

Define 6-cycles S; (1 < i < r) as follows:

S({(O,a,—(i—i—l),—l,e,i—i—l) (i: odd, 1 <i <7 —2)
CT10,e,—(i +2),—1,a,1) (i: even, 2 <i <71 —2),
S = {(0,67 -1,-r,a,1) (m =1 (mod 4))
1706, -1, 70,7 — 1) (m =3 (mod 4)),
g _ {(O,a, 1,—(r—1),e,r7) (m =1 (mod 4))
" 0,a,r,r = 1,e,—7) (m = 3 (mod 4)).

Put S =AT{S;]1 <i<r}.
Claim 3.2 When m is odd, we have n(S) = II3 U Il,.

Proof. Tt is trivial that n(S) C II; U Il4, so we will show that n(S) D IT3 U IL,.

Assume m = 1 (mod 4). We show that n(S) 2 II3. The 2-path [z,q,y] with
y—x =k (2<k<r)is contained in T'{S;|]1 < i < r —1}. The 2-path [z,a, y] with
y —« = 1 is contained in I'S,. The 2-path [z,e,y] with y —z =k (3 <k <r)is
contained in I'{S;|1 < i < r —2}. The 2-path [z,e,y] with y — z = 1 is contained
in I'S,_;. The 2-path [z,e,y] with y — x = 2 is contained in I'S,. Hence we have
7(S) 2 IIs.

We now show that 7(S) 2 II;. The 2-path [a, z,y] withy—2z = £k (1 <k <r-1)
is contained in I'{S;|1 < i < r—1}. The 2-path [a, z, y] with y —z = %7 is contained
in I'S,. The 2-path [e,z,y] with y — 2 = £k (1 < k < r — 1) is contained in
I'{S;|]1 <i<r—1}. The 2-path [e,z,y] with y — & = %r is contained in T'S,. Hence
we have 7(S) D II;. Therefore we have 7(S) D I3 UIl,.

When m = 3 (mod 4), we have 7(S) 2 II3 UTI, in the same way. O

(2) The case m is even.
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Assume m is even and put r = (m — 2)/2. Let V,, = {c0} U {0,1,2,...,m — 2},
where addition in V;, \ {oc} is modulo m — 1. Let o be the vertex permutation
(0)(012 --- m—2) in K,,. We can extend o to a vertex permutation of K, by
defining o(u) = u for u € V. Put £ = {07|0 < j <m — 2}.

Define 6-cycles T; (1 < i < r + 1) as follows:

T {(o,a, (i+1),~1le,i+1) (i:0dd, 1 <i<r—2)
! e

(0,e,—(i +2),-1,qa,i) (i: even, 2 < i <7 —2),
{ 0,e,— 1 rya,r—1)  (m =0 (mod 4))
Garomenss) (m=0mod )
0,a,r,00,e,—1 m =0 (mod 4

L= {(0 a,—r,00,e,7)  (m =2 (mod 4)),

T = (0,e,2,00,0a,1).

When m = 6, we have r = 2 and then we have only 7, ;,7, and T;4;. Put 7 =
AS{T1 <i<r+1}

Claim 3.3 When m is even, we have n(T) = II3 U Il,.

Proof. 1t is trivial that 7(7) C I3 UIl4, so we will show that 7(7) D II3 UIl4.

Assume m = 0 (mod 4). We show that 7(7) D II;. The 2-path [z,a,y] with
y—x="Fk(2<k<r—1)is contained in Z{T;|1 < i < r — 2}. The 2-path [z,q,y]
with y —2 = 1 is contained in ¥7,_;. The 2-path [z, a,y] with y —z = r is contained
in X7,. The 2-path [00, a, z] is contained in X7}.4;. The 2-path [z,e,y] withy—z =k
(3 < k <) is contained in X{T;|1 <i < r — 2}. The 2-path [z,e,y] withy —z =1
is contained in X7, ;. The 2-path [oco, e, 2] is contained in X7T,. The 2-path [z, e, y]
with y — x = 2 is contained in ¥7,;. Hence we have 7(7) D II;.

We now show that (7)) 2 Ils. The 2-path [a,z,y] withy—oz = £k (1 < k < r—1)
is contained in ¥{T;|1 <i <r—1,i =r+1}. The 2-path [a,z,y] with y —z = *r is
contained in L{T;|r — 1 <4 < r}. The 2-paths [a,x,00] and [a, 0o, 2] are contained
in ¥{T;|r < i < r+1}. The 2-path [e,z,y] withy —z =k (1 <k <r—-1)is
contained in X{7;|1 <i<r—1,i=r+1}. The 2-path [e,z,y] with y — 2 = £r is
contained in ¥{T;|r—1 < i < r}. The 2-paths [e, z,00] and [e, 00, 2] are contained in
Y{Tilr < i <r+1}. Hence we have m(7) D II;. Therefore we have 7(7) D I3 UIl,.

When m = 2 (mod 4), we have n(7) D II3 UIl4 in the same way.

Thus we complete the proof of Claim 3.3. O

When m is odd, put ¥ = Uy Ul UR U S, and when m is even, put U =
Uy UUs; URUT. Then we have the claim.

Claim 3.4 U is a uniform covering of 2-paths with 6-cycles in K,.

Proof. U is a set of 6-cycles in K,,. By Claims 3.1, 3.2 and 3.3, each 2-path in K, is
contained in ¢/. By counting the number of 6-cycles in i/, we find that each 2-path
in K, appears exactly once in . Therefore the claim holds. O

We have completed the proof of Prop. 3.1. O
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4 A proof of Theorem 1.1

We prove Theorem 1.1. Let n > 6. Assume that there is a uniform covering C of
2-paths with 6-cycles in K,,. Since there are n(n — 1)(n —2)/2 2-paths in K, and 6
2-paths in a 6-cycle, n(n — 1)(n — 2) is divisible by 12. Therefore we have n =0, 1,2
(mod 4).

To show the converse, we denote by A, the following statement for an integer
n(> 6), A,: There exists a uniform covering of 2-paths with 6-cycles in K,. Put
N = {n|n = 0,1,2 (mod 4),n > 6}. By Prop. 2.1, for n € {6,8,9,10,12, 13},
A, holds. By Prop. 3.1, for n € {m + 8m = 6,8,9,10,12,13}, A, holds. Put
M = {m+ 8i|lm = 6,8,9,10,12,13, i > 1}. By applying Prop. 3.1 repeatedly, A,
holds for all n € M. Since M = N, A,, holds for all n =0,1,2 (mod 4), n > 6.

This completes the proof of Theorem 1.1.
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