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Abstract

Suppose both sequences of a ternary complementary pair TC'P(mn,vw)
can be decomposed into uniform-length blocks that are linear combina-
tions of the two sequences of a TC' P(n,w). Such a decomposition may be
viewed as a factorization of the larger pair by the smaller one. A pattern
of such blocks that always returns a longer TC'P when a shorter one is
substituted into it is regarded as a “block product” of TCP’s.

It is shown that every block product is an instance of the known “stan-
dard” product of pairs (which multiplies TCP(m,v) and TCP(n,w),
yielding TCP(mn,vw)), validating our recent claim that this product
subsumes all known product constructions.

A new proper generalization of this standard product is introduced.
We display factorizations (relative to this new product) of sequences pre-
viously considered primitive. Further, we produce an equivalent product
that makes the set of integer pairs with zero autocorrelation into a semi-
group with unity. Under a simple additional condition this product also
preserves the set of ternary pairs.

1 Introduction and preliminaries

Let us begin by advising that [2] is recommended as prior reading. Initially we shall
use that article’s definitions and conventions and later modify them for our own
purposes. Even so, we begin by summarizing a few definitions, facts and conventions
that will be of use. The reader is directed to [3] for further background, motivation
and applications of this material.

Let S = (so, S1,--.,5n—1) be a sequence of integers, of length n. The Hall poly-

n—1

nomial of S is the polynomial, fs(z) := > 1" s;z*, of degree n — 1. The conjugate of
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a polynomial f(z)is f*(z) := f(z™'). A pair of sequences A;B is said to have zero
autocorrelation if

(fafi+ fofB)(2) = w (€ Z). (1)

That is, when this expression is expanded and like terms gathered (in integer powers
of &), all ’s cancel. The remaining number w is the weight of the pair. It is easy to
see that w is equal to the sum of the squares of the entries of the two sequences.

A ternary complementary pair is a pair, A;B, of (0,=£1)-sequences with zero
autocorrelation. The weight of a ternary pair is clearly equal to the total number of
nonzero entries in the two sequences.

The following elementary operations preserve the set of ternary complementary
pairs of weight w (though length is not preserved in all cases). Two pairs are equiv-
alent if one can be obtained from the other by a combination of these operations.

1. (Interchanging) Exchange the two sequences for each other.

2. (Shifting) Append any number of 0’s to either or both ends of either or both
sequences.

3. (Reversing) Reverse one or both sequences.
4. (Negating) Negate one or both sequences.
5. (Alternating) Negate every second entry of both sequences.

6. (Ezpanding) Insert a fixed number of 0’s between all pairs of consecutive entries
of both sequences.

7. (Interchanging, Reducing, Reversing, Negating, Alternating, Contracting) The
reverse of the above operations, respectively, when the reverse operation is
possible.

A pair A;B is reduced if neither A nor B begins or ends with a 0, or in the
exceptional case of a trivial pair—i.e., of the form (+£1), (0) or (0);(£1). Every pair
is equivalent, by shifting, to a reduced pair. Considering the terms of highest degree
in (1), it is evident that the two sequences of any reduced pair must have the same
length. Even for non-reduced pairs, there is no harm in treating both pairs as having
the same length as the longer pair. This way, every ternary complementary pair has
a uniquely specified length, n, and weight, w. We denote such a pair by TCP(n,w),
or say it is a TCP or, if the weight is important but the length unspecified, a
TCP(x,w).

Observe also that every TC'P(n,w) is equivalent to a TC'P(m, w) for any m > n.

The set of nonzero positions in a sequence is its support. A pair of sequences
is disjoint if the two sequences have disjoint support, and conjoint if they have the
same support.

Let us admit a general concept of a “product of TC' P’s” , which is any well-defined
construction that starts with one or more TC'P’s and yields from them a new TC' P
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whose weight is a multiple of the product of the weights of these “factors”. Usually
we expect the resulting pair to have larger weight and length than its factors, but
multiplying by trivial pairs (TC'P(1,1)’s) may leave these numbers unchanged. We
deliberately include constructions that start with a single TC'P(n,w) and produce
a TCP(N,  \w) for some N > n, a case we might describe as “multiplying the TC' P
by the number \”.

The following product of T'C' P’s is classical (® represents the Kronecker product).

Theorem 1 If A;B is a TCP(m,v) and C;D is a TCP(n,w), with one of the two
pairs disjoint, then

U = AC+ B® D;
V = AAQD-B*®C

is a TCP(mn,vw).

In [2] it was claimed that Theorem 1 encompasses, up to equivalence, all known
(at that time) products of TC'P’s. In particular, it was shown how a couple of the
computer-generated products of the “multiply a TC'P by A" variety in [4] can be
obtained by combining the product of Theorem 1 with equivalence operations.

A referee for [2] insisted that we should either withdraw this claim or provide
constructions for all the products listed in [4]. But it was clear to us that the
approach we had illustrated was sufficient for all the results in that paper, and there
was no point in repeating essentially the same argument many times over, which
would only labour the point, and would not fully establish our claim in any case,
for that particular paper had been singled out only as the most likely source of a
counterexample.

Here we shall lay this question to rest with a simple, but general, demonstration
that no product among a broad class of constructions will generate anything new. It
is a matter of record that all heretofore proposed products of ternary complementary
pairs, including all those in [4], fall into this class.

Not surprisingly, this result acts as a guide to discovery. We therefore also offer
a strict generalization of Theorem 1, in a couple of different forms. In the second
form, the product is associative.

2 Block products

Let us say that a pair of sequences X;Y", of length mn, can be (block-)factored by the
pair, C;D, of length n, if all of the 2m sequences obtained by parsing X and Y into
blocks (contiguous subsequences) of length n are linear combinations of C' and D. If
X,Y,C and D are all to be ternary sequences, the only admissible linear combinations
are clearly 0,%C,£D and +C £ D if C and D are disjoint, and $(+C £ D) if they
are conjoint. (Strictly speaking, if C'= D, other combinations are possible but never
necessary—they all give £C).

Conversely, suppose U;V is a pair of (formal) sequences of length m whose entries
are linear combinations of (symbols) C' and D, and the pair X;Y results from the
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substitution of the corresponding linear combination of (ternary sequences of length
n) C and D (and 0,, the sequence of n 0’s, for 0) into U;V (stipulating that C';D
must be disjoint if =C £ D appears and conjoint if $(£C £ D) appears). Expressing
U and V as linear combinations of sequences A;B with scalar coefficients “C” and
“D”, we say that X;Y is a block product of the pairs A;B and C;D.

We show that all block products that preserve TC P’s are instances of Theorem
1.

Note that Z[z,z™'] is a unique factorization domain whose units are the mono-
mials 2™, n € Z. Multiplication of polynomials by units corresponds to shifting
and negating sequences. Further, let us agree on the following conventions.

1. Sequences will be denoted by capital letters and their Hall polynomials by
the corresponding lower-case letters and, whenever possible, the variable will
be suppressed in our notation for polynomials. For example, A = (1,2,3);
a=a(z)=142z+32% a" =142z 4+ 3272

2. A (integer) complementary pair of sequences, denoted CP(n, w), is a pair, A;B,
of integer sequences of length n such that aa* + bb* = w(€ Z). We admit the
same equivalence operations for CP’s as for TCP’s.

3. It is convenient to abuse our terminology by blurring the distinction between
the sequence pair A;B and the corresponding pair of Hall polynomials a;b.
When appropriate, either might be described as a C'P(n,w) or TCP(n,w).
Let us ignore the fact that some of our Laurent polynomials have terms of
negative degree and so do not correspond to sequences—appropriate sequences
can be obtained by shifting (multiplying by a unit).

Theorem 2 Suppose a,b,e, f € Z[z,z] and X\ # 0 is a real number. If, for any
disjoint TC P(4,w), C;D,

ac + bd;ec+ fd (2)
is a CP(x, \w), then (e, f) = u(=b*,a*), where u is a unit and a;b is a CP(*,w).
Proof: Taking C';D = (1000);(0000), we obtain that a;e is a C'P(*, A). Similarly,
b;f is a CP(x,\). Taking C';D = (1000);(0100) we obtain that (a + zb);(e+zf) is a
CP(x,2)). Thus,
(a+zb)(a+zb)* + (e +xf)(e +xf)" =2X+ 27 ab* +ef*) +x(a*b+e*f) = 2.
Therefore,
ab* +ef* = —a?(ab* +ef*)". (3)
Taking C;D = (1010);(010—) gives that

(1+a)a(e) + (& = &*)b(@));((1 + 2*)e(x) + (¢ = *)f(2))
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is a CP(x,4)\), and we calculate

(L +a%)a+ (z = 2*))((1+2%)a + (z — 2®)b)’
+ (1 +2%)e+ (z —2°) ) (1 +a%)e + (z — 2®) f)'
=+ (z—2 ) (ab" +ef) +(z7" —2®)(a’b+ e f)F =4

It follows that
ab* +ef* = 2*(ab* + ef*)*. (4)
Adding (3) and (4) gives ab* + ef* = 0. Thus
ab* = —ef”. (5)

Now, since ase is a CP, ged(a,e) = 1 (a common factor of degree > 0 would
violate (1)). Similarly, ged(b, f) = 1, so ged(b*, f*) = 1. It follows that f*|a and
alf*, so a =wuf*, where u is a unit. Equivalently, f = ua*.

From (5), e = —ub*. So bb* = ee*; thus, a;bis a CP(x, A) and (e, f) = u(—b*,a*).

O

We can now demonstrate the claim from [2].

Theorem 3 Let U;V be a pair of formal sequences of length m, all of whose entries
are elements of the set (of expressions) {0,£C,+D,+C £ D}, and let A € Q.

1. If, whenever symbols C and D are replaced by the sequences of a disjoint
TCP(n,w) (and 0, for 0) U;V becomes a TCP(mn, \w), then U;V is equiva-
lent to a pair of the form (A® C + B ® D);(A* ® D — B* ® C), where A;B is
aTCP(m,\).

2. If entries of the form £C £+ D do not appear in U;V and, whenever C;D are
replaced by a TCP(n,w) (and 0, for 0), U;V becomes a TCP(mn, Aw), then
U;V is equivalent to a pair of the form (A® C+ B® D);(A*® D — B*® (),
where A;B is a TCP(m,\), with A and B disjoint.

Proof: In both cases, write

U=CA"+DB
V =CE' + DF'

(C, D are scalars and A', B', E', F' (0,%1)-vectors here). The sequences obtained by
substitution of an actual TCP(n,w) for C;D can be expressed in polynomial form
as

a(z®)e(x) + b(e")d(x), e(z")e(x) + f(2")d(z).

Observe that knowing a,b,e and f is equivalent to knowing the formal sequences
U;v.
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Thus, a(x?),b(z?), e(z*), f(z?) and X satisfy the conditions of Theorem 2; it fol-
lows that e = —ub* and f = wa*, for some unit u. Therefore, the corresponding
sequences are equivalent to (A ® C'+ B® D);(A*® D — B*® C), as claimed. That
A and B are disjoint in part 2 follows from the fact that symbols C' and D do not
both contribute to any one position in U and V. a

All previously known “products” of TC'P’s are equivalent to one of one of the
two forms covered in Theorem 3, which shows that all such “products” are therefore
equivalent to special cases of the product in Theorem 1.

I enumerate here a few anticipated objections and my answers to them.

Objection Theorem 1 does not look the same as the product in [2],

X = A®C+B®D;
Y = A D*— B®(C*.

Answer As a matter of convenience for our demonstration we have chosen
an equivalent product for this article. Obviously U = X, and V = =Y, an
equivalent pair.

Objection In [4], some of the products multiply the weight of a TC'P by a ra-
tional noninteger value of A, and involve sequences in which 0, =C, +D, :I:%(C:I:
D) may appear.

Answer Observe that in all such instances, sequences C' and D are required

to be conjoint. Thus, C1;D; = $(C' + D);3(C — D) is a TCP(n,%). Using

C} and D, as the fundamental symbols and observing that C; &+ D; = C or
D reveals that this is merely an instance of part 1 of Theorem 3, presented
differently.

Objection In [4], mixtures of C, D,C* and D* appear in some products and
so these cases do not satisfy our definition of a block product.

Answer Nevertheless, this variety is obtained by combinations of block prod-
ucts. In both of the instances of such a mixture given in [4], C* and D* appear
in the same set of positions in the two sequences. The first of these products is

(P+Q)(P-Q)" QP (P=Q)(—P=Q)")i((—P=Q)(P=Q)"(-=Q) P (Q—P)(-P-Q)")
which is obtained by multiplying (1;1) by pair
(0(P = @)'0P"0(—P = Q)" );((P + @)0QO(P — Q)0),
which in turn is obtained by shifting and reversing the equivalent pair
(=P = Q)OPO(P - Q));i((P + Q)0QO(P — Q)),

a product of (—0101);(—000—) by the disjoint pair P;@. So this product decom-
poses into two uses of the standard product and some equivalence operations.
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Theorem 3 does not address such mixtures, but our method can be generalized
to include them. Observe that all sequences X = C' or D used in Theorem 2
have the property that X* is a unit multiple of X; accordingly, C* and D*, in
a similar expression using these pairs can be eliminated by making appropriate
choices for a,b,e and f. The remaining details are left to the reader.

Objection T'CP’s obtained by interleaving, such as (A/B);(A/(—B)), men-
tioned in [4] and elsewhere, do not appear to be block products.

Answer These are degenerate block products. The blocks are not from A and
B, but from the pair (1);(1), obtained by multiplying (A/0);(0/B) (obtained
from A;B by shifting and expanding) by this pair of weight 2 and applying
equivalence operations.

Theorem 2 does not say that, if (ac+bd);(ec+ fd) is a CP and ¢;d is a TCP(n,w)
then e;f is equivalent to (—=b*);a*. For a counterexample, a(z) = 1 — 2*, b(x) =
—ab+ab c=1-2%d=1+2% e(z) = 2® — 27, f(x) = 1 + z gives the following
TCP(12,16):

(ac+bd);(ec+ fd) = (1—a® -zt —a®+2"+2® -2 +2™);(1+ e+ 2+t —2 "+ a8+ 20— 2.

The proof of Theorem 2 requires only that a complementary pair is obtained when
¢;d is any of the pairs (1);(0), (0);(1), (1);(z), (1 + 2?);(x — 2®).

3 A new product of TCP’s

Theorem 2 suggests a simple generalization of Theorem 1, using polynomial arith-
metic.

Theorem 4 Let (a(z) = Yo axt);(b(z) = Y bixt) be a TCP(m,u) and (c(s) =
>ociet)i(d(z) = ) dixt) be a TCP(n,v) such that:

i —j =k — h implies p;qjrysi =0 for all i, 5, h, k,
where (p,q,r,s) = (a,b,c,d) and, fori# j,k # h, with (6)
(p,q,7,8) € {(a,a,c,c),(a,a,d,d),(bb,c,c),(bb,d,d)}.

Then f;g = (ac +bd);(a*d — b*c) is a TCP(m +n — 1,uv).

Proof: Condition (6) guarantees that f, g are ternary polynomials, because there
is at most one term of each degree in the expressions giving these polynomials.

For example, with (p,q,7,s) = (a,b,c,d), (6) says that i — j = k — h implies
a;bjcpdy, = 0. Since 1 —j = k —h is equivalent to both it +h =j+kand k—i = h—j,
this is precisely the condition that the terms of a(z)c(z) are distinct from those of
b(z)d(z) and also that the terms of a*(z)d(z) are distinct from those of b*(z)c(z).
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Taking (p,q,7,s) = (a,a,c,c) ensures that all terms of a(z)c(z) are distinct, and so
on. Further,

[ (@)+g9"(x)
=(ac 4+ bd)(a*c* + b*d*) + (a*d — b*c)(ad" — bc*)
=aa*cc® + ab*cd® + ba*dc* + bb*dd* + a*add* — a*bdec* — b*acd* + b*bec”
=(aa" + bb*)(cc* 4 dd*) = uv,

so (1) is satisfied. O

Observe that Theorem 1 is subsumed by Theorem 4: instead of a(x);b(x), use the
equivalent, inflated, pair a(z™);b(z"), which guarantees that (6) is satisfied, as long
as one of the pairs is disjoint.

It is not hard to identify sequences A, B, C, D from which Theorem 4 yields a pair
that is primitive according to the definition of [2], which demonstrates that Theorem
4 is more general than Theorem 1 and, therefore, new. The smallest such example is
as follows. Let A;B = (100000100000 — 000);(0001000000000001), a TC' P(16,5) and
C;D = (1010-);(10001), a TC'P(5,5). Condition (6) is satisfied, so Theorem 4 gives

f(x) =1 +2° -2 (1 + 2% —2*) + (2® + 2)(1 + 2*)

P4t — 2t a2 0 — 0 — 12— g g 4 16 g .
gx)=1+2 -z (1 +2*) - @3 +27P)(1 +2* — 2*)

(@) (~l— e —a® et — T e — a1 - e et g ).

The corresponding reduced sequences are
F;G = (1011 — 01110 — 0 — 0 — 11001);(—0 — —100 — 0100 — 1 — 11001),

a TCP(20,25) listed in [1] as primitive.
Suppose A;B is a TCP(k + 2,2k) of the form

(10501);(1070—), (7)

where S and T are (£1)-sequences of length k — 2. Let X;Y be a Golay pair (i.e., a
T'CP withno 0’s) of length n. Take X' = $(X+Y)and Y’ = 3(X-Y),aTCP(n,n).
Let C;D be obtained by inflating X';Y” by &, and we obtain suitable pairs A, B, C, D
for Theorem 4 (but not for Theorem 1), which yields TCP(2kn + 2,2kn). In this
way we recursively obtain infinitely many pairs of form (7).

Pairs of form (7) can be used several ways to construct Hadamard matrices with
two or four circulant matrices. The above recursive construction, then, yields infinite
classes of Hadamard matrices.

If the length, m + n — 1, of the constructed pair in Theorem 4 seems a bit
disconcerting next to its weight, uv, which might seem to be too large, in general,
one must keep in mind that (6) is a sparseness condition.
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4 Checking condition (6)

Condition (6) in Theorem 4 may look a bit daunting for practical checking, but there
is a very simple way to look at it, that leads to an effective procedure for doing so.
For polynomials f(z) = ), fiz* and g(z) = )", g;z’, define sets

Diff(f, g) := {j — ilg; fi # 0}, and
Aut(f,g) == {j —i|]t # j, and either f;f; or g;g9; # 0}.

Condition (6) can now be restated as follows:
Diff(a, b) N Diff(¢, d) = Aut(a,b) N Aut(c,d) =0 (8)

A simple procedure for identifying candidate sequences for Theorem 4, then,
would be to record, for all known pairs f;g, the sets Diff(f, g), and Aut(f,g). Then
(8) is easily checked.

For example, the TC P(16,5) considered after Theorem 4 gives

Diff(a,b) = {£3,£9,15}, Aut(a,b) = {6, £12};
while the TC'P(5,5) given there gives
Diff(c,d) = {0, £2, 24}, Aut(c,d) = {£2,£4}.

It is immediate that condition (8) is satisfied. So, then, is (6).

5 A revised version of primitivity

The result of Theorem 4 creates a minor difficulty with the notion of primitive pairs
as introduced in [2]: The point of isolating primitive pairs is to determine a basic
class of sequences from which all others are obtained by elementary means. Theorem
4 gives a product that is both natural and elementary. I propose to modify the notion
of primitivity accordingly, for the sake of economy and theoretical propriety.

It would seem inappropriate to periodically modify our means of classification just
because new constructions are found. However, Theorem 4 is probably the ultimate
generalization of Theorem 1, at least in one direction. It is unlikely that we will see
a further extension of the same variety.

Therefore, let us henceforth define (the new version of) a primitive TC'P to be a
pair that is not equivalent to any obtainable by Theorem 4.

The pairs S;T in Table 1 were listed in [1] as primitive. We show that they are
not primitive in the new sense by giving factors a;b and ¢;d such that

s(2);t(x) = (a(z)e(x) + b(z)d(z))a" (a* (2)d(x) — b"(2)e(x)),

where 2% is a unit chosen to perform the appropriate shift. With one exception (we
must use reversal for the first pair) this factors S;T" as it appears in [1]. (We also
give the first two pairs in polynomial form s(z);t(z).)
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Observe how the supports of the two sequences in the first pair are the same
as the supports of those in the fourth pair, as mentioned in [1]. It is evident that
the first four pairs, all TC'P(19,25)’s, have the same pattern of 0’s, modulo the
operations of reversal and interchanging. Similarly for the second group of four,
which are T'C' P(20,25)’s, and the last four, also TC' P(20,25)’s, but with a different
pattern.

Note that in all twelve factorizations, all factors are equivalent TCP(%,5)’s.

6 An associative product of TC'P’s

The Kronecker product of matrices is well-known to be associative. But although
the standard product of TC P’s is derived from the Kronecker product (of sequences
as single-row matrices), is not associative—that is, the product of pair A;B with the
product of pairs C;D and E;F is not necessarily the same as the pair obtained by
multiplying the product of A;B and C;D with E;F. (Nor is the product of Theorem
4.)

There are several versions of the standard product in the literature, equivalent in
the sense that they can all be transformed into each other by applying equivalence
relations to either the factors or the product obtained. The form of the product in
Theorem 4 was chosen for the convenience of stating criterion (6).

The following is an equivalent form of the new product that happens to be asso-
ciative.

Theorem 5 Define a product of pairs of (integer) sequences, as follows:
(a;b) x (¢;d) := (ac — bd*);(ad + bc*). (9)
For pairs a;b, ¢;d and e;f:
1. (1);(0) is a two-sided identity for *;

2. ((a;h)x(c;d)) *(e;f) = (a;0) x((¢;d) x(e;f)) (so both may be written (a;b)x(c;d) *
(esf));

3. ifa;b is a CP(m,u) and c;d is a CP(n,v) then (s;t) = (a;b)*(c;d) is a CP(m+
n—1,uv);

4. if a;b and c;d are ternary, then (9) is ternary if and only if a;b and ¢;d* satisfy

(6)-

Proof: For any pair of Laurent polynomials a;b, define

a

B (_&(?1) a?a(ﬁ)w) ’

b
M@;b = M@;b(x) = ( _aé)* * )
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Table 1: TCP’s listed as primitive in [1], factored into a;b and c¢;d as in Theorem 4

ST
s(z)
t(x)
a(x);
c();

= (11— — — T~ —10101000101) (11 — 00011 — 0101101 — )
s S S S S N S S LIPS NPT AT
b r gt aS T a8 g0 12 g 13 15 16 s
b(x) = 210 + 216;1 — g — 6

d(z) =1+2%1+z — 2?

(In this instance, reverse S.)

s(x)
t(x)
a(z)
c(x)

ST =

(11— 00011 — 0 —0— —0 — 101);(11 — — =1 — —10— 0 — 000 — 0—)
el — a2 gb pgT g8 pl0 10 12 13 15 4 16 4 o18
el r—a?—ad gt pad g T b g0 12 16 I8
b(x) = —21° — 213 + 1% 1 4 ¢©

d(z) =1+ 2% 1 + o — a?

ST =

(11—=00011 — 0 — 0 — 101101);(11 — 11 — — — 10 — 0 — 000 — 0—)
: (I) — _wIO +.’E13 + 1:16; 1 + 136

— (11— 11 — — — 10101000101);(11 — 00011 — 0101 — 0 — —0—)
b(z) =20 + 261 + 23 — 25
d(r)=1+2%1+2—2?

= (100010100111 - ———-1- 01);(100110 —101 —-10— 01010—)
b(r) =1+ 2%2°% — 2! — 2%
d(z) =1+ 241+ 2% — 2

a(z)
)

ST =

(100110 — 10 — — — 010 — 0 — 01);(100010100 — I — 1111 — 10—)
b(x) =14 a® — a8 —a® — 21
d(z) =14 2% 1+ 2% — o

= (1010 — 0101 — —01 — 011001);(1011 — 1 — — — =100 — 0 — 000—)
() = —a® + 212 + 1'% 1 + af
;d(:v) =14az%1+22 -2t

1011 — 1 — — —11001010001);(1010 — 01011 — 0 — 10 — —00—)
— 9 4 21,1 4 23 — 4
=1+a*142% -2

001110—01011—0—1—01);(100111——00—0—001— 10-)
=14 212: 28 4 29 — 215
=1+2* 71—i—a: —a:4

001110 — 0 — 0 — 110 — 1 — 01);(1001111 — 0010 — 001 — 10—)
9 15

—1+x,1+x z?

011 — 01110 — 0 — 0 — 11001);(1011 — 0010 — 001 — 1 — —00—)
a1 4 g — g2
=1+z41+2%—2!

011 —0—1— 010 — 0 — 11001);(1011 — 0010100111 — —00—)

12

b()

()

1

b(z)

()

1

)—1+a: e
d(z)

1

b(z)

()

1

) 2+ a1 —ab —
d(z) =
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and also

a

N a* —b
Mgy = (Ma*;b*)t = < b* > :

Observe that Mgp)x(ed) = MapMea. Obviously, M)y = is an identity

10
01
for x, and part 2 follows from associativity of matrix multiplication.

Now a;b is a CP(x,w) if and only if M,y M, = wly—thus complementary pairs
correspond precisely to orthogonal matrices. Since orthogonality is preserved by
multiplication, C'P’s are preserved by (9), which demonstrates part 3. Part 4 follows
from the observation that (9) is equivalent to a pair obtained by by replacing d with
—d* in Theorem 4. a

Theorem 5 tells us that » makes the set of CP’s into a semigroup with unity.
The set of TCP’s is merely the intersection of this semigroup with the set of ternary
pairs.
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