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Abstract

We propose a secret sharing scheme based on critical sets of latin squares
(quasigroups). Critical sets are first partitioned into perfect sets, then
elements of the critical set are moved using some transformation.

1 Motivation

Secret sharing is concerned with the problem of distributing a secret among a group
of participants, so that only authorized groups of participants can recreate the secret
by combining their shares, but no unauthorized group of participants can. The set
of all authorized groups is called an access structure.

Shared security systems are used in banks, communications networks, in educational
institutions and in the military.

The earliest studied type of secret sharing schemes are called (¢, n)-threshold schemes.
In these schemes the access structure consists of all ¢-element subsets of a group of
n participants. Each participant holds a share of the secret. If any t participants
combine their shares they will be able to recreate the secret. A group of ¢ — 1 or less
participants will not be able to recreate the secret.

More complex secret sharing schemes include the hierarchical and compartmentalized
schemes, which are described in Ghodosi, Piepryzk and Safavi-Naini [5].

In a hierarchical scheme, the participants are divided into two or more levels of
influence. The lower the level of influence, the greater the number of participants
(shareholders) who must cooperate to reconstruct the secret.

In a compartmentalized scheme, the shareholders are divided into two or more mu-
tually exclusive compartments. The shareholders within a compartment must coor-
porate to complete their share of the secret. The entire secret cannot be completed
until some (perhaps all) compartments combine their shares.
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Structures with rules for completion may be found to lend themselves easily to com-
partmentalized and hierarchical schemes. Such structures include latin squares, F-
squares, Youden squares, regular graphs, colourings, etc. These are discussed more
fully in [6].

In this paper we present a new way of using critical sets of latin squares in a secret
sharing scheme, in which we combine the idea of a perfect set and a function to
transform certain elements of the critical set.

2 Latin squares

A partial Latin square P of order n is an n X n array containing symbols chosen from
a set V of size v in such a way that each element of V' occurs at most once in each
row and at most once in each column of the array. For ease of exposition, a partial
Latin square P will be represented by a set of ordered triples {(i, j; k)} where entry
E occurs in cell (4,7). If all the cells of the array are filled then the partial Latin
square is termed a Latin square.

That is, a Latin square L of order v is a v X v array with entries chosen from the
set V in such a way that each element of V' occurs precisely once in each row and
precisely once in each column of L.

A critical set in a Latin square L (of order v) is a partial Latin square K in L, such
that

(1) L is the only Latin square of order v which has element & in cell (4, j) for each
(i,7;k) € K, and

(2) no proper subset of K satisfies (1).

A transformed critical set is a partial latin square that is not a critical set, but which
results in a critical set, when almost all, but a few of its elements are moved in some
specified way.

A uniquely completable set (UC) in a Latin square L of order v is a partial Latin
square in L which satisfies condition (1) above.

Let U be a uniquely completable subset of a critical set K. Then a triple z = (i, j; k)
is said to be uniquely completable under U, if U U {z} is uniquely completable.

The set of cells Sp = {(4,J) | (¢,]; P;j) € P, for some P;; € V} is said to determine
the shape of P and |Sp| is said to be the volume of the partial latin square; that is,
the volume is the number of non-empty cells. For each 7, 1 < r < v, let R, denote
the set of entries occurring in row r of P. Formally, R}, = {P,; | (r,j; P,;) € P}.
Similarly, for each ¢, 1 < ¢ < v, we define C% = {P;. | (,¢; P,c) € P} and for each
element e € V we define £§ = {(7,7) | (i,j;€) € P}.

A latin interchange, T = (I,1I'), of volume s, is a collection of two partial latin
squares, of order v, such that

Il IA
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1. S[ :Sjl,
2. for each (l,j) S S], Iij 7& I’Z']',
3. foreachr, 1 <r <v, R} =R}, and

4. for each ¢, 1 <c <, C{ =Cj.

Thus a Latin interchange is a pair of disjoint partial Latin squares of the same shape
and order, which are row-wise and column-wise mutually balanced.

Bean and Donovan [1] proved that:

Theorem 2.1 Let K be a subset of a Latin square L. Then K is a critical set of L
if and only if for every x € K, there exists a Latin interchange I, such that

LNK={z}

Let K be a critical set of a Latin square L. Let A be a subset of . Then the nest of A,
denoted N(A), is the union of K\ A and the set AV such that (X\ A)UAY is uniquely
completable. Further, A is said to be perfect, if AV = (that is, N(4) =K\ 4). A
singleton set {a} which is perfect is called an atorm.

3 Perfect partitioning of critical sets

In this section we are interested in partitioning critical sets into subsets which are
perfect. This type of partition is called a perfect partition. Let us start with an
example:

Example 3.1 Let

1

That is, the perfect sets are {(1,2;2),(2,1;2)}, {(2,3;4)}, and {(3,3;1), (4,2;1)}.
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If z is any element or cell in L, let R, denote the set of entries in the row containing
z, and C, denote the set of entries in the column containing x.

We note that an empty cell ¢ = (7,5) can be filled with an entry k € N if one of the
following is true:

1. (R, UC,), has one element, k, missing.

2. of column j, every row corresponding to each of every other empty cell in the
column contains &, and

3. of row i, every column corresponding to each of every other empty cell in the
row contains k.

In the following example, we have a singleton set which is perfect.

Example 3.2

It is the element (2, 3;4). If it is removed then no single cell can be uniquely filled.

In this paper we are interested in perfect sets that are as small in size as possible. As
well, we are interested in perfect sets in which all the entries are the same. A subset
of a critical set in which every entry is the same, will be called a homogeneous set.
In this example, we note that the sets {(1,2;2),(2,1;2)},{(3,3;1),(4,2;1)} are per-
fect. Thus we can partition X into homogeneous perfect sets as follows:

It is easy to see that:

Theorem 3.2 The union of two or more perfect sets is perfect.

From Fitina, Seberry and Chaudhry [4] we have that:

Theorem 3.3 The union of a perfect set and any other set, is perfect.

Corollary 3.1 A critical set which has at least two atoms has a perfect partition.
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Theorem 3.4 If v > 3 then the complement of a (v — 2)-set is perfect.

Proof. Suppose that P is a subset of a critical set of order v, with Sp = v — 2.
Each column or row must have at least two entries missing. There are not enough
entries to force any cell to be uniquely filled. n

Fitina, Seberry and Chaudhury [4] proved that:

Theorem 3.5 The union of two sets is perfect if their nests do not have an inter-
section outside the critical set.

4 Transformed critical sets

Consider a critical set of a Latin square of order n. Further, suppose the size of the
critical set is z. We will consider different ways of forming transformed critical sets
from critical sets.

In this section, addition is done modulo z + 1.

4.1 Transformed critical sets with one absolute element

Let the elements of a critical set of size z be denoted by

)‘1 = (ibjl;kl)’)\? = (i27j2;k2)7 7Az = (ZZ7.]ZakZ)

Then, given some function f(z) and permutation p(z), we form a transformed critical
set Kr with elements 7y, 2,73, +, 7. given by

71:>\1

and for 2 <t < z,

Ve = (f(ir), f(Ge); p(ke)),
where the functions f and p have the following properties:

For function f, if u # v then one of the following conditions is true:

L f(iu) # f(iv) and f(ju) # f(50);
2. f(iu) = f(iy) and f(ju) # f(u);

For p, the following must be true:
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4. plku) = p(ko) = fin) # f(in),  p(ka) = p(k) = f(Gu) # f(Go)-

We call v; the absolute element and 2,73 - - -, 7,_1 the relative elements of the trans-
formed critical set. Here 7; maybe chosen arbitrarily.

If A C K, then the subset A’ C K is called the derived set of A if each element of
A’ is a transformed element of A.

Example 4.3 As an example, consider the case where
f@)=ate
for some suitable €. That is, for each ¢,2 <t < z,
Ve = (i + € i + € p(ke)),
where p is the permutation given by ky — k3, k3 — kg, -, k., — ko.
We note that € should be chosen so that i; + ¢ # ¢y and j; + € # 71, Vt # 1.

We note that the last elements of each triple (i, ji; k1), 2 < ¢ < z, are permuted using
some permutation, p.

Consider the given critical set IC of a 4 x 4 Latin square

2
2 4
K= 1
1
Let us denote:
)\1 - (273a4)
X =(2,1;2)
A= (1,2;2)
Xs = (3,3;1)

The absolute element is 7y, = (2,3;4), which corresponds to the only atom in the
critical set.

Using € = 1, we obtain the relative elements:
V2 = (4’37 1)’ V3 = (2’472)? T4 = (3a47 1)a Vs = (1a172)
This results in the following transformed critical set:

2




ACCESS SCHEMES 235

This is in fact a critical set for the latin square:

.ch,o»—\‘l\:
wu;c,o‘»—l
»—\M.Jk‘c,o
oo»—lm‘q;

It can be verified that this is not the original latin square.

Remark:

1. It is worth mentioning that the choice of transformation function, the absolute
element and the order of relative elements influences the resulting transformed
critical set. In some cases reconstructing the transformed critical set yields
many possible Latin squares.

2. If there is more than one atom in a critical set, then these elements could
form the absolute elements of the transformed critical set. Indeed, absolute
elements may be chosen because of some other properties, like that of being
most “influential”. The other elements would then be the relative elements.

However we will not explore this possibility here.

5 A quick survey on secret sharing schemes based on latin
squares

In [2], a secret sharing scheme based on a latin square of order n was constructed,
which has the following properties:

1. The latin square is kept private.
2. The order of the latin square is made public.
3. Each share is based on a partial latin square that is uniquely completable.

4. The access structure is defined as I' = {B : B C P&A C B} where A is some
critical set in the latin square.

5. I' is monotone.

In this scheme a latin square of order n is chosen. The number n is made public, but
the latin square, which is the key, is kept secret.

Each element of the partial latin square P is given as a share to a participant.

A group of participants whose shares make up a critical set can recreate the latin
square.

The merits of a scheme based on a latin square have been outlined by several people,
including [2] and [7]. It is noted for example, that
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e Latin squares of large order provide relatively secure systems.

The security of such a scheme depends on the number of latin squares containing the
partial latin square corresponding to the shares of a group of unfaithful shareholders.
Furthermore Colbourn [3] computed that the complexity of completing a partial latin
square is NP-complete.

Nevertheless it may be possible to compute, given a partial latin square, all possible
completions.

6 A secret sharing scheme based on transformed latin
squares

6.1 With an access structure containing one authorized group

Given a critical set K with one atom A, a secret sharing scheme could be formed as
follows:

1. Partition K into perfect sets.

2. Form a transformed critical set Xy with \; as the absolute element, using some
functions f and p.

3. Form a partition of KCp into derived sets of perfect sets in K.

4. Give each derived set as a share to each participant.

To reconstruct the original critical set, the participants would have to know the
function f, and the permutation p. Each participant would then have to reconstruct
the perfect set corresponding to his or her derived set.

Since each share corresponds to a perfect set, the shares of any z — 1 participants
would amount to a perfect set, by Theorem 3.3. A group of z — 1 or fewer people
who want to cheat will first of all have to reconstruct their individual shares, and
then group those shares to determine the secret. Since, however, whatever is missing
from those share constitutes a perfect set, they will have no information about the
rest of the shares.

Thus even after reconstructing the perfect sets of the original critical set, no group
of any z — 1 participants can reconstruct a unique latin square from the information
contained in their shares.

6.2 With an access structure containing more than one authorized group

By Theorem 3.2 and Theorem 3.3, one can obtain many perfect sets in a critical
set. There are therefore many perfect partitions for any one critical set. Each
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perfect partition gives rise to a potential authorized group. Thus the shares given to
shareholders in a particular authorized group must come from a specific partition of
the critical set.

This construction access structure is therefore different from that offered by Cooper,
Donovan and Seberry, [2].
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