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Abstract

A graph G is almost regular, or more precisely, is a (d,d + 1)-graph, if
the degree of each vertex of GG is either dor d+ 1. Let p > 1 and d > 2
be integers. If G is a (d,d + 1)-graph of order n with at most p odd
components and without a matching M of size 2|M| = n — p, then we
show in this paper that

(i) n>(p+3)(d+1)+1,

(i) n>(p+3)(d+1)+p+2when d>3isodd,
(ili) n > (p+3)(d+ 1)+ p+4 when d > 3 is odd and G is connected,
(iv) n > (p+3)(d+1)+2p+1=5p+10 when d = 2 and G is connected.

The special case p = 1 of this result was recently proved by Volk-
mann (Australas. J. Combin. 29 (2004), 119-126). Furthermore, this
theorem generalizes corresponding statements by C. Zhao (J. Combin.
Math. Combin. Comput. 9 (1991), 195-198) and Wallis (Ars Combin. 11
(1981), 295-300) on almost regular graphs with no odd component and
without a perfect matching. Examples will show that the given bounds
are best possible.

We shall assume that the reader is familiar with standard terminology on graphs
(see, e.g., Chartrand and Lesniak [2]). In this paper, all graphs are finite and simple.
The vertex set of a graph G is denoted by V(G). The neighborhood Ng(z) = N(z) of a
vertex x is the set of vertices adjacent with z, and the number dg(z) = d(z) = |N(z)|
is the degree of x in the graph G. If d < dg(x) < d + 1 for each vertex z in a graph
G, then we speak of an almost regular graph or more precisely of a (d, d+1)-graph. If
M is a matching in a graph G with the property that every vertex (with exactly one
exception) is incident with an edge of M, then M is a perfect matching (an almost
perfect matching). We denote by K, the complete graph of order n and by K, s the
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complete bipartite graph with partite sets A and B, where |A| = r and |B| = s.
If G is a graph and A C V(G), then we denote by ¢(G — A) the number of odd
components in the subgraph G — A.

The proof of our main theorem is based on the following generalization of Tutte’s
famous 1-factor theorem [3] by Berge [1] in 1958, and we call it the theorem of Tutte-
Berge (for a proof see e.g., [4]).

Theorem of Tutte-Berge (Berge [1] 1958) Let G be a graph of order n. If
M is a maximum matching of G, then

n=2{M| = max {g(G ~ 4) - Al}.

Theorem 1 Let p > 1 and d > 2 be integers. If G is a (d,d + 1)-graph of order n
with at most p odd components and without a matching M of size 2|M| = n — p,
then

() V(@) 2 (p+3)(d+1)+1,
(ii) V(@) > (p+3)(d+1) +p+2 when d > 3 is odd,
(iii) [V(G)| > (p+3)(d+1)+p+4 when d > 3 is odd and G is connected,
(iv) [V(G)| > (p+3)(d+1)+2p+1=5p+ 10 when d = 2 and G is connected.

Proof In view of the hypotheses, we observe that n and p are of the same parity.
Suppose to the contrary that there exists a (d,d + 1)-graph G with at most p odd
components and without a matching M of size 2|M| = n — p such that

(@) V(@) < (p+3)(d+1),

(b) V(G)| < (p+3)(d+ 1)+ p when d > 3 is odd,

(c) [V(G)| < (p+3)(d+1)+p+2 when d > 3is odd and G is connected,

(d) [V(G) < (p+3)(d+1)+2p—1=5p+8when d =2 and G is connected.

By the hypotheses and the theorem of Tutte-Berge, there exists a non-empty set
A C V(G) such that ¢(G — A) > |A| + p+2. We call an odd component of G — A
large if it has more than d vertices and small otherwise. If we denote by o and 3 the
number of large and small components, respectively, then we deduce that

a+p=q(G-A)>|Al+p+2, (1)

V(G)] 2 Al + 5+ al(d+1), (2)
[V(G)| > |A|+ 8+ a(d+2) when d > 3 is odd. (3)
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Since G is a (d,d + 1)-graph, it is easy to verify that there are at least d edges
of G joining each small component of G — A with A. Therefore it follows from the
hypothesis that G has at most p odd components that

a-p+dB <|A|(d+1) (4)

dp < |A|(d+1) when a =0. (5)
Assumption (a) and inequality (2) lead to

(p+3)(d+1) > |V(G)| > |Al+B+a(d+1)>1+a(d+1)

and this immediately yields a < p + 2. Assumptions (b) and (c) and inequality (3)
show that

(p+3)(d+1)+p+22 |V(G)| 2 |A|+ B+ a(d+2) > 1+ a(d+2).

This inequality chain leads to (p+3 — a)(d+2) > 2 and so we obtain a < p+ 2 also
in these cases.

Now we investigate the case & = 0. From the inequalities (1) and (5) we deduce
that d(|A| +p +2) < JA|(d+ 1) and thus we have d(p + 2) < |A|. Combining this
with (1) and (2), we deduce that

V(G |Al+5 > |A| + |Al +p+2
dp+2)+dp+2)+p+2
= dp+3d+p+3+dp+d-1

(p+3)(d+1)+dp+1)-1.

2
2

Therefore we arrive at a contradiction to each of the assumptions (a), (b), (c), and
().
Consequently, it remains to consider the case «« > 1. We note that inequality (4)
is equivalent with
+p—«
ftr-o (6)
d+1
Firstly, we prove (i) and (ii). We have seen above that assumptions (a), (b),
and (c) yield

B<|Al+

a<p+2 (7)

and hence we conclude from (1) that
8= Al (8)

Next we distinguish two cases.

Case 1. Assume that 8+ p — o < d. Because of (6), we conclude that § < |A|,
and therefore (8) yields 5 = |A|. In view of (1) and (7), it follows that o = p+2. Let
U be a small component of G — A. Since N(z) C V(U)UA for x € V(U), we observe
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that |A| +|V(U)| > d + 1. In addition, we deduce from = |A| and inequality (6)
that 5 > a —p = 2, and so we obtain instead of (2) the estimate

V(@) > A+ [V(O)|+8-1+a(d+1)
2 d+1+1+4(p+2)(d+1)
(p+3)(d+1)+1.

\Y

This is a contradiction to assumption (a). In the case that d > 3 is odd, we arrive
similar the following contradiction to assumption (b):
V(G 2 [A+V(U)+6 -1+a(d+2)
> d+1+1+(p+2)(d+1)+p+2
(p+3)(d+1)+p+3.

Case 2. Assume that 5+p—a > d+ 1. This condition implies 5 > d+1—p+«
and hence it follows from (4) that

a—p+dp
- d+1
a—-p+dld+1-—p+a)
d+1
d>+d(l+a—-p)+a-p 9
d+1 ' )
Subcase 2.1. Assume that o > p+ 1. In this case, we deduce from inequality (9)
that |A] > d + 1. Thus (2) yields

V(@) = JAl+8+ald+1)
2d+1)+14+(p+1)(d+1)
(p+3)(d+1)+1,

4]

v

v

a contradiction to assumption (a). If d > 3 is odd, then we deduce from (3) the
following contradiction to (b):

[V (G)| |A| 4+ 8 + a(d + 2)
2Ad+1)+ 1+ (p+1)(d+2)

(p+3)(d+1)+p+2.

2
2

Subcase 2.2. Assume that 1 < a < p. If we define a = p+ 1 — s, then we obtain
by (1) the inequality 5 > |A| + s+ 1 and (4) leads to |[A| > d(1+s) +1 — s. Since
1 < s < p, we conclude from (2) that

V(@) > |Al+8+a(d+1)
20A[+s+1+(p+1—-s)(d+1)
2d(s+1)+2—-2s+s+1+(p+1—s)(d+1)
(p+3+s)(d+1)—3s+1
(p+3)(d+1)+1,

vV IV IV

v
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a contradiction to assumption (a). If d > 3 is odd, then we deduce from (3) analo-
gously the following contradiction to (b):

V(G| |Al+ B8+ a(d +2)
(P+3+s)(d+1)+p—4ds+2

(p+3)(d+1)+p+2.

vV IV IV

Secondly, we prove (iii) and (iv). If G is connected, then we use instead of
(4) the better bound

a+dp <|A|(d+1) (10)
or the equivalent inequality
b—a
<|A . 11
pia+ o (1)

Case 3. Assume that § — a < d. We observe that (11) yields 8 < |A|, and
according to (1), we conclude that o > p + 2.

Subcase 3.1. Assume that d > 3 is odd. Because of (7) and (8), we note that
8 = |A| and o = p+ 2. Therefore (11) implies § > o = p+ 2. If U is a small
component of G — A, then we arrive at the following contradiction to assumption

(c):

[V(G)| [A|+[V(U)|+ 5 -1+ a(d+2)
d+1+1+(p+2)(d+1)+p+2

(p+3)(d+1)+p+3.

vV v

Subcase 3.2. Assume that d = 2. If we define & = p + 2 + s, then we obtain by
(1) the inequality 8 > |A| — s and (10) leads to |A| > a —ds=p+2+ s —ds. Now
(2) yields the following contradiction to assumption (d):

|V (G)] |A|+ B8+ a(d+1)
Al + Al = s+ (p+2+s)(d+1)
20p+2+s—ds)— s+ (p+2)(d+1)+3s

(P+3)(d+1)+2p+1.

(AVARAVARLYS

Case 4. Assume that § — « > d + 1. This implies § > d + a + 1 and so (10)
yields

>a+d6>a+d(a+d+l)
—d+1 T d+1 '

Subcase 4.1. Assume that a > p+1. In view of (12), it follows that |A| > d+p+1.
In the case that d > 3 is odd, we conclude from (3) that

4] (12)

V(G)] |A|+ 3 +a(d+2)
d+p+1+d+p+1+1+(p+1)(d+2)

(p+3)(d+1)+3p+2,

2
2
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a contradiction to assumption (c). If d = 2, then (2) leads to the following contra-
diction to (d):

[V(G) |A] + 5+ a(d +1)
d+p+1+d+p+1+1+(p+1)(d+1)

= (p+3)(d+1)+2p+1.

Subcase 4.2. Assume that 1 < o < p. If we define « = p+ 1 — s, then (1) leads
to B > |A|+ s+1 and (10) yields |A] > d(1+s) +p+ 1 — s. In the case that d > 3
is odd, we conclude from (3) that

V(@) |Al+ 8 +a(d+2)

/Al +s+1+(p+1—s)(d+2)
2d(s+1)+2p+2—-2s+s+1+(p+1—s)(d+2)
(p+3+s)(d+1)—4s+3p+2

(p+3)(d+1)+3p+2,

vV IV IV

\Y

a contradiction to assumption (c). If d = 2, then (2) leads to the following contra-
diction to (d):

V(G)| |A] + 5+ a(d+1)
24| +s+1+(p+1—-s)(d+1)
2d(1+s)+2p+2—-2s+s+1+(p+1—s)(d+1)

5p + 10.

vV IV IV

Since we have discussed all possible cases, the proof of Theorem 1 is complete. O

The following examples will show that the different bounds in Theorem 1 are best
possible.

Example 2 Case 1. Let d > 2 be even. Let Hy, Hs, ..., Hpy1 be p+ 1 copies of the
complete graph Ky;. In addition, let K41 442 be the complete bipartite graph with
the partite sets {1, xs,...,2qr1} and {y1,vy2,...,Yar2}- If we delete in the graph
Kgi1,4+2 the edges z1y1, T2y, . - ., Ta41Yd+1 and z1Yq42, then we denote the resulting
graph by F. If w is an arbitrary vertex of Hp.;, then we define the graph G as the
disjoint union of Hy, Hs, ..., H,y1 and F together with the edge wz;. It is straight-
forward to verify that G is a (d, d+1)-graph of order n = |V(G)| = (p+3)(d+1)+1
with p odd components and without a matching M of size 2|M| = n — p. Conse-
quently, Condition (i) is best possible.

Case 2. Let d > 3 be odd. Let Hy, Hs,..., Hy1 be p+ 1 copies of the complete
graph Kg4.o. In addition, let K441 442 be the complete bipartite graph with the partite
sets {@1,2a,...,2q41} and {y1,va, ..., Ya12}. If we delete in the graph Kyiq 442 the
edges x1Y1,TaY2, - - - Latr1Ya+1 and x1yq49, then we denote the resulting graph by F.
If w and w are two arbitrary vertices of Hyy1, then let H) ., = H,., —uw. We define
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the graph G as the disjoint union of Hy, Hs, ..., Hy, H;H, and F together with the
edge wxy. It is easy to see that G is a (d,d + 1)-graph of order n = |V(G)| =
(p+3)(d+ 1)+ p+ 2 with p odd components and without a matching M of size
2|M| = n — p. Thus Condition (ii) is best possible.

Case 3. Let d > p+ 3 be odd. Let Hy,Hs,...,H,3 be p+ 3 copies of the
graph Ky o — M', where M’ is an almost perfect matching of the complete graph
K442, and let u be a further vertex. We denote the vertex sets of H; by V(H;) =
{zf, 24, ... &l ,} such that dy,(2%,,) =d+1for i =1,2,...,p+ 3. We define the
graph G as the disjoint union of Hy, Hy, ..., H,y3 and the vertex u together with the
edges

uxi,uxé,...,uxiij
p+3

fori=1,2,...,p+ 2 and

™ uaht ,umgt?pﬂnﬁj.
Since L%J >land d— (p+2)Lp%J > 1, we observe that G is a connected (d, d+1)-
graph of order n = |[V(G)| = (p+ 3)(d + 1) + p + 4 without a matching M of size
2|M| = n — p. This shows that Condition (iii) is best possible.

Case 4. Let d = 2. Let Copya = 2122 .. . Zopra1 be a cycle of length 2p+4, and let
Hy,Hs, ..., Hyis be p+2 cycles of length three. If y; € V(H;) fori =1,2,...,p+2,
then let G' be the disjoint union of Hy, Hs,..., Hyys and Cypiy together with the
edges y;z9; for i = 1,2,...,p+ 2. The resulting (2, 3)-graph G is connected of order
n = |V(G)| = 5p+ 10 without a matching M of size 2|M| = n — p. This implies that
Condition (iv) is also best possible.

The special case p = 1 in Theorem 1 leads to the recent result by Volkmann [5].

Corollary 3 (Volkmann [5] 2004) Let d > 2 be an integer, and let G be a
(d,d + 1)-graph with exactly one odd component and without any almost perfect
matching. Then

(i) V(G)| =2 4d+1)+1,
(i) |V(G)| > 4(d+ 1) +3 when d > 3 is odd or d =2 and G is connected,
(iii) |V(G)| > 4(d+ 1)+ 5 when d > 3 is odd and G is connected.

Corollary 4 (Zhao [8] 1991) Let d > 2 be an integer. If a (d,d + 1)-graph G has
no odd component and no perfect matching, then

V(G)| > 3d + 4.

Proof Suppose to the contrary that there exists a graph G with no odd component
and no perfect matching of size |V(G)| < 3d + 3.

If d is even, then the disjoint union H = G U K441 is a (d,d + 1)-graph with
exactly one odd component, but H has no almost perfect matching. Because of
|V(H)| < 4(d + 1), this is a contradiction to inequality (i) in Corollary 3.
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If d is odd, then the disjoint union H = G U Ky.» is a (d,d + 1)-graph with
exactly one odd component, but H has no almost perfect matching. Because of
|V(H)| < 4(d+ 1) + 1, this is a contradiction to inequality (ii) in Corollary 3. O

Corollary 5 (Wallis [6] 1981) Let d > 3 be an integer. If a d-regular graph
G has no odd component and no perfect matching, then |V (G)| > 3d + 4.

Note that each 1-regular and 2-regular graph without an odd component has a
perfect matching. Furthermore, if d is odd or d = 4 in Corollary 5, then Wallis [6],
[7] has presented the better bounds |V(G)| > 3d + 7 or |[V(G)| > 3d + 10 = 22,
respectively.
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