On the order of almost regular graphs without a matching of given size

SABINE KLINKENBERG LUTZ VOLKMANN

Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen
Germany
volkm@math2.rwth-aachen.de

Abstract

A graph G is almost regular, or more precisely, is a (d,d+1)-graph, if the degree of each vertex of G is either d or d+1. Let $p \geq 1$ and $d \geq 2$ be integers. If G is a (d,d+1)-graph of order n with at most p odd components and without a matching M of size 2|M|=n-p, then we show in this paper that

- (i) $n \ge (p+3)(d+1)+1$,
- (ii) $n \ge (p+3)(d+1) + p + 2$ when $d \ge 3$ is odd,
- (iii) $n \ge (p+3)(d+1) + p + 4$ when $d \ge 3$ is odd and G is connected,
- (iv) $n \ge (p+3)(d+1) + 2p + 1 = 5p + 10$ when d = 2 and G is connected.

The special case p=1 of this result was recently proved by Volkmann (Australas. J. Combin. 29 (2004), 119–126). Furthermore, this theorem generalizes corresponding statements by C. Zhao (J. Combin. Math. Combin. Comput. 9 (1991), 195–198) and Wallis (Ars Combin. 11 (1981), 295–300) on almost regular graphs with no odd component and without a perfect matching. Examples will show that the given bounds are best possible.

We shall assume that the reader is familiar with standard terminology on graphs (see, e.g., Chartrand and Lesniak [2]). In this paper, all graphs are finite and simple. The vertex set of a graph G is denoted by V(G). The neighborhood $N_G(x) = N(x)$ of a vertex x is the set of vertices adjacent with x, and the number $d_G(x) = d(x) = |N(x)|$ is the degree of x in the graph G. If $d \leq d_G(x) \leq d+1$ for each vertex x in a graph G, then we speak of an almost regular graph or more precisely of a (d, d+1)-graph. If M is a matching in a graph G with the property that every vertex (with exactly one exception) is incident with an edge of M, then M is a perfect matching (an almost perfect matching). We denote by K_n the complete graph of order n and by $K_{r,s}$ the

complete bipartite graph with partite sets A and B, where |A| = r and |B| = s. If G is a graph and $A \subseteq V(G)$, then we denote by q(G - A) the number of odd components in the subgraph G - A.

The proof of our main theorem is based on the following generalization of Tutte's famous 1-factor theorem [3] by Berge [1] in 1958, and we call it the theorem of Tutte-Berge (for a proof see e.g., [4]).

Theorem of Tutte-Berge (Berge [1] 1958) Let G be a graph of order n. If M is a maximum matching of G, then

$$n - 2|M| = \max_{A \subseteq V(G)} \{q(G - A) - |A|\}.$$

Theorem 1 Let $p \ge 1$ and $d \ge 2$ be integers. If G is a (d, d+1)-graph of order n with at most p odd components and without a matching M of size 2|M| = n - p, then

- (i) $|V(G)| \ge (p+3)(d+1) + 1$,
- (ii) $|V(G)| \ge (p+3)(d+1) + p + 2$ when $d \ge 3$ is odd,
- (iii) $|V(G)| \ge (p+3)(d+1) + p+4$ when $d \ge 3$ is odd and G is connected,
- (iv) $|V(G)| \ge (p+3)(d+1) + 2p + 1 = 5p + 10$ when d=2 and G is connected.

Proof In view of the hypotheses, we observe that n and p are of the same parity. Suppose to the contrary that there exists a (d, d+1)-graph G with at most p odd components and without a matching M of size 2|M| = n - p such that

- (a) $|V(G)| \le (p+3)(d+1)$,
- (b) $|V(G)| \le (p+3)(d+1) + p$ when $d \ge 3$ is odd,
- (c) $|V(G)| \le (p+3)(d+1) + p + 2$ when $d \ge 3$ is odd and G is connected,
- (d) $|V(G)| \le (p+3)(d+1) + 2p 1 = 5p + 8$ when d=2 and G is connected.

By the hypotheses and the theorem of Tutte-Berge, there exists a non-empty set $A \subseteq V(G)$ such that $q(G-A) \ge |A|+p+2$. We call an odd component of G-A large if it has more than d vertices and small otherwise. If we denote by α and β the number of large and small components, respectively, then we deduce that

$$\alpha + \beta = q(G - A) \ge |A| + p + 2,\tag{1}$$

$$|V(G)| \ge |A| + \beta + \alpha(d+1), \tag{2}$$

$$|V(G)| \ge |A| + \beta + \alpha(d+2) \text{ when } d \ge 3 \text{ is odd.}$$
 (3)

Since G is a (d, d + 1)-graph, it is easy to verify that there are at least d edges of G joining each small component of G - A with A. Therefore it follows from the hypothesis that G has at most p odd components that

$$\alpha - p + d\beta < |A|(d+1) \tag{4}$$

$$d\beta \le |A|(d+1) \text{ when } \alpha = 0.$$
 (5)

Assumption (a) and inequality (2) lead to

$$(p+3)(d+1) \ge |V(G)| \ge |A| + \beta + \alpha(d+1) \ge 1 + \alpha(d+1)$$

and this immediately yields $\alpha \leq p+2$. Assumptions (b) and (c) and inequality (3) show that

$$(p+3)(d+1) + p+2 > |V(G)| > |A| + \beta + \alpha(d+2) > 1 + \alpha(d+2).$$

This inequality chain leads to $(p+3-\alpha)(d+2) \ge 2$ and so we obtain $\alpha \le p+2$ also in these cases.

Now we investigate the case $\alpha = 0$. From the inequalities (1) and (5) we deduce that $d(|A| + p + 2) \leq |A|(d + 1)$ and thus we have $d(p + 2) \leq |A|$. Combining this with (1) and (2), we deduce that

$$\begin{aligned} |V(G)| & \geq & |A| + \beta \geq |A| + |A| + p + 2 \\ & \geq & d(p+2) + d(p+2) + p + 2 \\ & = & dp + 3d + p + 3 + dp + d - 1 \\ & = & (p+3)(d+1) + d(p+1) - 1. \end{aligned}$$

Therefore we arrive at a contradiction to each of the assumptions (a), (b), (c), and (d).

Consequently, it remains to consider the case $\alpha \geq 1$. We note that inequality (4) is equivalent with

$$\beta \le |A| + \frac{\beta + p - \alpha}{d + 1}.\tag{6}$$

Firstly, we prove (i) and (ii). We have seen above that assumptions (a), (b), and (c) yield

$$\alpha \le p + 2 \tag{7}$$

and hence we conclude from (1) that

$$\beta \ge |A|. \tag{8}$$

Next we distinguish two cases.

Case 1. Assume that $\beta + p - \alpha \le d$. Because of (6), we conclude that $\beta \le |A|$, and therefore (8) yields $\beta = |A|$. In view of (1) and (7), it follows that $\alpha = p + 2$. Let U be a small component of G - A. Since $N(x) \subseteq V(U) \cup A$ for $x \in V(U)$, we observe

that $|A| + |V(U)| \ge d + 1$. In addition, we deduce from $\beta = |A|$ and inequality (6) that $\beta \ge \alpha - p = 2$, and so we obtain instead of (2) the estimate

$$|V(G)| \geq |A| + |V(U)| + \beta - 1 + \alpha(d+1)$$

$$\geq d+1+1+(p+2)(d+1)$$

$$= (p+3)(d+1)+1.$$

This is a contradiction to assumption (a). In the case that $d \geq 3$ is odd, we arrive similar the following contradiction to assumption (b):

$$|V(G)| \geq |A| + |V(U)| + \beta - 1 + \alpha(d+2)$$

$$\geq d+1+1+(p+2)(d+1)+p+2$$

$$= (p+3)(d+1)+p+3.$$

Case 2. Assume that $\beta + p - \alpha \ge d + 1$. This condition implies $\beta \ge d + 1 - p + \alpha$ and hence it follows from (4) that

$$|A| \geq \frac{\alpha - p + d\beta}{d + 1}$$

$$\geq \frac{\alpha - p + d(d + 1 - p + \alpha)}{d + 1}$$

$$= \frac{d^2 + d(1 + \alpha - p) + \alpha - p}{d + 1}.$$
(9)

Subcase 2.1. Assume that $\alpha \ge p+1$. In this case, we deduce from inequality (9) that $|A| \ge d+1$. Thus (2) yields

$$\begin{split} |V(G)| & \geq |A| + \beta + \alpha(d+1) \\ & \geq 2(d+1) + 1 + (p+1)(d+1) \\ & = (p+3)(d+1) + 1, \end{split}$$

a contradiction to assumption (a). If $d \geq 3$ is odd, then we deduce from (3) the following contradiction to (b):

$$\begin{aligned} |V(G)| & \geq & |A| + \beta + \alpha(d+2) \\ & \geq & 2(d+1) + 1 + (p+1)(d+2) \\ & = & (p+3)(d+1) + p + 2. \end{aligned}$$

Subcase 2.2. Assume that $1 \le \alpha \le p$. If we define $\alpha = p+1-s$, then we obtain by (1) the inequality $\beta \ge |A|+s+1$ and (4) leads to $|A| \ge d(1+s)+1-s$. Since $1 \le s \le p$, we conclude from (2) that

$$\begin{split} |V(G)| & \geq & |A| + \beta + \alpha(d+1) \\ & \geq & 2|A| + s + 1 + (p+1-s)(d+1) \\ & \geq & 2d(s+1) + 2 - 2s + s + 1 + (p+1-s)(d+1) \\ & = & (p+3+s)(d+1) - 3s + 1 \\ & \geq & (p+3)(d+1) + 1, \end{split}$$

a contradiction to assumption (a). If $d \geq 3$ is odd, then we deduce from (3) analogously the following contradiction to (b):

$$\begin{aligned} |V(G)| & \geq |A| + \beta + \alpha(d+2) \\ & \geq (p+3+s)(d+1) + p - 4s + 2 \\ & \geq (p+3)(d+1) + p + 2. \end{aligned}$$

Secondly, we prove (iii) and (iv). If G is connected, then we use instead of (4) the better bound

$$\alpha + d\beta \le |A|(d+1) \tag{10}$$

or the equivalent inequality

$$\beta \le |A| + \frac{\beta - \alpha}{d + 1}.\tag{11}$$

Case 3. Assume that $\beta - \alpha \leq d$. We observe that (11) yields $\beta \leq |A|$, and according to (1), we conclude that $\alpha \geq p + 2$.

Subcase 3.1. Assume that $d \geq 3$ is odd. Because of (7) and (8), we note that $\beta = |A|$ and $\alpha = p + 2$. Therefore (11) implies $\beta \geq \alpha = p + 2$. If U is a small component of G - A, then we arrive at the following contradiction to assumption (c):

$$\begin{split} |V(G)| & \geq & |A| + |V(U)| + \beta - 1 + \alpha(d+2) \\ & \geq & d+1+1+(p+2)(d+1)+p+2 \\ & = & (p+3)(d+1)+p+3. \end{split}$$

Subcase 3.2. Assume that d=2. If we define $\alpha=p+2+s$, then we obtain by (1) the inequality $\beta \geq |A|-s$ and (10) leads to $|A| \geq \alpha - ds = p+2+s-ds$. Now (2) yields the following contradiction to assumption (d):

$$\begin{split} |V(G)| & \geq & |A| + \beta + \alpha(d+1) \\ & \geq & |A| + |A| - s + (p+2+s)(d+1) \\ & \geq & 2(p+2+s-ds) - s + (p+2)(d+1) + 3s \\ & = & (p+3)(d+1) + 2p + 1. \end{split}$$

Case 4. Assume that $\beta - \alpha \ge d + 1$. This implies $\beta \ge d + \alpha + 1$ and so (10) yields

$$|A| \ge \frac{\alpha + d\beta}{d+1} \ge \frac{\alpha + d(\alpha + d+1)}{d+1}.$$
 (12)

Subcase 4.1. Assume that $\alpha \geq p+1$. In view of (12), it follows that $|A| \geq d+p+1$. In the case that $d \geq 3$ is odd, we conclude from (3) that

$$|V(G)| \ge |A| + \beta + \alpha(d+2)$$

$$\ge d+p+1+d+p+1+1+(p+1)(d+2)$$

$$= (p+3)(d+1) + 3p+2,$$

a contradiction to assumption (c). If d = 2, then (2) leads to the following contradiction to (d):

$$\begin{split} |V(G)| & \geq |A| + \beta + \alpha(d+1) \\ & \geq d+p+1+d+p+1+1+(p+1)(d+1) \\ & = (p+3)(d+1) + 2p+1. \end{split}$$

Subcase 4.2. Assume that $1 \le \alpha \le p$. If we define $\alpha = p+1-s$, then (1) leads to $\beta \ge |A|+s+1$ and (10) yields $|A| \ge d(1+s)+p+1-s$. In the case that $d \ge 3$ is odd, we conclude from (3) that

$$\begin{split} |V(G)| & \geq |A| + \beta + \alpha(d+2) \\ & \geq 2|A| + s + 1 + (p+1-s)(d+2) \\ & \geq 2d(s+1) + 2p + 2 - 2s + s + 1 + (p+1-s)(d+2) \\ & = (p+3+s)(d+1) - 4s + 3p + 2 \\ & \geq (p+3)(d+1) + 3p + 2, \end{split}$$

a contradiction to assumption (c). If d=2, then (2) leads to the following contradiction to (d):

$$\begin{split} |V(G)| & \geq |A| + \beta + \alpha(d+1) \\ & \geq 2|A| + s + 1 + (p+1-s)(d+1) \\ & \geq 2d(1+s) + 2p + 2 - 2s + s + 1 + (p+1-s)(d+1) \\ & = 5p + 10. \end{split}$$

Since we have discussed all possible cases, the proof of Theorem 1 is complete. \square

The following examples will show that the different bounds in Theorem 1 are best possible.

Example 2 Case 1. Let $d \geq 2$ be even. Let $H_1, H_2, \ldots, H_{p+1}$ be p+1 copies of the complete graph K_{d+1} . In addition, let $K_{d+1,d+2}$ be the complete bipartite graph with the partite sets $\{x_1, x_2, \ldots, x_{d+1}\}$ and $\{y_1, y_2, \ldots, y_{d+2}\}$. If we delete in the graph $K_{d+1,d+2}$ the edges $x_1y_1, x_2y_2, \ldots, x_{d+1}y_{d+1}$ and x_1y_{d+2} , then we denote the resulting graph by F. If w is an arbitrary vertex of H_{p+1} , then we define the graph G as the disjoint union of $H_1, H_2, \ldots, H_{p+1}$ and F together with the edge wx_1 . It is straightforward to verify that G is a (d, d+1)-graph of order n = |V(G)| = (p+3)(d+1) + 1 with p odd components and without a matching M of size 2|M| = n - p. Consequently, Condition (i) is best possible.

Case 2. Let $d \geq 3$ be odd. Let $H_1, H_2, \ldots, H_{p+1}$ be p+1 copies of the complete graph K_{d+2} . In addition, let $K_{d+1,d+2}$ be the complete bipartite graph with the partite sets $\{x_1, x_2, \ldots, x_{d+1}\}$ and $\{y_1, y_2, \ldots, y_{d+2}\}$. If we delete in the graph $K_{d+1,d+2}$ the edges $x_1y_1, x_2y_2, \ldots, x_{d+1}y_{d+1}$ and x_1y_{d+2} , then we denote the resulting graph by F. If u and w are two arbitrary vertices of H_{p+1} , then let $H'_{p+1} = H_{p+1} - uw$. We define

the graph G as the disjoint union of $H_1, H_2, \ldots, H_p, H'_{p+1}$, and F together with the edge wx_1 . It is easy to see that G is a (d, d+1)-graph of order n = |V(G)| = (p+3)(d+1) + p+2 with p odd components and without a matching M of size 2|M| = n - p. Thus Condition (ii) is best possible.

Case 3. Let $d \geq p+3$ be odd. Let $H_1, H_2, \ldots, H_{p+3}$ be p+3 copies of the graph $K_{d+2} - M'$, where M' is an almost perfect matching of the complete graph K_{d+2} , and let u be a further vertex. We denote the vertex sets of H_i by $V(H_i) = \{x_1^i, x_2^i, \ldots, x_{d+2}^i\}$ such that $d_{H_i}(x_{d+2}^i) = d+1$ for $i=1,2,\ldots,p+3$. We define the graph G as the disjoint union of $H_1, H_2, \ldots, H_{p+3}$ and the vertex u together with the edges

$$ux_1^i, ux_2^i, \dots, ux_{\lfloor \frac{d}{p+3} \rfloor}^i$$

for i = 1, 2, ..., p + 2 and

$$ux_1^{p+3}, ux_2^{p+3}, \dots, ux_{d-(p+2)\lfloor \frac{d}{p+3} \rfloor}^{p+3}$$

Since $\lfloor \frac{d}{p+3} \rfloor \geq 1$ and $d - (p+2) \lfloor \frac{d}{p+3} \rfloor \geq 1$, we observe that G is a connected (d, d+1)-graph of order n = |V(G)| = (p+3)(d+1) + p+4 without a matching M of size 2|M| = n-p. This shows that Condition (iii) is best possible.

Case 4. Let d=2. Let $C_{2p+4}=x_1x_2\ldots x_{2p+4}x_1$ be a cycle of length 2p+4, and let $H_1, H_2, \ldots, H_{p+2}$ be p+2 cycles of length three. If $y_i \in V(H_i)$ for $i=1,2,\ldots,p+2$, then let G be the disjoint union of $H_1, H_2, \ldots, H_{p+2}$ and C_{2p+4} together with the edges y_ix_{2i} for $i=1,2,\ldots,p+2$. The resulting (2,3)-graph G is connected of order n=|V(G)|=5p+10 without a matching M of size 2|M|=n-p. This implies that Condition (iv) is also best possible.

The special case p = 1 in Theorem 1 leads to the recent result by Volkmann [5].

Corollary 3 (Volkmann [5] 2004) Let $d \geq 2$ be an integer, and let G be a (d, d+1)-graph with exactly one odd component and without any almost perfect matching. Then

- (i) $|V(G)| \ge 4(d+1) + 1$,
- (ii) $|V(G)| \ge 4(d+1) + 3$ when $d \ge 3$ is odd or d = 2 and G is connected,
- (iii) $|V(G)| \ge 4(d+1) + 5$ when $d \ge 3$ is odd and G is connected.

Corollary 4 (Zhao [8] 1991) Let $d \ge 2$ be an integer. If a (d, d+1)-graph G has no odd component and no perfect matching, then

$$|V(G)| \ge 3d + 4.$$

Proof Suppose to the contrary that there exists a graph G with no odd component and no perfect matching of size $|V(G)| \leq 3d + 3$.

If d is even, then the disjoint union $H = G \cup K_{d+1}$ is a (d, d+1)-graph with exactly one odd component, but H has no almost perfect matching. Because of $|V(H)| \leq 4(d+1)$, this is a contradiction to inequality (i) in Corollary 3.

If d is odd, then the disjoint union $H = G \cup K_{d+2}$ is a (d, d+1)-graph with exactly one odd component, but H has no almost perfect matching. Because of $|V(H)| \leq 4(d+1) + 1$, this is a contradiction to inequality (ii) in Corollary 3. \square

Corollary 5 (Wallis [6] 1981) Let $d \geq 3$ be an integer. If a d-regular graph G has no odd component and no perfect matching, then $|V(G)| \geq 3d + 4$.

Note that each 1-regular and 2-regular graph without an odd component has a perfect matching. Furthermore, if d is odd or d=4 in Corollary 5, then Wallis [6], [7] has presented the better bounds $|V(G)| \geq 3d+7$ or $|V(G)| \geq 3d+10=22$, respectively.

References

- C. Berge, Sur le couplage maximum d'un graphe, C. R. Acad. Sci. Paris Math. 247 (1958), 258–259.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd Edition, Chapman and Hall, London, 1996.
- [3] W.T. Tutte, The factorizations of linear graphs, J. London Math. Soc. 22 (1947), 459-474.
- [4] L. Volkmann, Foundations of Graph Theory, Springer-Verlag, Wien New York (1996) (in German).
- [5] L. Volkmann, On the size of odd order graphs with no almost perfect matching, Australas. J. Combin. 29 (2004), 119–126.
- [6] W.D. Wallis, The smallest regular graphs without one-factors, Ars Combin. 11 (1981), 295–300.
- [7] W.D. Wallis, One-Factorizations, Kluwer Academic Publishers, Dordrecht Boston London, Mathematics and Its Applications 390 (1997).
- [8] C. Zhao, The disjoint 1-factors of (d, d+1)-graphs, J. Combin. Math. Combin. Comput. 9 (1991), 195–198.

(Received 9 June 2004)