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Abstract

We present a new criterion for a set of chambers to be convex in a build-
ing. We apply this criterion to apartments, which are known to be the
thin convex chamber subcomplexes of buildings. We also prove an addi-
tional characterization of apartments in terms of certain Weyl distances
between chambers, generalizing our results in the spherical case, obtained
by the present authors in Annals Combin. 4 (2000), 125-137, using op-
position of chambers.

1 Introduction

Originally, buildings were defined as certain simplicial chamber complexes containing
“alot” of isomorphic apartments (made precise with two axioms; apartments are thin
chamber sub-complexes). At a certain moment, people started to look at buildings
as structures where the chambers are no longer simplices, i.e. sets of vertices, but
where they are the “atoms” themselves. In the definitions that emerge from this
viewpoint the apartments are no longer needed. Still, one wants to use them, and
therefore one wants to recognize them. For instance, in [1], some properties of the
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opposition map are proved using apartments, which are first recognized as sets of
chambers satisfying some conditions stated in terms of opposition. Namely, a set
of chambers in a spherical building is an apartment if and only if each chamber in
the set is opposite exactly one other chamber of the set, and each chamber outside
the set is opposite an even number of chambers of the set. Noting that opposite
chambers are merely chambers at a certain fixed Weyl distance from each other, one
could wonder if in this characterization of apartments one can replace “opposition”
with “being at Weyl distance w”, for a fixed element w of the Weyl group. In [2], we
showed the “only if” part of such a statement. In the present paper, we generalize
the “if” part.

Our motivation is partly purely esthetic and curiosity, but partly also that investiga-
tions like this bring other beautiful and useful properties to the surface. In this case,
we establish along the way a simple characterization of convexity, which in its turn
implies a considerable generalization of Brown’s characterization of apartments in [3].
In fact, our results show that, for buildings, the notion of convexity is equivalent to
the much weaker global notion of connectivity along with a local notion of convexity.
Hence buildings are peculiar metric spaces where a particular intuition is needed. To
illustrate this, we just mention the following consequence of our results below. In an
arbitrary spherical building of irreducible type and rank at least 3, a connected set
M of chambers with the property that the convex closure of any two chambers of M
at numerical distance at most 4 is contained in M, is itself convex. Noting that the
diameter of spherical buildings is unbounded, we see that this is rather surprising
and clashes with our intuition from ordinary (discrete) metric spaces.

We state our main results in a more precise way in the next section, after introducing
the necessary notation.

2 Notation and Statement of the Main Results

We spend some time on the definition and some basic properties of a building in
order to turn this paper into a more introductory one, for the sake of the casual
reader of these proceedings. The interested reader is recommended to consult [3],
[4], [5] and [8] for more information, background and results.

2.1 Background and History

Buildings are certain kinds of incidence geometries — created by Jacques Tits in the
early sixties as the natural geometries associated to groups of Lie type — and as
such in fact just a class of multipartite graphs. The classical and original definition
uses chamber simplicial complexes. It is a purely geometric definition, but rather
involved in that already for the simplest class of examples, namely the projective
spaces, it is a nontrivial exercise to show that they satisfy the axioms of a building.

In this classical definition, the concept of a chamber plays a central role. When
viewed as a multipartite graph, a chamber of a building is just a maximal clique,
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which then contains exactly one vertex of each multipartition class. If these classes
were seen as political parties, then a chamber is just a committee where every party
is represented by exactly one member. Interpreting the word “chamber” as a stylish
version of “room”, the real estate terminology is a logical consequence. Indeed,
a “building” consists of a set of chambers. Certain subcomplexes will be called
apartments, etc.

Since the concept of a chamber plays such a prominent role in the definition of a
building — and not only in the definition, but also in many properties and applica-
tions — one is tempted to look for a definition where the chambers are the atoms. It
was again Jacques Tits who first developed this idea by introducing the concept of a
chamber system. This definition was optimized after the introduction of twin build-
ings, which emerge as the geometries naturally associated to Kac-Moody groups. At
present, buildings are viewed as metric spaces where the distance has values in a
Coxeter group. That is exactly how we will define them. So it is convenient to first
look at the value set of our metric spaces.

2.2 Coxeter Systems

Let n be a positive nonzero integer, and let M be a symmetric n X n matrix with
entries m;; in the set of natural numbers union {oo} satisfying my; = 1, and my; > 2,
for i # j, with 4,5 € {1,2,...,n}. The matrix M is called a Cozeter matriz. The
Cozeter group of rank n associated with the Coxeter matrix M is the group W with
presentation

<815527 <.y Sp | (Sisj)mij = ldaLaJ € {1a2a s ,’I'L}),

where we use id to denote the identity element in W, and (s;s;)> = id by definition
means that there is no relation for s;s; if m;; = oo. Coxeter groups have nice
properties. In particular, the order of the element s;s; is precisely equal to m;;.
In the sequel we will often denote m;; as m(s;,s;). Hence, putting i = j, we see
that S = {s1,82,...,8,} is a generating set of involutions. Moreover, S is a minimal
generating set (in the set-theoretic sense). One can show that, for each subset S’ C S,
the subgroup W' = (S’) is a Coxeter group (see (P1) below). It is, however, not true
that W determines S, not even up to conjugacy or isomorphism. In fact, not even
the Coxeter matrix is, up to conjugation with a permutation matrix, determined by
W. For instance consider the group W = ((1 2),(3 4),(4 5),(5 6)) < Sg. Then
W = 2 x Sy is a Coxeter group of rank 4 with matrix (m;;)1<; <4 where my; = 1,
my; = 2 = myy and meg = mgy = 3. But W can also be presented as W =
((1 2)(3 4)(5 6),(3 4),(3 5)). We thus obtain a Coxeter group of rank 3 with a
Coxeter matrix having 1 on the diagonal and 2, 3,4 off the diagonal.

Hence we take S as part of the definition and talk about a Cozeter system (W,S).
The cardinality of S is referred to as the rank of the Coxeter system. If w € W,
w # id, then we can write w as a product of elements of S, and it will be convenient
to consider the sequence of elements of S that defines w. Therefore, we distinguish
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between the element w = s;5;,...s; and the word f = (s, Si,,--.,54), ij €
{1,2,...,n}, 1 <j <k, k €N In general, a word in elements of S defines a unique
element of W (by multiplying the elements of the word), but one element of W of
course defines a lot of words. We call the word f above reduced if the corresponding
element w of W cannot be written with less than the number of elements of f (the
identity can be written by definition with zero elements of S — it corresponds to
the empty word). If f above is reduced, then the number k is called the length of w
and denoted by ¢(w). Hence the length of the identity id is equal to 0. We note that
lws) =Llw)+1orl(w)—1forallwe Wands e S. (l(w)—1<l(ws) < lw)+1
is clear, and {(ws) # ¢(w) because each of the defining relations for W involves an
even number of elements of S.)

In this and the next subsection, we will collect some well-known basic properties of
Coxeter systems and of buildings. In the following, (W, .S) always denotes a Coxeter
system.

(P1) For any subset S’ of S, the pair (W' = (5'),5") is a Coxeter system. If we
denote by ¢ its length function, then the length function ¢ of (W, S) satisfies
lw+ = . Furthermore, for any w € W' and any word f = (s, Siy, - - -, 53, ) Of
length k& = ((w) with letters s;; € S which represents w, necessarily s;, € '
forall1 <j<k.

(P2) W is finite if and only if there exists an element wy such that ¢(wys) < €(wp)
for all s € S. If W is finite, then wy € W satisfies {(wys) < {(wp) for all s € S if
and only if ¢(wy) = max{l(w) | w € W} =: ng. There is precisely one wy € W
with £(wg) = no. This in particular implies wy = w, *, because ¢(w™!) = £(w)
for all w € W. The element wy also satisfies ((wg) = £(w) + £(w™ wy) for all
weWw.

(P3) If (W, S) has rank 2, then W is the dihedral group Dy, of order 2m, where
m = m(s1, s2). If m < oo, then m = ny (with ny as in (P2)), and w, admits
precisely two reduced representations (of length m), namely wg = 518281 ... =
598189 ...

Combining (P1) and (P3), we obtain

(P4) If s,¢t € S satisty m(s,t) < oo, then there are precisely two reduced words of
length m(s,t) with letters in {s,t}, namely p(s,t) := (s,¢,s,...) and p(¢,s) =
(t,s,t,...).

2.3 Axioms for and Basic Properties of Buildings

Now we are ready to define the notion of a building A. Let C(A) be a set whose
elements we call chambers. Let (W, S) be a Coxeter system. Let § : C(A) xC(A) —
W be a map, which we call the (Weyl) distance map; in particular §(C, D) is the
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distance from the chamber C to the chamber D. Then A = (C(A),0d) is a building
of type (W, S) (and W is called the Weyl group of A) if the conditions (B1), (B2),
(B3), (B4) and (B5) below are satisfied. Let us introduce these conditions now.

The first axiom is the analogue of the axiom in an ordinary metric space that states
that the distance between two elements is zero if and only if the elements are the
same.

(B1) For all C,D € C(A) we have 6(C,D) =1id if and only if C' = D.

The analogue of the symmetry of an ordinary metric would be here that the distance
from C to D is the inverse of the distance from D to C' (thinking about distance as
the group element that is needed to go from one chamber to the other). It will turn
out that we only have to require this for distances in S. Actually, since all elements
in S are involutions, we have symmetry in these cases.

(B2) For all C, D € C(A) we have that 6(C, D) € S implies §(C, D) = 6(D, C).

The analogue of the triangle inequality will likewise only be required for elements of
S.

(B3) For any three chambers C, D, E € C(A) we have that 6(C,D) =46(D,E) € S
implies 6(C, E) € {id,é(C, D)}.

It may be clear by now that distances with values in S play a privileged role. This
comes with some special terminology, that we introduce now.

Two chambers C,D € C(A) are called s-adjacent if §(C,D) = s € S. Adjacent
chambers are chambers which are s-adjacent for some s € S. A gallery v is a
sequence of chambers v = (Co,C1, ..., Cy) such that C;_; and C; are adjacent, for
all i € {1,2,...,k}. The word (sy,...,sy), where s; = §(C;_1,C;), for all ¢, is called
the type of v. We also say that the gallery v connects Cy with C}, and that its length
is equal to k. If every gallery connecting Cy with CY is of length at least £, then we
say that vy is minimal, and that it is stretched between Cy and Cj. Also, we call k
the numerical distance between Co and Cy, and set d(Cy, Cx) = k.

The next axiom is the central one, and it is in fact very strong. It actually determines
the distance from any chamber to any other when all distances between chambers
with values in S are given.

(B4) For any two chambers C,D € C(A) and any reduced word (sy,...,s;), k €
NU {0}, we have 6(C, D) = s;...s; if and only if there exists a gallery of type
(s1,...,8;) connecting C' with D.

The last axiom is to exclude degenerate cases, which we do not want. It is more or
less equivalent to requiring in a geometry that every element is incident with at least
two elements of each type.
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(B5) For every chamber C' and every element s € S, there exists at least one chamber
s-adjacent to C.

An example of a building of type (W, S) is given by (W, S) := (W, §), with distance
map § : W X W — W : (w,w') = w™'w'. We call this the standard apartment of
type (W, S). For any building A = (C(A), ) of type (W, S), an isometric image of
the standard apartment of type (W,S) in A will be called an apartment of A.
Further important sub-buildings of A = (C(A), ) are obtained as follows. For every
Coxeter subsystem (W' = (S5'),5"), ' C S, and every chamber C, the metric dg
induced by § on C(Ag(C)) :={D € A|6(C,D) € W'} defines a building Ag(C) =
(C(As(C)),ds/). (The building axioms for Ag(C) follow from those for A and from
(P1).) Ag(C) is called the residue of C of type S’ in A and |S'| is the rank of
this residue. Residues of rank 1 are called panels. The building A is called thin
(respectively weak, thick) if each panel contains precisely two (respectively, at least
two, at least three) chambers. Note that any building is weak by Axiom (B5), and
that we only use this notion when we want to stress that A is not required to be
thick. We will also use the notions “thin” and “weak” for sets of chambers; a set M
of chambers is thin (weak) if for each chamber C' of M and for each s € S, there is
a unique (at least one) chamber of M which is s-adjacent to C.

Rank 2 residues with finite Weyl group (S"), S" = {s;, s;}, have some nice special
properties. One of them is the fact that two chambers of a rank 2 residue at maximal
numerical distance m(s;, s;) from each other can be connected by exactly two minimal
galleries (of length m(s;, s;)), see (P4) and (P7) below.

Now we turn to some basic properties of buildings, which we partly already indicated
while introducing the axioms. All of these facts are standard consequences of the
building axioms and can be found in the references we gave at the beginning of this
section.

Let a building A = (C(A),d) of type (W, S) be given. The antisymmetry of § reads
as follows.

(P5) 6(D,C)=46(C,D) ! for all C, D € C(A)
Axiom (B3) generalizes to the following “triangle inequality”.

(P6) If 6(C, D) = w and (D, E) = s € S, then 6(C, E) € {w,ws}, and 6(C,E) =
ws whenever {(ws) > {(w).

The next property links minimal galleries to reduced words.
(P7) A gallery v = (Co, Ch,...,Cy) of type f = (s1,...,5;) is minimal in A if and

only if the word f is reduced. Combining this with Axiom (B4), we deduce
d(C,D) ={(6(C, D)) for all C,D € C(A).
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Because of (P7), the numerical distance d(C, D) is often also called the gallery dis-
tance between C' and D. We mention another property of minimal galleries.

(P8) If v = (Cy, C4, . .., Cy) is a gallery of reduced type f and if v/ = (Cj, Cy, ..., C})
is another gallery of the same type f with the same extremities Cj = Cp and
C}, = Cy, then v/ = 7.

2.4 Spherical Buildings

In the spherical case, some interesting things happen. Remember that a building
is spherical if its associated Weyl group W is finite. Given a finite Coxeter system
(W, S), then obviously the length of a reduced word is bounded. Let ng be the
maximal length of a reduced word occurring in (W, S). By (P2), every reduced word
of length ng defines the same element wg of W, which is an involution. We call wy
the longest element of (W, S). Chambers at distance wg are usually called opposite.

For instance, in the dihedral group of order 2n generated by two “adjacent” reflections
s,t, the longest element is equal to stst... (n factors), which is also equal to tsts. ..
(n factors), and these are the only two expressions of the longest element arising
from a reduced word.

In a building of arbitrary spherical type, it easy to see that there are more chambers
opposite a given chamber C' than there are chambers at any other fixed distance
w € W\ {wp} from C. If the building is “sufficiently thick”, then there are even
“much more” chambers opposite C' than there are chambers not opposite C. (In
the case of finite buildings, one can make these slightly vague remarks more precise
by counting the number of chambers in question.) Hence we may conclude that
opposition is the “general position” of two arbitrary chambers. This translates (after
some non-trivial work!) into properties such as the following (see [1]).

A thick spherical building of type (W, S) is, up to a permutation of the set S, com-
pletely determined by the pairs of opposite chambers. Also, a surjective mapping
from the chamber set of one thick spherical building of type (W,S) to the chamber
set of another thick spherical building of type (W, S) preserving opposition and non-
opposition of pairs of chambers is induced by an isometry, possibly after renaming
the elements of S for one of the buildings.

In showing these properties, the following proposition was established.

Proposition 1 A set M of chambers of a thick spherical building A is the set of
chambers of an apartment if and only if for every chamber C € M, the number
of chambers in M opposite C is equal to one, and for every chamber D ¢ M, the
number of chambers of M opposite D is an even number.

While the above mentioned properties were generalized to other distances than op-
position, and to non-spherical buildings, too, only the “only-if” part of Proposition 1
was proved to have an analogue for arbitrary elements w € W, with W not necessar-
ily finite, see Proposition 1.6 of [2]. In the present paper, we complement our results
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by establishing an analogue of Proposition 1 for arbitrary buildings. As a special
case, the “if” part of the above proposition will be reproved.

2.5 Main Results

We now introduce some specific notation in order to be able to state our main results.

Let (W, S) be a Coxeter system, and let s,t € S. If m(s,t) < oo, then p(s,t) =
(s,t,s...), of length m(s,t), is a reduced word in s and ¢ (see (P4)).

Let A = (C(A), ) be a building of type (W, .S), for some Coxeter system (W, .S), and
let M C C(A) be a set of chambers. Then M is conves if, for every two chambers
C, D of M, all galleries stretched between C' and D belong to M. The convex closure
cl(M) of a set M of chambers is the smallest convex set of chambers containing M.
The set M is called 2-conver if, for every gallery v = (Cy,Ch,...,Cn) of type
p(s,t) contained in M (where s,t € S satisfy m(s,t) < o0), the (by (P8) uniquely
determined) gallery 4" = (C{, C1, ..., Cl) of type p(t,s) with C) = Cp and C}, = Cy,
is also contained in M.

The notion of 2-convexity is a priori weaker than the notion of 2-local convexity.
We call a set of chambers M 2-locally convex if, whenever two chambers C, D of
M belong to the same rank 2 residue, all chambers of the convex closure cl({C, D})
belong to M.

A set of chambers is connected if any two chambers in the set can be joined by a
gallery which is completely contained in the set. A connected component of a set of
chambers is a subset which is maximal with respect to being connected. We denote
the diameter of a building A by diam(A). If finite, it is the largest numerical distance
between chambers (equivalently, it is the largest length of a reduced gallery).

The first proposition we will prove in this paper reads as follows:

Proposition 2 Let A = (C(A), ) be a building of type (W, S), and let M C C(A)
be a set of chambers. Then M is convex whenever M is connected and 2-convez.

Let A = (C(A), ) be a building of type (W, S), let M C C(A) be a nonempty set of
chambers, and let w € W be arbitrary. For any chamber C' € C(A), we denote by
N, (C) the number of chambers X € M such that 6(C, X) = w. Then we define
the following Condition (E,,) for M:

(E,) For each C'€ M, we have n,,(C) = 1;
for each C' € C(A)\ M, we have n,(C) = 0 mod 2.

For ¢ € N, we say that M satisfies Condition (E,) if it satisfies Condition (E,) for
all w € W with {(w) = ¢. One easily checks that M satisfies (E;) if and only if M
is thin.

We shall prove:
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Proposition 3 Let A = (C(A), ) be a thick building of type (W, S), and let N be a
positive integer not exceeding the diameter of A, i.e. such that N < sup{{(w)|w €
W}. Let M be a nonempty set of chambers. Then M 1is the set of chambers of an
apartment of A if and only if M satisfies (E;) for all ¢ > N.

If we want to use Condition (E,) for a set of chambers for only one value of ¢, then
we only have to consider connectivity.

Proposition 4 Let A = (C(A),§) be a thick building of type (W, S), and let m be
defined as
m = max({m(s,t)|s,t € S and m(s,t) < co} U {1}).

Let M be a nonempty set of chambers. If (E;) holds for M for some { > m, with
¢ < diam(A), then every connected component of M is the set of chambers of an
apartment of A.

Combined with the “only if” part of Proposition 3, we immediately obtain the fol-
lowing

Corollary 5 Let A and m be as in Proposition 4. Then a nonempty set M of
chambers of A is the set of chambers of an apartment of A if and only if M is
connected and satisfies (E;) for some ¢ with m < ¢ < diam(A).

We will mention some other corollaries later on, and also present some counterexam-
ples to show that our assumptions are optimal (see Section 5). In particular, we shall
show that an M satisfying the assumptions of Proposition 4 need not be connected,
even if A is spherical and ¢ = diam(A) — 1.

3 2-Convexity

Before we prove Proposition 2 we need the notion of (elementary) homotopy.

Let (W,S) be a Coxeter system, and let s,t € S with s # ¢t and m(s,t) < oo.
Then a word fip(s,t)fs is called elementary homotopic to the word fip(t,s)f2. The
transitive closure of the relation “...is elementary homotopic to...” is the relation
“...1s homotopic to...”.

It is well known that, if a word f is not reduced, then it is homotopic to a word
containing (s, s) for some s € S. It is also well known that two reduced words
representing the same element in W are homotopic to each other.

We can now prove Proposition 2.

Suppose M is a connected and 2-convex set of chambers in the building A = (C(A), 9)
of type (W, S). First we note that the definition of (elementary) homotopy and 2-
convexity immediately implies the following:
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(1) If a gallery v of type f is contained in M and f' is homotopic to f, then M
also contains a gallery v' of type f' with the same extremities as .

Now let C,D be arbitrary chambers of M. By connectivity, there is some gallery
v = (Co,Ch,...,Ch), with Co = C and C,, = D, contained in M. Assume that 7 is
of minimal length in M with these properties. We want to show that then v is also a
minimal gallery in A. Let f be the type of 7, and suppose that f is not reduced. Let
/" be a word homotopic to f and containing the word (s, s), for some s € S. Choose
a gallery 7/ in M of type f" having the same extremities as v (which is possible
by (i)). Then 4 contains a sub-gallery (D, D2, D3), with D;, Dy, D3 mutually s-
adjacent. We can now delete either D, (if Dy # D3) or Dy and Ds (if Dy = Dj)
in 7' to obtain a shorter gallery connecting C' and D in M, which contradicts our
minimality assumption concerning . This shows

(11) For any C,D € M, there is a gallery v connecting C and D, which is minimal
in A and which is contained in M.

In order to prove Proposition 2, we have to show that every gallery of reduced
type connecting two chambers C, D € M is contained in M. But the types of two
galleries with the same extremities C' and D and of reduced type are automatically
homotopic to each other since they both represent the element 6(C, D) € W. And if
f (and hence also any f’ homotopic to f) is reduced, then there is by (P8) only one
gallery of type f in A which connects C and D. Combining (i) and (i¢), the proof
of Proposition 2 is now complete.

‘We mention two immediate corollaries.

Corollary 6 Any thin connected and 2-convex set M C C(A) is (the set of chambers
of ) an apartment of A.

Indeed, by Proposition 2, M is convex, and the result follows from Section IV 4 in

3]-

Corollary 7 If M C C(A) is weak, connected and 2-convez, then (M,§/M x M)
is a sub-building of (C(A,9).

This follows immediately from the definition of buildings as given in Section 2. One
can rephrase this statement as follows.

Corollary 8 If M C C(A) is connected, and if the intersection of M with the
chamber set of any rank 2 residue of A is either empty or (the chamber set of a)
building, then M itself is the chamber set of a building of the same type as A.
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4 Characterizations of Apartments

4.1 Proposition 3

We now prove Proposition 3. We shall freely use the properties (P1) to (P8) collected
in Section 2.

Henceforth we let A = (C(A),d) be a (not necessarily thick, for the time being)
building of type (W,.S). We assume that M is a nonempty set of chambers of A.
The “only if” part of Proposition 3 is proved in [2], Proposition 1.6. In order to
prove the “if” part, we show some lemmas.

Lemma 9 Suppose A is thick. Let C,C" € M, let 6(C,C") = w, and let v =
(Co,Ch,...,Cy) be a gallery stretched between Co = C and Cp = C'. If (E,) and
(Ey-1) are satisfied for M, then Cy € M.

Set D := C} and s := §(C, D). Since A is thick, there exists a chamber E of A which
is s-adjacent with both C' and D. Since 7 is minimal, {(sw) < {(w); set w' = sw.
Now §(C’",C) = w™" and 6(C’,D) = w'~". Hence 6(C",E) = w'™'s = w™', and
d(E,C") = w. Condition (E,-1) for M implies that E ¢ M.

Now we claim that, for arbitrary X € M \ {C’}, the condition §(D,X) = w is
equivalent to 6(E,X) = w. Indeed, assume for instance §(D,X) = w. Then
0(C,X),0(E,X) € {w,w'}. But if §(C,X) = w, then C has distance w to two
chambers of M, namely C' and X. Hence 6(C, X) = w'. Since {(w') < {(w), prop-
erty (P6) (or rather its “inverse”; see also (P5)) implies that 6(E, X) = sw' = w.
Similarly 6(E, X) = w implies §(D, X) = w. The claim is proved.

Consequently, since §(E,C") = w # 6(D,C"), we see that npy(E) = naw(D) + 1.
Since E ¢ M, Condition (E, ) for M implies that n4,,(E) is even; hence naq,(D)
is odd, implying by (E,,) that D € M. |

Lemma 10 Let 0 < | < sup{l(w')|w' € W}, and let s € S. Then there exists
w € W with {(sw) < l(w) =L

By assumption there exists v € W with ¢(u) = [. If {(su) < ¢(u), then we are done
(because we can then put v = w). So assume that ¢(su) > ¢(u). Since u # id, we
can write u = u't, with ¢(u') < £(u) and ¢t € S. Hence su't is reduced of length [+ 1,
and we put w = su'. ]

Lemma 11 If A is thick, and if for some 0 < ¢ < diam(A), the condition (E,) holds
for M, then M 1is thin.

First we show that M is weak, i.e. any chamber in M is, for any s € S, s-adjacent
to at least one other chamber in M. Let C' € M and s € S be given. By Lemma 10,
there exists w € W such that {(sw) < {(w) = {. Hence we may write w = styts .. .1,
with ¢; € S, 4 € {2,3,...,¢}. Let C'" € M be the unique chamber in M with
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0(C,C") = w. Let v = (C,C1,Cy,...,C), Cp = C', be a minimal gallery of type
(s,t2,t3,...,8¢). Lemma 9 now shows that C; € M.

Secondly, we show that M is thin. Indeed, suppose by way of contradiction that
C,D, E are three mutually s-adjacent chambers contained in M. Let C' € M be
such that §(C,C") = w, with w as in the first part of the proof. Also, we may take
D = (4, with C; as above. Then {(w™lss) > {(w~!s) and so (P6) implies that
5(C',E) =wtss = w™! = §(C’, C), contradicting Condition (E,-1). ]

We now introduce a condition on M that we denote by (Cy), with ¢ a natural number.

(C¢) For every pair of chambers C, D of M with d(C, D) = ¢, the set cI({C, D}) is
contained in M.

Lemma 12 If M is a weak set of chambers of A, and if £ is a natural number with
¢ < diam(A), then Condition (C,) for M implies Condition (C,), for all natural
n</.

Given C,D € M such that d(C, D) < ¢, we have to show that cI({C,D}) C M.

Set u = 6(C, D). Since £(u) < ¢ < diam(A), there exists (in view of (P2)) some ¢, €
S with £(ut;) = €(u) + 1. Proceeding inductively, we find ¢y, s, ..., ¢, m = £ —{(u),
such that l(utity.. . t,) = L. Set w = utity ... tn.

Since D € M and M is weak, there exists D; € M with §(D, D;) = ¢;. Inductively
we find D; € M with §(D;_1,D;) = t;, for i € {1,2,...,m} (where Dy := D). By
Axiom (B4) we conclude that 6(C, D,,) = w and in particular d(C, D,,) = {(w) = L.
Condition (C;) implies that cl({C, D}) C cl({C, D, }) C M. ]
Remark. Suppose that A is spherical and that d = diam(A). Then, if (Cy) is
satisfied for M C C(A), and M contains at least two opposite chambers, M is
convez.

Indeed, M contains an apartment ¥ (as the convex closure of two opposite chambers
in M). For any C € M, we find a chamber D € X opposite C as follows. First choose
an arbitrary chamber X € ¥ and set w := §(C, X) € W. Then the longest element
wp of W admits, by (P2), a reduced expression wy = wv with ¢(wg) = ¢(w) + £(v),
where v := w™wy. Choosing D as the unique chamber in ¥ with §(X, D) = v, an
easy induction using (P6) now shows §(C, D) = §(C, X)d(X,D) = wv = wy. By
assumption the unique apartment containing C, D is contained in M. Since any
C € M is an element of an apartment contained in M, the set of chambers M is
weak. Lemma 12 completes the proof of the remark.

We now arrive at the crux of the proof of Proposition 3.

Lemma 13 If A is thick and ¢ < diam(A), then Condition (E,) for M implies
Condition (Cy) for M.

Given C,D € M with d(C, D) = ¢, we must show that cI({C,D}) C M. Equiva-
lently, we have to show that, given any minimal gallery v = (Cy, C4, . .., Cy) stretched
between C' = Cy and D = (Y, every chamber of y belongs to M.
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Set w := §(C, D), s == 6(C,C}) and w' := sw. Then {(w') +1 = {(w) = ¢ and
0(Cy,D) = w'. By Lemma 9, we also have C; € M. Since {(w') < l(w), the
element w' cannot be the longest element of W, hence there exists ¢t € S such that
lw't) = l(w')+ 1 = ¢ (see (P2)). By Lemma 11, M is thin. Hence there exists
D' € M such that 6(D, D’) = t, and so, using (P6) again, we obtain §(Cy, D') = w't.
But then (C1,Cs,...,Ci—1, D, D') is a gallery of length ¢ stretched between C; and
D'. Lemma 9 shows us that Cy € M. Proceeding inductively, we obtain C; € M,
for all i € {1,2,...,¢}. ]
We can now prove Proposition 3. Indeed, under the given conditions, the set M is
thin by Lemma 11. But then Lemma 12 and 13 imply that M is also convex. Hence
M is the set of chambers of an apartment of A, see for instance [3], Section IV, 4. on
page 88.

Remark. If I is finite, and wy denotes the longest element of (W,.S), with length
ng, then as a special case of Proposition 3, we can characterize the set of chambers
of an apartment by the Condition (E,,), which coincides with Condition (E,,). This
is Proposition 1 above.

4.2 Proposition 4

We now prove Proposition 4.

We are given a nonempty set M of chambers of a thick building A = (C(A), )
satisfying (E;), for some ¢ > m, where m is defined as

m = max({m(s,t)|s,t € S and m(s,t) < oo} U{1}).

We have to show that every connected component of M is an apartment. As before,
it suffices to prove that M is thin and that every connected component is convex.
Now, from Lemma 11, we deduce that M is thin. The result for m = 1 already
follows, since M is trivially 2-convex, and so every connected component is convex
by Proposition 2.

Lemma 13 implies that M satisfies (C;), and with Lemma 12 we conclude that M
satisfies (C,) for all n < m. But then it is clear that M is 2-convex (M contains
cl{C, D} for any two chambers C, D which are contained in some spherical rank 2
residue of A and thus satisfy d(C, D) < m).

Hence every connected component is convex by Proposition 2, and so Proposition 4
is proved.

5 Some Counterexamples

In this section, we assume that the reader is somewhat familiar with the construction
of buildings of type A,, the spherical ones of rank 2, and affine buildings of type A,.



102 PETER ABRAMENKO AND HENDRIK VAN MALDEGHEM

5.1 About connectivity in Proposition 4

We show that the assumptions in Proposition 4 are, in general, never strong enough to
conclude that M is connected. This is not surprising if the building is not spherical.
For instance, in an affine building of type (W, S), and for given natural number ¢, it
is often possible to construct two apartments which are at (numerical) distance > ¢
from each other (take for instance a tree). In the spherical case, taking ¢ = diam(A),
we are reduced to Proposition 1, and M is automatically connected. Hence there
remains to investigate the values ¢ < diam(A), for a spherical building A. We will,
however, show that for type A,, the assumptions for ¢ = diam(A) — 1 are not strong
enough to guarantee the connectivity of M.

So we consider a building A of type A,, i.e. a building arising from a projective
space of dimension n over the skew field K by taking as set of chambers the maximal
flags of the geometry. In this building, an apartment is the barycentric subdivision
of an n-simplex, i.e. the set of chambers arising from all subspaces spanned by the
proper nonempty subsets of a set of n + 1 independent projective points. Such a set
corresponds to some basis of the underlying vector space K**!. So an apartment of
A is completely and uniquely determined by a basis of K**!.

We first show the following technical lemma.

Lemma 14 Suppose that |K| > (2”:1), then we can find a set S of 2n + 2 vectors
in K" such that every subset of S of cardinality n + 1 is a basis of K+,

We start with an arbitrary basis {eg, ei,...,e,} of K™ (for instance, the standard
basis). Let there be given i vectors eni1,€ny2,---,€nsi; ¢ € {0,1,...,n}, so that
every subset of size n + 1 of {eg, ey, ...,en4:} is a basis of K*™'. We show that we
can find a vector e,.;41 such that every subset of size n + 1 of {eq, €1, ..., €ntit1} is
a basis of KM,

Indeed, it is sufficient for en1i41 to be not contained in any hyperplane spanned by
n vectors of the set {eg,e1,...,en4i}. Since there are (”“ZH) < (2”:1) < |K]| such
hyperplanes, these hyperplanes cannot fill the entire vector space.

Applying the foregoing argument subsequently for i = 1,2, ...,n, the lemma follows.
O

Now we remark that two chambers in a spherical building of type A, are opposite if
and only if for each i € {1,2,...,n} the subspace of (vector) dimension ¢ of one cham-
ber meets the subspace of dimension n+1—1 of the other chamber in the zero vector.
So clearly, every chamber of the apartment ¥, determined by the basis {eg, e1,...,¢e,}
is opposite every chamber of the apartment Xy determined by {e,11,€nsa,- .., €211}
(using the above notation and the set guaranteed by Lemma 14).

Hence by the “only if” part of Proposition 3, the set of chambers of ¥; U X, satisfies
(Ey) for every ¢ < diam(A), and is nevertheless disconnected.
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5.2 About the bound on / in Proposition 4

We show with a counterexample that the bound ¢ > m = max({m(s,t)|s,t € S
and m(s,t) < oo} U {1}) is sharp. Therefore, let A be a thick rank two building
associated to a generalized polygon I', hence with Weyl group Ds,,, for some m > 2.
We denote the longest element of Dy, (with respect to two suitable generators) by
wy. The reader not familiar with generalized polygons can put m = 3 in which
case the generalized polygon is nothing other than an ordinary projective plane. We
remark that the chambers of A are the incident point-line pairs of I', hence edges in
the incidence graph of I' (which is the graph of points and lines of ' with adjacency
being incidence). Also, two chambers consisting of the point-line pairs {p, L} and
{p/, L'} are opposite if and only if the distances from the vertices p and L to the
vertices p’ and L' measured in the incidence graph are contained in {m,m — 1}.

Now let ¥ be a cycle of length 2m + 2 in the incidence graph of I'. Such a cycle exists
since we assume that A is thick (see [7], Lemma 1.3.2). The cycle ¥ defines a closed
gallery of 2m + 2 chambers Cy, C, . .., Copny1, Comrz = Co, with C;_; adjacent to Cj,
i€{L,2,...,2m + 2}. Clearly d(Co,C;) = d(Co, Comy2—;) =t for i € {1,2,...,m}
and 6(Cy, C;) # 6(Co, Comya—;) for i < m. Hence both C,, and C,42 are opposite Co.
So the distances from the vertices defined by C,, and C;, 45 to the vertices defined by
Cy are contained in {m,m — 1}, implying easily that also Cy and C,, are opposite.
We conclude that for each chamber C' € ¥ and for each w € Dy, \ {wo}, there is a
unique chamber D in ¥ such that §(C, D) = w.

Consider the apartment ¥; containing Cy and C,,, and the apartment 3, containing
the chambers C,,+1 and Cs,, 1. One can check easily that every chamber of ¥; U 3
that does not belong to X, belongs to ¥; N X,. Now let C' be any chamber outside
Y, UX,, and let w € Dy,,. By Proposition 1.6 of [2], there are an even number n; of
chambers D in ¥; with §(C, D) = w. Adding n; and ns, we count the chambers not
in ¥ twice (as they belong to ¥ NX;). We conclude that there are an even number
of chambers D in ¥ with §(C, D) = w. Similarly, if C' € ¥; \ £ = X5\ X, then there
are 0 or 2 chambers D with 6(C, D) = w.

We have shown that (E,,) is satisfied for X, for all w € Dy, \ {wo}. Yet, ¥ is not an
apartment. This shows that the bound on ¢ in Proposition 4 is sharp.

Remark. We considered (2m + 2)-cycles here for the sake of convenience. In fact, if
A is “thick enough”, one can construct (2m+ 2k)-cycles ¥ in A for any given natural
number £ such that Condition (E,,_) is satisfied for ¥. Even more: If T is such that
there are infinitely many points on each line and infinitely many lines through each
point, then one can construct a Coxeter complex ¥ of type A, (corresponding to the
infinite dihedral group Do) in A satisfying (En,—1).

5.3 About Proposition 2

One could wonder if the assumption in Proposition 2 of 2-convexity is optimal. In
particular, would it hurt to drop the assumption of 2-convexity in one single rank 2
residue? In other words, if a set M of chambers is connected, and if in all rank 2
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residues but one, M induces a convex set, is M necessarily convex?

The answer is no, and we briefly describe an example, without introducing the no-
tions. We refer to e.g. [6] for the definitions, more information and background.

Let A be a building of type A,, and let A® be the building at infinity (which is a
building of type As; hence associated to a projective plane). Let @) be a quadrangle
in that projective plane. Then @ defines four apartments of A®, which in their turn
define four apartments X1, s, X3, %4 in A. Now the union

M:=(ENE)U(ENZ)U(E;NI)U (N

is a set of chambers which is thin and connected. If A is viewed as a simplicial
complex, then the intersection of the four apartments is a vertex v, and it can be
shown that the intersection of M with the rank 2 residue defined by v is a set of
8 chambers arranged in a quadrangle; hence not convex. All other rank 2 residues
intersect M in a convex set. Our example is complete.
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