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Abstract

The tree- and clique-width are two graph parameters which are of pri-
mary importance in algorithmic graph theory because of the fact that
many NP-hard graph problems admit polynomial-time solutions when
restricted to graphs of bounded tree- or clique-width. Both parameters
are known to be unbounded in the class of all bipartite graphs. We study
the tree- and clique-width of bipartite graphs in special classes. The
main result is a necessary condition for the tree- and clique-width to be
bounded in subclasses of bipartite graphs defined by finitely many for-
bidden induced bipartite subgraphs. We use this result to analyze the
tree- and clique-width of bipartite graphs in classes defined by a single
forbidden induced subgraph.

1 Introduction

The tree-width and clique-width are two graph parameters which are of interest due
to the fact that many algorithmic problems being NP-hard in general graphs become
polynomial-time solvable when restricted to graphs where one of these parameters
is bounded. Both parameters are known to be unbounded in the class of general
bipartite graphs. We study the tree- and clique-width of bipartite graphs in special
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classes. The main result is a necessary condition for the tree- and clique-width to be
bounded in subclasses of bipartite graphs defined by finitely many forbidden induced
bipartite subgraphs. This leads to a complete classification of monogenic classes of
bipartite graphs (i.e. those defined by a single forbidden induced bipartite subgraph)
with respect to bounded or unbounded tree-width. In case of clique-width such a
classification remains an open problem. In this paper we reveal two new monogenic
classes of bipartite graphs of bounded clique-width and distinguish all minimal and
maximal monogenic classes with unknown clique-width.

We consider only simple undirected graphs without loops or multiple edges. The
vertex set and the edge set of a graph G are denoted V(G) and E(G), respectively.
A subgraph of G induced by a set W C V(G), denoted G[W], is the graph with
the vertex set W and two vertices being adjacent if and only if they are adjacent in
G. With some abuse of terminology, we shall say that G contains H as an induced
subgraph if H is isomorphic to an induced subgraph of GG. If G does not contain, we
say that G is H-free. For a vertex v € V(G), we denote by N(v) the neighborhood
of v (i.e. the set of vertices adjacent to v) and by deg(v) := |N(v)| the degree of v.
The complement of a graph G is denoted G.

A bipartite graph G = (W, B, E) cousists of a set W of white vertices, a set B
of black vertices and a set E of edges each of which connects unlike colored vertices.
The fact that the vertices of a bipartite graph are colored makes it necessary to define
more exactly the notion of isomorphism. We say that two bipartite graphs G and
H are isomorphic if between their vertex sets there is a one-to-one correspondence
that preserves the adjacency and respects the bipartition, i.e. two vertices of G are
adjacent if and only if the corresponding vertices of H are adjacent, and two vertices
of G have the same color if and only if the corresponding vertices of H have the same
color. The bipartite complement of a bipartite graph G' = (W, B, E) is denoted G
and is defined as follows: G = (W, B, (W x B) — E). For instance, the bipartite
complement of a cycle on 6 vertices is 3K, i.e. the disjoint union of 3 copies of Ko,
where K3 is a complete graph on 2 vertices. As usual, P, and C,, denote a chordless
path and a chordless cycle on n vertices, respectively, and K, , a complete bipartite
graph with parts of size n and m. Also S, and H, stand for the graphs represented
in Figure 1.

Figure 1: Graphs S;;; and H,

We denote the class of all bipartite graphs by B and use special notations for
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some other particular classes of graphs:
X, the class of (Cs, Cy, ..., Cy)-free graphs;
Y}, the class of (Hi, Ha, ..., H))-free graphs;
Z3, the class of graphs with maximum vertex degree at most 3;
S, the class of graphs every connected component of which is of the form S; ;.

2 Preliminaries

In this section we formally define the notions of tree- and clique-width and provide
auxiliary results that will be useful in the sequel.

To introduce the notion of tree-width let us use its relationship with triangulations
of graphs. A graph is said to be chordal or triangulated if it does not contain induced
cycles of length at least four. Given an arbitrary graph G = (V, E), a triangulation
of G is a chordal graph H = (V, F) such that E C F. A triangulation H of G is
minimal if no proper subgraph of H is a triangulation of G. The tree-width of G,
denoted tw(G), is

min{w(H) — 1| His a minimal triangulation of G},

where w(H) is the size of a maximum clique in H.

Graphs of tree-width 0 are empty (edgeless), and graphs of tree-width at most
1 are trees, or more generally, forests. Graphs of tree-width at most & (known also
as partial k-trees) appeared in the literature as a generalization of trees. Though
trees are bipartite graphs, the tree-width of general bipartite graphs is unbounded,
since it is unbounded even in the class of complete bipartite graphs. Indeed, in any
triangulation of a complete bipartite graph, at least one of the parts is a clique (since
otherwise the graph contains a Cy) and hence tw(K,,) > n.

The clique-width of a graph G is the minimum number of labels needed to con-
struct G using the following four operations:

(i) Create a new vertex v with label i (denoted i(v)).

(ii) Form the disjoint union of two labeled graphs G and H (denoted G @ H).
(iii) Join all vertices with label ¢ to all vertices with label j (i # j, denoted n; ;).
(iv)
Every graph can be defined by an algebraic expression using these four operations.
For instance, the cycle on five consecutive vertices a, b, ¢, d, e can be defined as follows:

N4,1(N4,3(4(€) ® pasa(p3—2(na3(4(d) © 132(3(c) © 12,1(2(0) ® 1(a))))))))-

Such an expression is called a k-ezpression if it uses at most k different labels. Thus
the clique-width of G, denoted cw(G), is the minimum k for which there exists a
k-expression defining G. For instance, the above expression shows that cw(Cs) < 4.
Moreover, one can easily determine that cw(C,) < 4 for any n, and cw(T) < 3 for

Change the label of all vertices with label 7 to j (denoted p;_,;).



60 V.V. LOZIN AND D. RAUTENBACH

any tree T. With some more involved analysis it has been shown that the clique-
width is bounded in the class of distance-hereditary graphs [7] (generalizing trees),
S1.2,3-free bipartite graphs [8] (which includes bi-complement reducible graphs [6]
and bipartite graphs totally decomposable by canonical decomposition [5]) and in
the class of (Sy,2,2, A)-free bipartite graphs [1] (A is the graph obtained from a Pg by
connecting two vertices of degree 2 of distance 3 by an edge). On the other hand,
the clique-width is known to be unbounded in the class of general bipartite graphs,
since it is unbounded for grids [7]. Moreover, it is unbounded for chordal bipartite
graphs (i.e. bipartite graphs without induced cycles of length at least 6) [2] and even
for bipartite permutation graphs [3].

Many interesting relations between tree- and clique-width have been revealed
by Courcelle and Olariu in [4], among which the following two results will be of
particular interest in this paper.

Proposition 1 For any class of graphs X, there is an integer function f such that
tw(X) < f(deg(X),ew(X)).

Proposition 2 For any graph G, cw(G) < 22W(G)+2 4 1,
Also, Courcelle and Olariu proved that for any graph G,

ew(G) < 2ew(G). (1)

A relation similar to inequality (1) has been established in [9] between a bipartite
graph and its bipartite complement.

Proposition 3 If G is a bipartite graph, then cw(G) < 4cw(G).

It has been shown in [4] that the clique-width of a graph G cannot be less than the
clique-width of any of its induced subgraphs. This allows us to study only hereditary
classes of graphs, i.e. those containing with each graph G every graph isomorphic to
an induced subgraph of G. If a class of graphs X is not hereditary, we can extend it
to a hereditary class by adding to X all induced subgraphs of the graphs belonging
to X. It is well known that a class of graphs is hereditary if and only if it can be
characterized by a set of forbidden induced subgraphs. For instance, the class of
bipartite graphs is precisely the class of (Cs, Cs, Cr, .. .)-free graphs. If X is a proper
subclass of bipartite graphs, we shall describe it only by forbidden induced bipartite
subgraphs: these are exactly minimal bipartite graphs that are not in X.

In the study of clique-width we can obviously be restricted to connected graphs,
since a disconnected graph can be obtained from its connected components with
the @-operation. Moreover, since our objective is to distinguish classes with bound-
ed/unbounded clique-width, we may consider only those (bipartite) graphs whose
(bipartite) complement is connected. A more general proposition shown in [4] states
that
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Proposition 4 For any graph G,
cw(G) = max{cw(H) | H is a prime induced subgraph of G}.

The notion of prime graph was introduced in the study of modular decomposition
[10]. Restricted to bipartite graphs it can be defined as follows: a bipartite graph
G is prime if G is connected and every two distinct vertices of G have different
neighborhoods.

We will also need the following proposition proven in [2].

Proposition 5 For a class of graphs Y, let [Y]; be the class of graphs G such that
G — U belongs to Y for a subset U C V(G) of cardinality at most k. If Y is a class
of graphs of bounded-clique width, then so is [Y]y.

3 Subclasses of bipartite graphs defined by finitely many
forbidden induced bipartite subgraphs

We begin by establishing the following simple result.
Lemma 1 Subdivision of an edge of a graph G does not change the tree-width of G.

Proof. Subdivision of an edge cannot decrease the tree-width, since the tree-
width of a graph is at least the tree-width of any of its minors.

Now let us show that subdivision of an edge cannot increase the tree-width. If
the tree-width is 0, there is nothing to subdivide. If the tree-width is 1, then we
have a forest which is a forest again after subdivision. Now let G be a graph of
tree-width at least 2 and let Gt denote a minimal triangulation of G such that
tw(G) = w(Gr) — 1. Subdivide an edge uv of G by introducing on it a new vertex
w, and denote the new graph by G'. Finally let G/ be the graph obtained from Gr
by adding a new vertex w adjacent to w and v only. Clearly G’ is a triangulation of
G' and hence tw(G') < w(GY) — L. In addition, w(G%) = w(Gr), since w(Gr) > 3.
Therefore, tw(G') < tw(G). =

Lemma 2 For any integers k and [, the tree- and clique-width of graphs in the class
Xi,NY,NZ3N B is unbounded.

Proof. We will show the unboundedness of the tree-width only. The unbound-
edness of the clique-width will follow then from Proposition 1.

The tree-width is unbounded in the class of so-called walls (cf. [11]), which are
planar graphs of degree at most 3 (see Figure 2). Subdividing each edge of a wall
once, we increase the length of each cycle twice, and hence obtain a bipartite graph.
We repeat this operation as many times as needed to get rid of induced cycles C;
with ¢ < £k and induced graphs of the form H; with ¢ < [. The graph obtained in this
way belongs to the class X; NY; N Z3 N B and the tree-width of this graph coincides
with the tree-width of the initial wall according to Lemma 1. Hence the lemma. m



62 V.V. LOZIN AND D. RAUTENBACH

Figure 2: A Wall

Theorem 1 Let X be a class of bipartite graphs defined by a finite set F of forbidden
induced bipartite subgraphs. If F contains no graph in S or no graph the bipartite
complement of which is in S, then the tree- and clique-width of graphs in X is
unbounded.

Proof. We will show the unboundedness of the clique-width. Together with
Proposition 2 this will imply the same conclusion for the tree-width.

Concerning the clique-width, Proposition 3 allows us to restrict ourselves to the
assumption that FNS = 0.

Denote by k an integer greater than the number of vertices in a largest graph in
F. To prove the theorem, we will show that X;NY,NZ3;NB C X. By contradiction,
assume that a graph G € X; NY, N Z3 N B does not belong to X. Then G must
contain a graph A € F as an induced subgraph. Since G belongs to X}, the graph A
contains no induced cycles C; of length j < k. Moreover, A cannot contain a cycle
C; with j > k, because the number of vertices of A is less than & due to the choice
of k. Therefore, A contains no cycles, i.e. A is a forest. Analogously, since G € Y},
and |V(A)| < k, the graph A contains no induced subgraphs of the form H;, i.e.
every connected component of A has at most one vertex of degree at least 3. Finally,
since G € Z3, A has no vertices of degree more than 3. But then every connected
component of A is of the form S; j, a contradiction. m

The result of Theorem 1 provides a necessary condition for the tree- and clique-
width to be bounded in a class of bipartite graphs defined by finitely many forbidden
induced bipartite subgraphs. However, this condition is not sufficient. Indeed, the
class of (Sa22,Cs)-free bipartite graphs satisfies the condition of Theorem 1, since
S22 € S and Cs € 8. However, this class contains all bipartite permutation graphs
the clique-width (and hence the tree-width) of which is generally unbounded [3].

Another important observation is that the condition of Theorem 1 is necessary
only for classes defined by finitely many forbidden induced bipartite subgraphs.
Indeed, for the class of chordal bipartite graphs of vertex degree at most k, i.e.
(K1 g+1,Cs, Cs, Crg . . .)-free bipartite graphs, the set of forbidden induced bipartite
subgraphs is infinite and for £ > 2 it contains no graphs in §. However, the tree- and
clique-width of graphs in this class has been shown to be bounded for any natural &

[9]-
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4 Monogenic classes of bipartite graphs

Let us now apply Theorem 1 to monogenic classes of bipartite graphs, i.e. classes
defined by a single forbidden induced bipartite subgraph. We denote the only for-
bidden subgraph by H. Together with observation that the tree-width of complete
bipartite graphs is unbounded Theorem 1 provides a complete classification of H-free
bipartite graphs with respect to bounded or unbounded tree-width. Indeed, in order
the tree-width to be bounded in a class of H-free bipartite graphs, the graph H must
be complete bipartite (otherwise the class contains all complete bipartite graphs) and
must belong to S. It is not hard to see that among complete bipartite graphs there
is only one maximal graph belonging to S, namely K;3;. Every connected graph
in the class of K s-free bipartite graphs is either a cycle or a path. Therefore, the
tree-width of H-free bipartite graphs is bounded if and only if H is K 3 or one of its
subgraphs.

The analysis of the clique-width of bipartite graphs in monogenic classes is more
complicated. By Theorem 1 the clique-width of H-free bipartite graphs is bounded
only if both H € S and H € S. An example of a graph with this property is Si23,
which is self-complementary in the bipartite sense. As mentioned before, the clique-
width of S; 2 3-free bipartite graphs is bounded [8]. Other examples of a graph H
with H € S and H € S are represented in Figure 3. Notice that none of these graphs
is an induced subgraph of S 2 3. Therefore, the problem of determining whether the
clique-width of A;-free graphs is bounded or not is open for any j = 1,...,8. In this
paper we settle this problem for j =1 and j = 2.

Theorem 2 The clique-width of A;-free bipartite graphs is bounded.

Proof. Let G be a connected prime A;-free bipartite graph G and a be a vertex
in G. Denote by A; the subset of vertices at distance j from a. To avoid an induced
Ay, we conclude that A; = @ for any j > 3, every vertex in A, has at most two
neighbors in Az and at most two non-neighbors in A;. This implies that if A3 has a
vertex of degree at least 3, then |A3] < 5. Indeed, assume that a vertex b € Aj has
at least 3 neighbors ¢, ¢, c3 in Ay and suppose by contradiction that Az contains at
least 4 vertices other than b. Then each of those vertices must have a neighbor in
{c1,¢2,¢3} (else an induced A; arises), and hence one of ¢y, ¢, 3 has at least three
neighbors in Ajz, contradicting the above conclusion. Complementary arguments
show that if a vertex of A; has at least 3 non-neighbors in A,, then |A;| < 5. This
discussion together with Proposition 5 permits to assume without loss of generality
that every vertex of Az has degree at most 2, and every vertex of A; has at most
two non-neighbors in A,. In other words, both the subgraph G, := G[A, U A;] and
the bipartite complement of the subgraph G := G[A; U Ay] are of maximum vertex
degree at most 2. Besides, without loss of generality we may suppose that both
|A1| > 1 and |A3| > 1.

Now let us show that there are finitely many vertices of As that have degree 2 in
G or in él. To prove this, consider three vertices by, by, b3 € Ay each of which has
two neighbors in Az, and assume that N(b;)NN(b;)NA; = 0 for any i # j. Then each
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Figure 3: Graphs Ay, ..., Ag

of by, b, b3 is adjacent to each vertex in A;. Indeed, if b; is not adjacent to ¢ € Ay,
then ¢ must be adjacent to by (or to by else ¢ has three non-neighbors in A,), but then
the vertices by, by, ¢ and the two neighbors of b, in Az induce an A;. To be a prime
graph, G must have a vertex by € A, that has both a neighbor and a non-neighbor
in A;. Denote a non-neighbor of by in A; by c. Since by has at most two neighbors
in As, N(bo) N N(b;) N A3 = 0 for some j, say for j = 2. But now the vertices by,
by, ¢ and the two neighbors of by in Az induce an A;. This contradiction shows that
the graph G5 cannot contain in A, three vertices of degree two with pairwise disjoint
neighborhoods. Since every connected component of G, is either a cycle or a path,
we conclude that only finitely many vertices of A, have degree 2 in G,. Applying
these arguments to the bipartite complement of G, we also conclude that only finitely
many vertices of A, have degree 2 in Gy. Therefore, we have reduced the problem in
question to a subgraph G’ of G induced by three independent sets A} C Ay, A, C A,
and A} C Az with the property that in the subgraph GY, := G[A},UA}] every vertex of
Al is of degree at most 2 and every vertex of Aj is of degree at most 1, and similarly
in the subgraph G := G[A] U A}] every vertex of A/ is of degree at most 2 and every
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vertex of A) is of degree at most 1. In order to build an expression defining G’ using
finitely many different labels, we construct an auxiliary graph G” obtained from G’
by complementing only the subgraph G of G. The clique-width of G” is bounded,
since every connected component of G” is either a cycle or a path. The subgraph of
G’ corresponding to a connected component C' of G” can be created in a way similar
to the creation of C' with the difference that for the vertices in A}, A} and A} we
use disjoint sets of labels, and the operation of creation of an edge of C' between a
vertex in A} and a vertex in A} is replaced by the operation of creation of all other
possible edges between A; and A;. =

Theorem 3 The clique-width of As-free bipartite graphs is bounded.

Proof. Let G = (W, B, E) be an Ajy-free bipartite graph. Let W, = {u € W |
deg(u) <2}, W), =W\ W,, B,= {u € B |deg(u) <2}, B, =B\ B,

Clearly, every vertex of G is adjacent either to at most two or to all but at most
two of the vertices in the opposite part. Therefore, the number of edges of G between
W, and B, is at most 2|W;| and at least | B, |(|]W;| — 2). Thus |B,|(|W;| —2) < 2|W|
which implies that either |W;| < 4 or |Bj| < 4. Similarly, either |B;| < 4 or |W,| < 4.
Therefore, by deleting from G at most 8 vertices, one can obtain a graph G’ such that
either G’ or its bipartite complement is of vertex degree at most 2. In either case,
the clique-width of G’ is bounded, and so is the clique-width of G by Proposition 5.

]

In the rest of the section we describe the area of uncertainty for the clique-width
of graphs in monogenic classes by means of three minimal and three maximal classes.
To simplify our discussion, we denote by G < G’ the fact that G’ contains G as an
induced subgraph.

Proposition 6 Let X be a class of H-free bipartite graphs such that
(1) HeS and H € S,
(2) H 7( S1’2,3 andH;( Al CLTLdH?( AQ,

then A; < H for some i € {3,4,5} and H < A; for some j € {6,7,8}.

Proof. Clearly H is Sy 5 o-free, since the bipartite complement of Sy, contains
a (. Assume H contains a P; induced by vertices 1,2,3,4,5,6,7 with odd vertices
being white. Then Az < Pr < H. Let us show that H = P;. By contradiction,
suppose H contains a vertex z outside the I;. If z is black, then it must be adjacent
to 1 or 3 (else H[L,3,6,2] = Cy) and symmetrically to 5 or 7. But then H contains
a cycle and hence H ¢ S. Analogously, if z is white then either H or H contains a
cycle. From now on, H is Pr-free.

Suppose H contains a Ps as an induced subgraph. Then H is connected, since
otherwise Cy < H. In other words, H = S, ; for some 7 < j < k. This implies that
i <1 (else Sp00 < H), j <2 (else P; < H) and hence k > 4 (else H < Sy53). But
then either Cy < H (if i > 0) or H = Py < Sy 43 (if i = 0). This contradiction shows
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that H is Ps-free. Since each of the graphiAg, ..., As is self-complementary in the
bipartite sense, we may assume also that H is Pg-free.

Let now H contain a P; with the central vertex being white, and denote the
component of H containing the P; by Hy. Since H is (Ps, Saa,2)-free, either H; =
Siaz or Hy = ;09 with ¢ < 1. In either case Hy < Sia3 and hence H must contain
at least one more connected component. To avoid a C4 in the bipartite complement
to H we conclude that H contains at most one white vertex w and at most one black
vertex b outside H;. If both w and b are present in H, then H contains either C,
or (s depending on adjacency of w to b. If H contains only b, then H, = P5 (else
Ci < H), but then H < Sy 53. Now let H contain w but not b. If H; has no vertex
of degree 3 (i.e. if H; = P;), then Ay = H < Aq. If H, has a vertex of degree 3,
then H; = S;,13 (else Cy < H) and hence Ay < H = As.

From now on, both H and H are Ps-free. Therefore, every connected component
of H is an induced subgraph of S; 1 », which means that H has at least two connected
components (else H < Sy 23).

If H contains two non-trivial (of size at least 2) connected components H; and
H,, then H = H;+ H, (else B < H) and both components are Py-free (else B < H).
Therefore, H < Ag. Moreover, since H £ S35, we have either A3 < H or Ay < H.

Finally, let H contain only one non-trivial connected component H;. Then H; =
S111 (else either H < Sy 23 or Cy < H). Denote the central vertex of H; by b and
let b be black. Then H contains no black isolated vertex. Indeed, assuming that
H contains a black isolated vertex b, we conclude that H contains no other black
vertices (else Cy < H) and no white isolated vertices (else the degree of b; in H would
be more than 3). But then H = A;. Therefore, H contains no black isolated vertices.
This implies that H has no white isolated vertices, since otherwise either H < As or
the degree of b in H is greater than 3. But now H < S} 23, a contradiction. m
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