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Abstract
A (p,q) graph G is called edge-magic if there exists a bijective function
f:V(G)UE(G) — {1,2,...,p+ g} such that f(u) + f(v) + f(uv) is a
constant for each edge wv € E(G). Moreover, G is said to be super edge-
magicif f(V(G)) = {1,2,...,p}. In this paper, it is shown that a disjoint
union of multiple copies of a (super) edge-magic bipartite and tripartite
graph is (super) edge-magic if the number of copies is odd. In addition
to this result, the edge-magic properties of certain classes of 2-regular
graphs and forests are studied, and a bound on the size of triangle-free
super edge-magic graphs is provided. Finally, several open problems are
stated.
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1 Introduction

The subject of edge-magic labelings of graphs had its origins three decades ago in
the work of Kotzig and Rosa [9, 10] on what they called magic valuations of graphs
(which are also commonly known as edge-magic total labelings; see [13]). Interest in
these labelings has been lately rekindled by a paper on the subject due to Ringel and
Lladé [11]. Shortly after this, Enomoto, Lladd, Nakamigawa and Ringel [2] defined
a more restrictive form of edge-magic labelings, namely, super edge-magic labelings
which Wallis [13] refers to as strong edge-magic total labelings. These are important
since they are, in fact, felicitous, harmonious and sequential (if the size is at least as
large as the order of the graph or if the graph is a tree), cordial, edge-antimagic and
sometimes graceful (see [4] and [5]).

In this paper, the authors intend to make headway on the following problem: if
a graph is (super) edge-magic, is the disjoint union of multiple copies of this graph
(super) edge-magic as well? To this end, we prove a result that provides an affirmative
answer in the case where the graph under consideration is either bipartite or tripartite
and an odd number of copies of it are used. This improves a previous result by the
authors [4] that applied only to linear forests. In addition to this result, we investigate
the edge-magic properties of some particular classes of 2-regular graphs and forests,
which leads us to propose a conjecture. We also provide a bound regarding the
maximum size of triangle-free super edge-magic graphs. Finally, we state several
open problems.

To achieve our goals, we first need some definitions and a couple of elementary
results. We refer the reader to [1] or [8] for all other terms and notation not provided
in this paper.

For a (p, q) graph G, a bijective function f : V(G)UE(G) — {1,2,...,p+¢}isan
edge-magic labeling of G if f(u)+ f(v)+ f(uv) = k is a constant, which is independent
on the choice of any edge uv € E(G). If such a labeling exists, then G is said to
be an edge-magic graph, and the constant k is called the wvalence of the labeling.
Furthermore, f is a super edge-magic labeling of G if f(V(G)) = {1,2,...,p}. Thus,
a super edge-magic graph is a graph that admits a super edge-magic labeling.

The following simple result found in [5] provides a characterization of super edge-
magic graphs, which is often easier to use than the definition itself. Because of this
result, it is only necessary to provide the labels assigned to the vertices of a graph
to surmise whether this labeling induces a super edge-magic labeling of a graph or
not; however, when wanting to determine if a vertex labeling induces an edge-magic
labeling, one needs to be provided with the valence too.

Lemma 1.1 A (p,q) graph G is super edge-magic if and only if there exists a bijec-
tive function f : V(G) — {1,2,...,p} such that the set S = {f(u) + f(v)|uv € E(G)}
consists of q consecutive integers. In such a case, f extends to a super edge-magic
labeling of G with valence k = p + ¢ + s, where s = min(S) and

S={k—(p+1),k—(p+2),....k—(p+q)}.

Moreover, 3 ey () f(v)degv = gs + (‘;)
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The next necessary condition due to Ringel and Lladé [11] will prove useful in
this paper.

Lemma 1.2 If G is a (p,q) graph, where q is even, p+¢=2 (mod 4), and every
vertex of G has odd degree, then G is not edge-magic.

2 Main Result

This section contains a tool that allows us to generate infinite classes of disconnected
edge-magic and super edge-magic n-partite graphs with relative ease, where n = 2
or 3.

Now, recall that as mentioned in the introduction, super edge-magic graphs are
often felicitous, harmonious, sequential, cordial or edge-antimagic. This makes the
following theorem unexpected since previously no such a technique was available for
graphs within those classes (see [6]).

Theorem 2.1 If G is a (super) edge-magic bipartite or tripartite graph, and m is
odd, then mG is (super) edge-magic.

Proof. Without loss of generality, assume that m > 3.

Now, if G is a (super) edge-magic (p, q) bipartite or tripartite graph with partite
sets U, V and W (let W = ( if G is bipartite), then let F(G) = UV UUW UVW,
where the juxtaposition of two partite sets denotes the set of edges between those
two sets. Also, take f: V(G)U E(G) — {1,2,...,p+ ¢} to be an arbitrary (super)
edge-magic labeling of G. Then define H = mG to be the graph with

V(H) = JU:uV;uw;) and B(H) = | J(UiV; UUW, UV;IV)
=1 =1
where 2; € X; for 1 < ¢ < m if and only if # € X (X is one of the sets U, V, W,

UV, UW or VIW).
Now, consider the labeling g : V(H) U E(H) — {1,2,...,m(p + q)} such that

mf(z) —m+i, ifeeWUUV and 1 <i<m;
flz) —2i+1, fzreUUVIWand 1 <i<(m—1)/2;
g(z;) =< mf(z)+m—2i+1, ifze UUVIW and (m+1)/2 <i<m;
flz) = (m-=1)/2+1¢, ifzeVUUWandl<i<(m-1)/2
flz) —(Bm—-1)/2+1i, ifz € VUUW and (m+1)/2 <i<m.

Then g is a (super) edge-magic labeling of H. To verify this, notice first that g(z) +
9(y) + g(zy) = mk — 3(m — 1)/2 for every xy € E(H), where k is the valence of f.
Next, to see that

g(V(H)UE(H)) ={L2,...,m(p+4q)},
notice that for every z € V(G) U E(G), we have that

m

Utg(z)} = J{mf(z) - m +i};

i=1 i=1
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thus, the set
fV(G)UE(G)) ={1,2,....p+ 4}

is spread by the function g to the entirety of its range. a

The preceding result is the best possible in the sense that m cannot be even for
Kotzig and Rosa [9] have shown that the forest mP, is edge-magic if and only if m
is odd.

3 Results on 2-Regular Graphs

Our main result makes it worthwhile to search for bipartite and tripartite graphs
which are edge-magic or super edge-magic. In this section, we thus concentrate on
the edge-magic properties of some classes of 2-regular graphs, which certainly satisfy
the hypothesis of our result.

The next corollary is an example of the kind of result that follows immediately
from Theorem 2.1.

Corollary 3.1 Ifm is odd and n > 1, then the 2-reqular graph mCy, is edge-magic.

Proof. In [9], Kotzig and Rosa have shown that all cycles are edge-magic (an
alternative labeling of even cycles can be found in [7]). O

The authors have shown in [4] that the 2-regular graph mC,, is super edge-magic
if and only if m and n are odd. Therefore, mC,, is edge-magic if m is odd. For the
case in which m is even, we only know that mC,, is edge-magic if m =2 (mod 4)
andn=4or6,orn=1,50r7 (mod 12). This follows from Theorem 2.1, Table 1
and the next result.

n labeling valence
4 1-14—-9-13-1;4-6-12-5-4 25
6 2-8-4-11-5-9-26-12-21-10-7—-13-6 34

Table 1: Edge-magic labelings of 2C), for some small n

Theorem 3.2 For cvery positive integer n = 1,5 or 7 (mod 12), the 2-regular
graph G = 2C,, is edge-magic.

Proof. Assume that n = 1,5 or 7 (mod 12), and let G = 2C, be the 2-regular
graph with
V(G) ={ull <i<n}u{v|l <i<n}

and
E(G) = {uiun, v1v,} U {wuia |1 <i<n—1} U {vwipa]l <i<n-—1}.

Then there are three cases to consider.
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Case 1: Let n = 12k — 7, where k is a positive integer, and define f : V(G) —

{1,2,...,48k — 28} to be the
24k — 37 — 10
6k + 31 — 5,
12k — 31 — 5,
3i — 6k + 3,

fluy)

12k — 3i — 4,
24k — 3i — 12,
3k—3i+1,
15k — 3i — 5,
3k —3i+2,
15k — 3i — 7,
3k — 3i,
15k — 3i — 6,

\

vertex labeling such that

ifj=2i—1land 1<i<3k—1;
ifj=2i—1and 3k <i<6k—3;
ifj=2and1<i<3k—2;

ifj=2iand 3k —1<i <6k —4;

’

if j=2 —land1<i<3k—2

if j =2 and 1< i< 3k —2;

if j =6k+6i—9and1<i<Fk;

if j =6k+6i—8and1<i<Fk;

if j=6k+6i—7and1<i<Fk;

if j=6k+6i—6and 1<i<Fk—1;
if j=6k+6i—5and 1<i<k—1;
if j=6k+6i—4and 1<i<Fk—1.

Case 2: Let n = 12k — 5, where k is a positive integer, and define f : V(G) —

{1,2,...,48k — 20} to be the
24k — 3i — 6,
6k + 3i — 4,
12k — 31 — 3,
3i — 6k + 2,

fluy)

12k — 3i — 2,
24k — 3i — 8,
15k — 3i — 3,
3k — 30 +2,
15k — 3i — 2,
3k — 3,

15k — 3i — 4,
3k—3i+1,

2y

\

vertex labeling such that

ifj=2i—1land1<i<3k—1;
if j =2 —1and 3k <i<6k—2;
ifj=2iand 1 <i<3k-—1;
if j =2iand 3k <i <6k —3;

ifj=2 —land1<i<3k—1;

if j=2iand 1 <i<3k—2

if j =6k+6i—8and 1<i<k;

if j=6k+6i—7and 1<i<Fk—1;
if j =6k+6i—6and 1<i<Hk;

if j=6k+6i—5and 1<i<Fk—1;
if j=6k+6i—4and 1<i<Fk—1;
if j=6k+6i—3and 1<i<Fk—1;
if j=12k+2 —9and 1<i<2.

Case 3: Let n = 12k + 1, where k is a positive integer, and define f : V(G) —

(L2,..
24k — 3i + 6,
) ek +si-n,
F4) =14 19p — 343,
3i — 6k — 1,

., 48k + 4} to be the vertex labeling such that

ifj=2i—land 1<i<3k+1;
ifj=2i—1land 3k +2<i<6k+1;
if j=2iand 1 < i< 3k;

it j =2¢and 3k +1 < ¢ < 6k;
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(12k—3i+4, ifj=2—1and 1<i<3k;

24k —3i+4, ifj =2 and 1 <i < 3k;
3k—3i+3, ifj=6k+6i—5andl<i<Ek;
15k —3i+5, if j=6k+6i—4and 1 <i<k;
flo) =4 3k—3i+4, ifj=6k+6i—3and1<i<Hk;
15k —3i+3, if j=6k+6i—2and 1 <i<k;
3k—3i+2, ifj=6k+6i—landl<i<k-—1;
15k —3i+4, if j=6k+6iand 1 <i<k;

i, if j =12k +2 —3and 1 <i < 2.

\

Therefore, f extends to an edge-magic labeling of G with valence 5n + 2. a

In addition to the above theorem, we quote a result obtained by the authors [3]
on 2-regular graphs in which (a,b) and [a,b] denote the greatest common divisor
and the least common multiple for the integers a and b, respectively, whereas k(G)
denotes the number of components of a graph G.

Theorem 3.3 Assume that G = Ufg) Ch, s a (super) edge-magic 2-reqular graph,
and let m be odd. Then Ufgf)(m,ni)qm,m] is (super) edge-magic.

The above knowledge about 2-regular graphs provide some progress towards an-
swering the question posed by Kotzig and Rosa [9] pertaining to the necessary and
sufficient conditions required so that a 2-regular graph is edge-magic.

4 Results on Forests

This section is devoted to the study of the edge-magic and super edge-magic prop-
erties of certain classes of forests, which complements the result in the main section
nicely, since these graphs are bipartite and hence can serve as the seed for creating
other infinite classes of (super) edge-magic bipartite graphs. They are also interest-
ing since most of the forests referred to in this section have each two components
and thus show that bipartite graphs with an even number of components may be
edge-magic or super edge-magic.

The following theorem strengthens a previous result by the authors [4], namely,
that the forest K, U K 11 is super edge-magic for every positive integer n.

Theorem 4.1 If m is a multiple of n + 1, then the forest F = Ky, U Ky, s super
edge-magic.

Proof. Let
V(F)=A{z,y}U{w|l <i<m}U{v|l <i<n}

and
E(F) ={aw|l <i<m}U{yv|l <i<n}.

Then consider the vertex labeling f : V(F) — {1,2,...,m 4+ n + 2} such that f(z) =
a+2, fly)=1, fl)) =a+2i—1fori=1,2,...,m,and f(v;) = (a+1)(1+1)+1
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for i = 1,2,...,n, where & = m/(n + 1). Therefore, by Lemma 1.1, f extends to a
super edge-magic labeling of F' with valence « + 2(m + n + 3). |

Notice, by Lemma 1.2 and Theorem 4.1, that the forest K;; U K, is super
edge-magic if and only if n is even. This leads us to the following two results.

Theorem 4.2 The forest F' = K5 U K ,, 15 super edge-magic if and only if n is a
multiple of 3. Furthermore, there are essentially only two super edge-magic labelings
of F.

Proof. Let

V(F) ={u}U{v|l <i<n}U{w;,ws,ws}
and

E(F) = {uv|1 <i <n}U{wiwy, wws},

and let f: V(F) — {1,2,...,n+4} be an arbitrary super edge-magic labeling of
F such that f(u) = « and {f(w1), f(w2), f(ws)} = {4, ,k}. Notice then that «, i,
j and k are different. Now, without loss of generality, assume that i < j < k. Let
S={f(z)+ f(y)|lzy € E(F)}and L={a+1,a+2,...,a +n+ 4}, which are two
sets of consecutive integers with |S| = n + 2 and |L| = n + 4. Observe then that

S —{f(w1) + flw), f(w1) + flws)} = L — {20, + i, 0+ j,a + k}.

Thus, {a+1,a+n+4} C {2a,a+1i,a+k} since by removing 2o, a + i, a +
j and « + k from L, we obtain S — {f(wi1) + f(ws), f(w1)+ f(ws)}, which is a
set of consecutive integers minus two elements and ¢ < j < k. This implies that
{I,n+4} C{a,i,k}.

We now show that i = 1 and £ = n + 4. To do this, it suffices to verify that
a ¢ {1,n+4}. Let 8 = f(w), then since degw; = 2, degu = n and f(u) = a, it
follows by Lemma 1.1 that

n+4

Sttaln-1)+8=@m+2s+ ("),

t=1
where s = min (5). Hence,

_3n+3)+an-1)+p
n+2

Now, assume, to the contrary, that « = 1. Then s = 8/(n + 2) +4, so n + 2
divides (3, which implies that 8 = n 4 2. This in turn leads us to conclude that
s = 5. Furthermore, the vertex w which is labeled 1 cannot be adjacent to the
vertices labeled 2 or 3; for otherwise s = 3 or 4. Therefore, {2,3,n + 2} = {1, j, k},
which is impossible.

Next, suppose, to the contrary, that « =n+4. Then s = (6 —-3)/(n+2)+n+4
and, consequently, n 4 2 divides 8 — 3, which implies that 5 — 3 =0 since n +2 > 3
and 1 < 8 < n+3. Thus, § = 3 and s = n + 4. Therefore, either f(w;) = 1 or
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f(ws) =1, implying that f(w;)+ f(w2) =4 or f(wy)+ f(ws) =4 and 4 < s = n+4,
which is a contradiction.

Finally, since the vertices w, and ws are indistinguishable, the following three
cases remain.

Case 1: If f(w1) =1, f(ws) = n+4and f(ws) = j, then {1+7,n+5} = {a+7, 2a}.
Thus, 1+ j = 2o and n 4+ 5 = a + j, implying that o = n/3 + 2; hence,
n is a multiple of 3. Therefore, by taking f(u) = n/3 + 2, f(w) = 1,
f(w2) =n +4 and f(ws) = 2n/3 + 3, we get the same super edge-magic
labeling of F' as in the proof of Theorem 4.1.

Case 2: If f(w1) = n+4, f(wy) =1 and f(w;s) = j, then {n+ 5,7 +n+4} =
{a+j,2a}. Thus, n+5 = a+j and j + n+ 4 = 2a, implying that
a = 2n/3 + 3; hence, n is a multiple of 3. Now, it is easy to verify that if
we take f(u) =2n/3+3, f(wi) =n+4, f(we) =1and f(ws) =n/3+2,
then we attain a super edge-magic labeling of F' by assigning the remaining
labels to all other vertices of F.

Case 3: If f(w1) = j, f(w2) =1 and f(ws) = n +4, then {1+ j,j +n+4} =
{a + j,2a}. Now, since o > 1, it follows that 1 + j # a + j. Thus,
14 j=2aand j+n+4 =+ j; hence, j = 2n+7 > n+ 4, which is not
possible.

The labelings provided in Cases 1 and 2 are unique (up to isomorphism), and
therefore the proof is complete. a

The approach used in the previous proof can also be applied to establish the
following theorem which we state without proof.

Theorem 4.3 The forest F' = Ky 3U K ,, 15 super edge-magic if and only if n is a
multiple of 4.

Now, in light of the two previous theorems and the remark that precedes them
the authors conjectured, before submitting this paper, that the converse of Theorem
4.1 also held. The referee has since then informed us that Wimmer [14] has proved
this to be the case. We state his result here for the sake of completeness.

Theorem 4.4 The forest Ki, U K1, is super edge-magic if and only if m s a
multiple of n + 1.

The next characterization is the edge-magic analogue to the previous theorem.

Theorem 4.5 For all positive integers m and n the forest F = K, U Ky, is edge-
magic if and only if either m or n is even.

Proof. If F is edge-magic, then either m or n is even by Lemma 1.2.
For the converse, without loss of generality, assume that n is even, and let

V(F) = {z,y} U{w|l <i <m}U{v|l <i<n}
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and
E(F) ={aw|l <i<m}U{yv|l <i<n}.

Then consider the vertex labeling f : V(F) — {1,2,...,m + n + 2} such that

3n/24+2m+2, ifw=u;
n/2+m+1, if w=uy;

flw) =< 1, ifw=u;and 1 <i < my
m+1, ifw=wvand 1 <i<n/2
m-+i+1, ifw=v,andn/2+1<i<n.

Therefore, f extends to an edge-magic labeling of F with valence 5n/2+4m-+4. 0

In [4], the authors proved that the forest mKj,, is super edge-magic if m is odd.
Further, in light of the previous theorem, the forest 2K ,, is edge-magic if and only
if n is even, which together with Theorem 2.1 leads us to conclude that whenever
m =2 (mod 4), the forest mKj , is edge-magic if and only if n is even. Thus, the
only instance that needs to be settled is when m is a multiple of 4. For this, we
have found that the linear forest 4K » = 4P is super edge-magic with valence 30 by
simply labeling the four disjoint copies of P; as follows: 1—-9—-2,4—-8—-5,6—10—7
and 11 — 3 — 12. On the other hand, Kotzig and Rosa [9] determined that the forest
mkKy 1 = mP, is edge-magic if and only if m is odd (the authors recently showed in
[4] that this result can be extended to state that the forest mP; is super edge-magic
if and only if m is odd).

We studied above the forests K ; U K, and K; 5 U K, as members of the class
of forests Ky, U K;,. However, they are also in the class of forests P, U K.
Therefore, the next theorem fits well into our theme. This generalizes the result
found in [4] that the forest P, U P, is super edge-magic for every integer m > 3.

Theorem 4.6 For every two integers m > 4 and n > 1, the forest ' = P, U K1,
15 super edge-magic.
Proof. Let

V(F)={wl <i<m}U{yl|l <i<n}U{w}

and
E(F) ={ujuit:1]1 <1 <m—1}U{vw|l <i<n}.

Then consider four cases for the vertex labeling f: V(F) — {1,2,...,m +n+ 1}.

Case 1: For m =0 (mod 4), let

(m+2n+2)/2, ifj=1;
(m+2n+6)/2, it j =3;
) n+2i-1, ifj=4iand 1 <i<m/4;
FO9) = (m+ 20+ 4i+6)/2, ifj—4i+1and 1< i< (m—4)/4:
n+2i+ 2, ifj=4i+2and 0<i< (m—4)/4

(m+2n +4i +4)/2, if j =4i+3and 1 <4 < (m — 4)/4;
f(v) =1,if1 <i<njand f(w) = (m+2n+4)/2.
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Case 2: Form=1 (mod 4), let

n+2i—1, ifj=4iand1<i<(m—1)/4;
Flug) = (m+2n+4i+1)/2, ifj=4i+1land 0<i< (m—1)/4
) n+4 20+ 2, ifj=4i+2and 0<i<(m—25)/4;

(m+2n+4i+7)/2, it j=4i+3and 0 <i < (m—5)/4;

f(v)) =1,if 1 <i<n;and f(w) = (m+2n+3)/2.
Case 3: For m =2 (mod 4), let

m4n+ 1, ifj=1;
m4n— 1, if j = 3;
(m+2n—4i+2)/2, if j=4iand 1 <i< (m—2)/4;
fluj)) =< m+n—2i—1, ifj=4i+1land1<i< (m-2)/4
(m+2n—4i—4)/2, f j=4i+2and 0 < i< (m—6)/4;
m+n— 2, if j=di+3and1<i< (m—6)/4;
L m+n, if j =m;

fvi)=1i,if 1 <i<mjand f(w) =(m+2n+2)/2.
Case 4: For m =3 (mod 4), let

(m+2n+1)/2, if j =1;
(m+2n+5)/2, it j =3;
n+2i—1, ifj=4iand1<i<(m—3)/4;
fluj)) =< (m+2n+4i+5)/2, f j=4i+1and 1 <7< (m—3)/4;
n+2i+2, ifj=4i+2and 0<i< (m—"7)/4
(m+2n+4i+3)/2, ifj=4i+3and 1 <i< (m—3)/4
L (m+2n —1)/2, iftj=m-1;

f(v)) =1,if 1 <i<n;and f(w) = (m+2n+3)/2.

Therefore, by Lemma 1.1, f extends to a super edge-magic labeling of F' with
valence
b 5m/2 + 3n + 2, iftm=2 (mod4);
T m/2] +2m+3n+ 3, otherwise.
O

The next class of forest that we study is 2P,. To do this, notice that we have
shown that the forest Ko U K, is super edge-magic if and only if n is a multiple
of 3; hence, the forest 2P; is not super edge-magic. However, it is edge-magic by
labeling the vertices of one P; with 1 — 9 — 2 and the ones of the other P; with
3 — 4 — 5, and letting the valence be 17. Finally, notice that Kotzig and Rosa [9]
proved that the forest nP; is edge-magic if and only if n is odd.

Theorem 4.7 The forest F = 2P, (n > 1) is super edge-magic if and only if n # 2
or 3.



EDGE-MAGIC LABELINGS OF DISJOINT UNIONS

Proof. Assume that n > 4, and define the forest F = 2P, with

V(F)={wll <i<n}U{y|l <i<n}

and

We proceed by cases according to the possible values of the integer n.

Case 1: Forn=9,let f:V(F)— {1,2,..

(f (ui))iy =

and

(10,17,7,14,4,13,6,16,9)

(f(ui))_, = (8,18,5,15,1,11,2,12,3).

Case 2: For n = 4k, where k is a positive integer, let f : V(F) — {1,2,...

be the vertex labeling such that

L,
2k +1i—1,
6k + 1,
[ 6k —i+1,
(3k+i—1,
3k —i+2,
FO) =9 7k 14,
| Th—i+1,

Case 3: For n = 12k — 7, where k is a positive integer, let f : V(F) — {1,2,...

if j =1,

ifj=2i—land 2<i<Fk;
ifj=2i—1land k+1<1i<2k;
ifj=2iand 1 <i<k;
itj=2rand E+1 <13 < 2k;

if j=2%—land 1<i<k+1;
ifj=2i—1land k+2 < i< 2k;
ifj=2iand 1 <i<k;
ifj=2and k+1<1i<2k.

24k — 14} be the vertex labeling such that

12k — 3i — 4,

) si—6k+1,

flug) = 24k — 3i — 12,

6k + 3i — 4,

(24F — 3i — 11,

12k — 3i — 6,

15k — 3i — 6,

3k — 3i + 1,

Flvj) = 15k — 3i — 5,

3k —3i—1,

15k — 3i — 7,
3k — 34,

ifj=2i—1land 1 <i<3k—1;
if j=2i—1and 3k <i <6k —3;
ifj=2and1<i<3k—2;

ifj=2iand 3k —1<i <6k —4;

if j=2 —land1<i<3k—2
if j =2 and 1 <i< 3k —2;

if j=6k+6i—9and1<i<Fk;

if j =6k+6i—8and1<i<Fk;

if j=6k+6i—7and1<i<Fk;

if j =6k+6i—6and1<i<Fk—1;
if j =6k+6i—5and1<i<Fk—1;
if j=6k+6i—4and1<i<Fk—1L.

235

., 18} be the vertex labeling such that

8k}

)
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Case 4: For n = 12k — 6, where k is a positive integer, let f: V(F) — {1,2,...,
24k — 12} be the vertex labeling such that

12k—3i—3, ifj=2-land1<i<3k—1;

3i—6k+2, ifj=2i—1and3k<i<6k—3;
flug) = 24k —3i— 11, ifj =2 and 1 <4 < 3k — 2;

6k+3i—3, ifj=2iand3k—1<i<6k—3;

(24k —3i— 10, if j=2i—1land1<i<3k—2;
12k —3i—5, ifj=2andl<i<3k—2;

15k —3i—5, ifj=6k+6i—9and1<i<HFk;
3k—3i+2, ifj=06k+6i—8andl<i<k-—1;
Flvj)={ 15k —3i—4, ifj=6k+6i—7and1<i<k;

3k — 3, if j =6k+6i—6and1<i<Fk—1;
15k —3i—6, ifj=6k+6i—bandl<i<Fk—1;
3k—3i+1, ifj=6k+6i—4dandl<i<k-—1;
i if j=12k+2 —10and 1 <i < 2.

\

Case 5: For n = 12k — 5, where k is a positive integer, let f : V(F) — {1,2,...,
24k — 10} be the vertex labeling such that

24k —3i—7, ifj=2i—land1<i<3k—1,

Fu) = 6k +3i—5, ifj=2 —1and3k<i<6k—2;
j 12k —3i—3, ifj=2and 1<i<3k—1;
3i—6k+2, ifj=2 and3k<i<6k—3;

(12k—3i—2, ifj=2—1land 1<i<3k—1;
24k —3i—9, ifj=2 and 1 <i<3k—2;

15k —3i—4, if j=6k+6i—8and 1<i<Hk;
3k—3i+2, ifj=6k+6i—Tandl<i<k-—1;
Fl;) =14 15k —3i—3, ifj=6k+6i—6and1<i<k;
3k — 3, if j=6k+6i—5and 1<i<Fk—1;
15k —3i—5, if j=6k+6i—4and1<i<Fk—1;
3k—3i+1, ifj=6k+6i—3andl<i<k-—1;
i if j=12k+2 —9and 1<i<2.

\

Case 6: For n = 12k — 2, where k is a positive integer, let f : V(F) — {1,2,...,
24k — 4} be the vertex labeling such that

12k—3i+1, ifj=2i—1and 1<i<3k;

3i—6k—1, ifj=2 —1and3k+1<i<6k—L;
Fs) =9 o4y —3i— 2, ifj—2iand1<i<3k—1;

6k +3i—1, ifj=2iand3k<i<6k—1;
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( 12k — 3i, ifj=2 —land1<i<3k—1L;
24k —3i—3, if j=2iand 1 <i<3k—1;
3k—3i+2, ifj=6k+6i—Tandl<i<Hk;
15k —3i+1, if j=6k+6i—6and 1<i<k

PO =9 31 _3i43 ifj—6k+6i—5andl<i<k
15k—3i—1, if j=6k+6i—4and1<i<k;
3k—3i+1, ifj=6k+6i—3andl<i<Hk;

[ 15k — 31, if j =6k+6i—2and 1 <i<k.

Case 7: For n = 12k — 1, where k is a positive integer, let f : V(F) — {1,2,...

24k — 2} be the vertex labeling such that

12k — 3i + 2
3i — 6k — 2,
24k — 3,

6k +3i— 1,

fluy)

N

12k — 3,
3k — 1,
Fvj) =14 3k—3i+3,
15k — 3,

3k —3i+1,
15k — 3i + 1
3k —3i—1,

\

Case 8: For n = 12k + 1, where k is a positive integer, let f: V(F) — {1,2,...

24k 4 2} be the vertex labelin

24k — 3i + 5,
6k + 3i — 2,
12k — 3i+3,
3i — 6k — 1,

fluy)

~

12k — 3i + 4,
24k — 3i + 3,
3k —3i +3,
15k — 3i + 4,
3k — 3i +4,
15k — 3i + 2,
3k —3i+2,
15k — 3i + 3,
Z,

24k — 3i + 1,

15k — 3i + 2,

, ifj=2i—1land1<i<3k;
if j=2i—1and 3k+1<1i<6k;
ifj=2iand 1 <i <3k
ifj=2and 3k +1<¢ <6k —1;

ifj=2i—1and 1 <1< 3k;
ifj=2and 1 <i<3k—1,;

if j = 6k;

if j=6k+6i—5and 1< <Ek;
ifj=6k+6i—4and 1 <i<Ek;
ifj=6k+6:i—3and 1 <i<Fk;
ifj=6k+6i—2and 1 <i<Fk;
, ifj=6k+6i—1and 1<i<Kk;
ifj=6k+6iand 1 <i<k-—1

g such that

ifj=2 —land1<i<3k+1;

if j=2i—1and 3k+2<i<6k+1;
if j =2iand 1 < i< 3k;

if j =2iand 3k + 1 < i < 6k;

ifj=2i—1and 1< i< 3k;
ifj=2iand 1 <i <3k
ifj=6k+6i—5and 1 <i<Fk;
ifj=6k+6i—4and 1 <i<Fk;
ifj=6k+6i—3and 1<i<Fk;
ifj=6k+6i—2and 1<i<Fk;
ifj=6k+6i—1land 1<i<k—1;
if j=6k+6iand 1 <i<k;
ifj=12k+2i—3and 1 <7< 2.

237
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Case 9: For n = 12k + 2, where k is a positive integer, let f: V(F) — {1,2,...
24k + 4} be the vertex labeling such that

12k — 3i + 5,
3i — 6k — 3,
24k — 3i +6,
6k +3i+1,

fluy)

12k — 3i + 4,
24k — 3i + 5,
3k+i—1,
15k — 3i + 6,
3k—3i+1,
15k — 3i + 4,
3k —3i+2,
15k — 3i +2,
3k — 34,
12k + i + 2,

\

ifj=2i—land 1<i<3k+1;
ifj=2i—1land 3k +2<i<6k+1;
if j=2iand 1 < i< 3k;
itj=2rand 3k+1<:<6k+1;

if j =2 —1land1<i< 3k

if j=2iand 1 <i<3k+1;

if j=6k+2 —1land 1<i<2;
if j=6k+6i—2and1<i<k

if j=6k+6i—1and 1<i<Fk;
if j=6k+6iand 1<i<k—1;

if j=6k+6i+1and1<i<Hk;

if j=6k+6i+2and1<i<k—1;
if j=6k+6i+3and1<i<k—1;
ifj=12k+2 —2and 1<i<2.

Case 10: For n = 12k + 3, where k is a positive integer, let f : V(F) — {1,2,...
24k + 6} be the vertex labeling such that

12k — 3i + 6,
3i — 6k — 4,
24k — 3i + 8,
6k +3i+1,

fluy)

24k — 3i 49,
12k — 3i + 4,
3k+i—1,

15k — 3i +7,
3k —3i+1,
15k — 3i + 5,
3k — 3i + 2,
15k — 3i + 3,
3k — 34,

| 12k +i+3,

if j=2 —land1<i<3k+1;

if j=2—1and 3k+2<i<6k+2;
if j =2iand 1 <i<3k+1;

if j =2iand 3k +2 < i <6k + 1;

ifj=2i—1land 1 <i<3k+2;

if j=2iand 1 << 3k;

if j=6k+2¢and 1 <i < 2;
ifj=6k+6i—1and 1<i<Ek;

if j=6k+6iand 1 <i<Ek;
ifj=6k+6i+1land1<i<k-—1,
ifj=6k+6i+2and1<i<k;
ifj=6k+6i+3and1<:<k—1,;
ifj=6k+6i+4and1<i<k—-1;
ifj=12k+2i—1land 1 << 2.

Case 11: For n = 12k + 9, where k is a positive integer, let f : V(F) — {1,2,...
24k + 18} be the vertex labeling such that

12k — 3i + 12,
3i — 6k — 7,
24k — 3i + 20,
6k + 3i +4,

fluy)

ifj=2i—1land1<i<3k+3;
ifj=2i—1and 3k+4 <i < 6k+5;
ifj=2and1<i<3k+2;

if j =20 and 3k +3 <1 <6k +4;
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(24k—3i+21, ifj=2—land1<i<3k+2

12k —3i+10, if j=2iand 1 <i < 3k +3;

15k +i+10, ifj=6k+2+3and1<i<2;

3k —3i+5, ifj=06k+6i+2andl<i<k+1;
) 15k —3i412, ifj=6k+6i+3and 1 <i<k

PO =9 sk —3i+3 ifj—6k+6i+4andl<i<k:

15k —3i+13, if j =6k +6i+5and1<i<k;

3k—3i+1, ifj=6k+6i+6andl<i<Hk;

15k —3i+11, if j=6k+6i+7and1<i<k—1;
[ 12k 4049, fj=12k+2+5and1<i<?2.

Therefore, by Lemma 1.1, f extends to a super edge-magic labeling of F' with
valence 5n when n = 4k and 5n + 1, otherwise. a

Now, we state the edge-magic analogue to the previous theorem.
Theorem 4.8 The forest 2P, is edge-magic if and only if n # 2.

The next corollary to Theorems 2.1 and 4.8, and the comments immediately
following Theorem 4.5 partially settles Yegnanarayanan’s conjecture stated in [12]
that the forest nP; is edge-magic for every positive integer n.

Corollary 4.9 Ifn is odd, n=2 (mod 4) orn=4 (mod 8), then the forest nP;
s edge-magic.

Our final result on forests concerns K, U 2nP;.

Theorem 4.10 The forest F = Ky, U 2nP,, where m and n are positive integers,
s super edge-magic. Furthermore, if m + 2n and 2n + 1 are relatively prime, then
only the valences 2m + 9n +4 and 3m + 9n + 3 are attained by the super edge-magic
labelings of F.

Proof. Let F = K, U2nP, be a (p, ¢) forest such that
V(F)={u}U{v|l <i<m}U{w|l <i<4n}

and

Then let f, g: V(F) — {1,2,...,p} be the vertex labelings of F with

n+1, if ¢ = u;

2n 41+ 1, ifx=wv;and 1 <i < m;
fle) = i, ifr=w;and 1 <i < nm;

i+ 1, ifr=w;and n+1<i<2n;

m4n+i+1, ifz=w;and 2n+1 < i < 3n;
m—-n+i+1, ifz=w;and 3n+1 <1 < 4n;
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and
m+3n+1, if ¢ = u;
1, ifz=wv;and 1 <7< m;
m + 21, ifz=w;and 1 <7< my
9(z) = m—2n+2t—1, ifr=w;andn+1<1¢ < 2n;

m+dn—i+1, ifzx=w;and2n+1<1i<3n;
m+Tn—i+2, ifzx=w;and3n+1<i<4n.

Thus, by Lemma 1.1, f and g extend to super edge-magic labelings of F’ with valences
2m 4+ 9n + 4 and 3m 4+ 9n + 3, respectively.

To see that the above two valences are the only possible ones when m + 2n and
2n + 1 are relatively prime, let k£ be the valence of a super edge-magic labeling h of
F. Then

(m = Dh(w) + 3 i
k= = :2m+8n+3+h(u)+(2n+1)(n+1_h(v)).
q m + 2n

This implies that there exists an integer « such that a(m+2n) = 14+n — h(v). Now,
since 1 < h(v) < p, it follows that « is 0 or —1, values that lead to the valences
2m + 9n + 4 and 3m + 9n + 3, respectively. O

Notice that if we relax the hypotheses of the previous theorem to refer to just
edge-magic labelings, then we have that another valence occurs as stated in the
following corollary.

Corollary 4.11 Let F = K, ,, U 2nP,, where m and n are positive integers such
that m + 2n and 2n + 1 are relatively prime. Then only the valences 2m + 9n + 4,
3m +9n + 3 and 4m + In + 2 are attained by the edge-magic labelings of F.

Proof. To prove this, we use the facts and notation of the proof of the previous
theorem. First, notice that the vertex labeling h : V(F) — {1,2,...p} such that
h(v) = p+q+1— f(v) extends to an edge-magic labeling of F with valence 4m+9n+2.

Next, if we allow edge-magic labelings of F’, then the value of « in the proof can
also be —2, and thus only one further valence is attained. a

5 An Improved Bound

Enomoto, Lladé, Nakamigawa and Ringel [2] proved that the inequality ¢ < 2p —3
holds for every super edge-magic (p, ¢) graph. The final result of this paper improves
this bound for certain graphs.

Theorem 5.1 If G is a super edge-magic (p,q) graph with p > 4 and ¢ > 2p — 4,
then G contains triangles.
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Proof. Assume, to the contrary, that G is triangle-free. Furthermore, let V(G) =
{vi,v2,... 05}, and let f: V(G)U E(G) — {1,2,...,p+ ¢} be a super edge-magic
labeling of G so that f(v;) =i for every integer ¢ with 1 < ¢ < p. Observe first that
since ¢ > 2p — 4, it follows that either v; and v, or v, and v,_; are adjacent as the
numbers 3 and 2p — 1 can be expressed uniquely as the sums of integers in the range
1 through p; so suppose, without loss of generality, that v; and vy are adjacent. Then
vy and vz are adjacent also since the sum 4 can be expressed uniquely with integers
in the permitted range. This in turn implies that v, and vs cannot be adjacent since
G is triangle-free, and thus v; and v,4 are adjacent. Continuing to avoid triangles in
this manner, we conclude that v, is adjacent to the vertices vy through vsy1, where
d = deg(v;), and none of these vertices are adjacent to one another. We have thus
accounted for the sums 3 through d + 2.

Now, if d = p — 1, then we are done since there is no way for us to obtain the
sum d + 3 avoiding triangles. Otherwise, if d < p — 1, then, with the remaining
options, the smallest sum possible is d + 4 (joining vy with vgy2), and we would have
no way of obtaining the sum d 4 3. Therefore, in either case, we have arrived to a
contradiction. a

The contrapositive to the previous theorem provides the desired bound.

Corollary 5.2 If G is a triangle-free super edge-magic (p,q) graph of order p > 4,
then g < 2p — 5.

The authors believe this bound is sharp for all possible values of p. Indeed, it is
easy to find, through ad hoc methods, super edge-magic (p, ¢) bipartite graphs with
q = 2p—>5 for small values of p < 8. For instance, if p = 8, then consider the graph G
with V(G) = {1,2,3,4,5,6, 7,8}, eulerian trail 1-5—2-8-4-7-1-3-2-7—6-8
and super edge-magic labeling f : V(G) — V(G) such that f(v) = v when v € V(G).

6 Conclusions

The relevance of this paper is twofold.

First, it provides a construction method for (super) edge-magic bipartite and
tripartite graphs. This enlarges significantly the classes of graphs heretofore known
to be felicitous, harmonious or sequential. In particular, very few 2-regular graphs
were known to be in those classes (see [6]). Moreover, because our methods have the
insurmountable limitation of only working for an odd number of copies, the following
question is of great interest to the authors: for which bipartite or tripartite graphs
G is 2"G (super) edge-magic for some positive integer n.

Second, the results on linear forests in this paper lead to the open problems of
whether or not do linear forests which are not super edge-magic aside from 2P, and
2P; exist, and, analogously, the existence or non-existence of linear forests which are
not edge-magic other than 2P;.
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