Gracefulness of a cycle with parallel P_k -chords

G. Sethuraman A. Elumalai*

Department of Mathematics
Anna University
Chennai-600 025
INDIA
sethu@annauniv.edu

Abstract

In this paper we prove that every n-cycle $(n \ge 6)$ with parallel P_k -chords is graceful for k = 3 and for k = 2r, where $2 \le r \le 5$, and we discuss a related problem.

1 Introduction

A function f is called a graceful labeling of a graph G with m edges if f is an injection from the vertex set of G to the set $\{0, 1, 2, \ldots, m\}$ such that, when each edge xy is assigned the label |f(x) - f(y)|, the resulting edge labels are distinct.

A line of work on graceful graphs has concentrated on graphs related to the cycles stemming from Rosa's result [5] that a cycle C_n is graceful iff n=0 or $3 \pmod 4$. A chord of a cycle is an edge joining two non adjacent vertices of the cycle. Bodendiek, Schumacher and Wegner conjectured in [1] that every cycle with a chord is graceful. The validity of this conjecture has been proved by Delorme, Maheo et al. in [2]. A natural extension of the structure of a cycle with a chord is that of a cycle with a P_k -chord. A cycle with a P_k -chord (k>2) is a graph obtained by joining a pair of non adjacent vertices of a cycle of order n (n>4) by a path of order k.

Koh and Yap have shown that cycles with P_3 -chords are graceful and conjectured that all cycles with P_k -chords are graceful. This was proved for $k \geq 4$ by Punnim and Pabhapote [4]. For an excellent survey on graceful labeling refer [3].

A graph G is called a cycle with parallel P_k -chords if G is obtained from the cycle C_n of order n: $u_0u_1\cdots u_{n-1}$ $(n\geq 6)$ by adding a disjoint path P_k $(k\geq 3)$ between each pair of vertices $(u_1,u_{n-1}),(u_2,u_{n-2}),\ldots,(u_i,u_{n-i})\ldots,(u_\alpha,u_\beta)$ of C_n , where $\alpha=\lfloor\frac{n}{2}\rfloor-1$ and $\beta=\lfloor\frac{n}{2}\rfloor+2$ if n is odd or $\beta=\lfloor\frac{n}{2}\rfloor+1$ if n is even.

 $^{^{\}ast}$ Currently working in the Department of Mathematics, Crescent Engineering College, Chennai-600 048.

In this note we prove that a cycle with parallel P_k -chords is graceful for k=3 and for k=2r, where $2 \le r \le 5$ and we discuss a related problem.

2 Gracefulness of a cycle with parallel P_k -chords

In this section we prove our main results that the cycle C_n with parallel P_k -chords is graceful for k = 3 and for k = 2r, where $2 \le r \le 5$.

Let G be a cycle C_n : $u_0u_1u_2\ldots u_{n-1}$ with parallel P_k -chords. We call the P_k -chords joining the pair (u_i,u_{n-i}) of C_n in G, the ith P_k -chord, for $1 \leq i \leq \lfloor \frac{n}{2} \rfloor - 1$. Observe that G has a hamiltonian path starting at $v_0 = u_0$ and ending up with u_γ of the cycle C_n of G, where $\gamma = \lfloor \frac{n}{2} \rfloor + 1$ if n is odd or $\gamma = \lfloor \frac{n}{2} \rfloor$ if n is even.

Let $v_0v_1...v_{N-1}$, where N = |V(G)| be a hamiltonian path in G starting with u_0 of C_n in G and ending up with u_γ of C_n in G, where $\gamma = \lfloor \frac{n}{2} \rfloor + 1$ if n is odd or $\gamma = \lfloor \frac{n}{2} \rfloor$ if n is even.

Theorem 1: For $n \geq 6$, every n-cycle with parallel P_3 -chords is graceful.

Proof: Let G be an n-cycle with parallel P_3 -chords. Observe that G has $N = \frac{3n-\alpha}{2}$ vertices and $M = 2n - \alpha$ edges, where $\alpha = 3$ if n is odd or $\alpha = 2$ if n is even.

Let $v_0v_1 \dots v_{N-1}$ be a hamiltonian path in G.

Now we give the labeling to the vertices $v_0, v_1, v_2, \ldots, v_{N-1}$ in four cases depending on the remainder of n mod 4, where n is the length of the cycle C_n in G.

Case I: When n = 4r, where $r \ge 2$ is any positive integer.

$$\begin{array}{lll} \text{Define} & \phi(v_0) & = & 0 \\ & \phi(v_2) & = & 1 \\ & \phi(v_{2i}) & = & i+1, \text{ for } 2 \leq i \leq \frac{N-5}{2} \\ \\ \phi(v_{N-3}) & = & \frac{N+1}{2} \\ \\ \phi(v_{N-1}) & = & \frac{N+3}{2} \\ \\ \phi(v_1) & = & M \\ \\ \phi(v_3) & = & M-2 \\ \\ \phi(v_{2i+1}) & = & \phi(v_{2i-1}) - \alpha, \text{ where } \alpha = \left\{ \begin{array}{ll} 1 & \text{if } 2i+1 \text{ is not a multiple of 3} \\ 3 & \text{if } 2i+1 \text{ is a multiple of 3} \\ 3 & \text{and } 2 \leq i \leq \frac{N-5}{2}. \end{array} \right. \\ \\ \phi(v_{N-2}) & = & \phi(v_{N-4}) - 2 \end{array}$$

Case II: When n = 4r + 1, where $r \ge 2$ is any positive integer.

$$\begin{array}{lll} \text{Define} & \phi(v_0) & = & 0 \\ & \phi(v_2) & = & 1 \\ & \phi(v_{2i}) & = & i+1, \text{ for } 2 \leq i \leq \frac{N-2}{2} \\ & \phi(v_1) & = & M \\ & \phi(v_3) & = & M-2 \\ & \phi(v_{2i+1}) & = & \phi(v_{2i-1}) - \alpha, \text{where } \alpha = \left\{ \begin{array}{ll} 1 & \text{if } 2i+1 \text{is not a multiple of } 3 \\ 3 & \text{if } 2i+1 \text{ is a multiple of } 3 \\ & \text{and } 2 \leq i \leq \frac{N-2}{2}. \end{array} \right. \end{array}$$

Case III: When n = 4r + 2, where r is any positive integer.

Define
$$\phi(v_0) = 0$$

 $\phi(v_2) = 1$
 $\phi(v_{2i}) = i+1$, for $2 \le i \le \frac{N-2}{2}$
 $\phi(v_1) = M$
 $\phi(v_3) = M-2$
 $\phi(v_{2i+1}) = \phi(v_{2i-1}) - \alpha$, where $\alpha = \begin{cases} 1 & \text{if } 2i+1 \text{ is not a multiple of 3} \\ 3 & \text{if } 2i+1 \text{ is a multiple of 3} \\ & \text{and } 2 \le i \le \frac{N-6}{2}. \end{cases}$
 $\phi(v_{N-3}) = \frac{N+2}{2}$
 $\phi(v_{N-1}) = \frac{N+6}{2}$.

Case IV: When n = 4r + 3, where r is any positive integer.

Define
$$\phi(v_0) = 0$$

 $\phi(v_2) = 1$
 $\phi(v_{2i}) = i+1$, for $2 \le i \le \frac{N-7}{2}$
 $\phi(v_{N-5}) = \frac{N+3}{2}$
 $\phi(v_{N-3}) = \frac{N-1}{2}$
 $\phi(v_{N-1}) = \frac{N+1}{2}$
 $\phi(v_1) = M$
 $\phi(v_3) = M-2$

$$\phi(v_{2i+1}) = \phi(v_{2i-1}) - \alpha, \text{ where } \alpha = \begin{cases} 1 & \text{if } 2i+1 \text{is not a multiple of 3} \\ 3 & \text{if } 2i+1 \text{ is a multiple of 3} \\ & \text{and } 2 \leq i \leq \frac{N-5}{2}. \end{cases}$$

$$\phi(v_{N-2}) = \phi(v_{N-4}) + 2$$

It is clear that ϕ is injective and the edge values are distinct and range from 1 to M. Hence the graph G is graceful. \square

Theorem 2: For $n \geq 6$ every n-cycle with parallel P_k -chords is graceful for k = 2r, where $2 \leq r \leq 5$.

Proof: Let G be an n-cycle with parallel P_k -chords, where $n \geq 6$. Observe that G has $N = \frac{nk - \alpha(k-2)}{2}$ vertices and $M = \frac{n(k+1) - \alpha(k-1)}{2}$ edges, where $\alpha = 3$ if n is odd or $\alpha = 2$ if n is even. Let $v_0v_1 \dots v_{N-1}$ be a hamiltonian path in G.

Now we give the labeling to the vertices $v_0, v_1, \ldots, v_{N-1}$ in two cases depending on whether n is odd or even, where n is the length of the cycle C_n in G

Case I: When n is even

Define
$$\phi(v_0) = 0$$

$$\phi(v_{ki+j}) = \frac{(k+2)i+j}{2}, \text{ for } 2 \leq j \leq k, j \text{ even} \quad \text{and } 0 \leq i \leq \frac{n}{2} - 3$$

$$\phi(v_{N-(k-j)}) = \phi(v_{N-(k-j+2)}) + 1, \text{ for } 0 \leq j \leq k - 4 \text{ and } j \text{ even},$$

$$\phi(v_{N-2}) = \phi(v_{N-4}) + 5$$

$$\phi(v_{2i-1}) = M - (i-1), \text{ for } 1 \leq i \leq \frac{N - (k-2)}{2}$$
when $k = 4$

$$\phi(v_{N-1}) = \phi(v_{N-3}) - 4$$
when $k = 6$

$$\phi(v_{N-3}) = \phi(v_{N-5}) - 6$$

$$\phi(v_{N-1}) = \phi(v_{N-3}) + 2$$
when $k = 8$

$$\phi(v_{N-5}) = \phi(v_{N-7}) - 2$$

$$\phi(v_{N-3}) = \phi(v_{N-5}) - 4$$

$$\phi(v_{N-1}) = \phi(v_{N-3}) + 2$$

when
$$k = 10$$

$$\phi(v_{N-7}) = \phi(v_{N-9}) - 2$$

$$\phi(v_{N-5}) = \phi(v_{N-7}) - 1$$

$$\phi(v_{N-3}) = \phi(v_{N-5}) - 5$$

$$\phi(v_{N-1}) = \phi(v_{N-3}) + 7$$

Case II: When n is odd

Define
$$\phi(v_0) = 0$$

 $\phi(v_{ki+j}) = \frac{(k+2)i+j}{2}$, for $2 \le j \le k$, j even and $0 \le i \le \frac{n-5}{2}$
 $\phi(v_{2i-1}) = M - (i-1)$, for $1 \le i \le \frac{N-(k-\alpha)}{2}$
where $\alpha = 3$ for $k = 4, 6, 8$ and for $k = 10, \alpha = 5$
 $\phi(v_{N-1}) = \phi(v_{N-3}) + \alpha$, where $\alpha = 3$ for $k = 4, 6, 10$ & for $k = 8$, $\alpha = 2$
when $k = 6$
 $\phi(v_{N-2}) = \phi(v_{N-4}) - 3$
when $k = 8$
 $\phi(v_{N-2}) = \phi(v_{N-6}) - 5$
 $\phi(v_{N-2}) = \phi(v_{N-4}) + 4$
when $k = 10$
 $\phi(v_{N-2}) = \phi(v_{N-6}) - 4$
 $\phi(v_{N-2}) = \phi(v_{N-4}) + 2$.

It is clear that ϕ is injective and the edge values are distinct and range from 1 to M. Hence the graph G is graceful. \square

Discussion: In Theorem 1, we have shown that the cycle C_n with parallel P_3 -chords is graceful. It appears that the cycle C_n with parallel P_k -chords may not be graceful for odd $k \geq 5$. However, we strongly feel that the cycle C_n with parallel P_k -chords are graceful for all even k, so we pose the following conjecture.

Conjecture: The cycle C_n with parallel P_k -chords is graceful for all even k.

Acknowledgement: The authors would like to thank the referee for his/her valuable comments and suggestions.

References

- [1] R. Bodendiek, H. Schumacher and H. Wegner, *Uber graziose Graphen, Math.*—*Phys. Semesterberichte* **24** (1977), 103–106.
- [2] C. Delorme, M. Maheo, H. Thuillier, K.M. Koh and H.K. Teo, Cycles with a chord are graceful, *J. Graph Theory* 4 (1980), 409–415.
- [3] J.A. Gallian, A dynamic survey of graph labeling, *Electronic J. Combinatorics* (2003), #DS6.
- [4] N. Punnim and N. Pabhapote, On graceful graphs: cycles with a P_k -chord, $k \ge 4$, Ars Combin. 23A (1987), 225–228.
- [5] A. Rosa, On certain valuations of the vertices of a graph. Theory of Graphs (Internat. Symposium, Rome, 1966), Gordon and Breach, New York; Dunod, Paris (1967), 349–355.

Illustrations

Fig 1(a) Graceful labelled C_{l6} with parallel P_3 - chords

Fig 1(b) Graceful labelled $C_{\!\!\!13}$ with parallel $P_{\!\!\!8}$ - chords

(Received 24 Sep 2003; revised 26 Feb 2004)