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Abstract

In this paper it is proved that, for any positive integer v = 1 or 2 (mod 3),
v > b, there exists a resolvable Mendelsohn design where each parallel
class consists of blocks of size three and a unique block of size four (when
v =1 (mod 3)) or a unique block of size five (when v = 2 (mod 3)).

1 Introduction

Let X be a set of v points. A Mendelsohn design of X is a pair (X, B) where B
is a collection of cyclicsubsets of X (called blocks) such that any ordered pair of
distinct points from X occurs together in exactly one block in the collection. In
graph-theoretic terms, a Mendelsohn design is equivalent to the decomposition of
the complete symmetric directed graph K on v vertices into circuits. A Mendelsohn
design is called resolvable if its block set admits partitions into parallel classes, each
parallel class being a partition of the point set.

A Mendelsohn triple system of order v, briefly MTS(v), is a Mendelsohn design
(X, B) where B is a collection of cyclically ordered 3-subsets of X. It is easy to see
that the necessary condition for its existence is v(v —1) = 0 (mod 3). An MTS(v) is
called resolvable, denoted by RMTS(v), if its block set admits partitions into parallel
classes. It is easy to see that the necessary condition for its existence is that v is a
multiple of 3.

For RMTS(v), Bermond, Germa and Sotteau have obtained the following result.
Theorem 1.1 [2] An RMTS(v) ewists if and only if v=0 (mod 3) and v # 6.
When v is not a multiple of 3, we can consider resolvable Mendelsohn designs

analogously to Cerny, Hordk and Wallis [5] and Cao and Du [4]. We introduce a
resolvable Mendelsohn design which requires each parallel class to consist of blocks
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of size three and a unique block of size four (when v = 1 (mod 3)) or a unique
block of size five (when v = 2 (mod 3)). We denote these by RMD({3,4*},v) or
RMD({3,5*},v) respectively. Some simple computations show that they contain
v — 1 parallel classes.

In this article we shall investigate the existence of RMD({3,4*}, v) and RMD({3,
5*},v). It is proved that these exist for all positive integers v = 1 (mod 3) and
v > 7 for RMD({3,4*},v), and all positive integers v = 2 (mod 3) and v > 5 for
RMD({3,5*},v).

Theorem 1.2 An RMD({3,4*},v) eaists if and only if v=1 (mod 3) and v > 7.

Theorem 1.3 An RMD({3,5*},v) exists if and only if v=2 (mod 3) and v > 5.

2 Preliminaries

In this section we shall define some of the auxiliary designs and establish some of the
fundamental results which will be used later. The reader is referred to [3] for more
information on designs, and, in particular, Mendelsohn frames and the Oberwolfach
problem.

Let X be a set of v points, G be a partition of X (called holes), and A be a
collection of cyclically ordered 3-subsets of X (called blocks). Suppose there is a set
P of partial parallel classes of X, which satisfies the following properties:

1. Each P € P is a partition of X\G for some G € G, where P C A.

2. Every ordered pair of points which come from different holes of G occurs con-
secutively in exactly one block of some P € P.

3. UPE'PP :A

Then the triple (X, G, A) is called a Mendelsohn frame. The type of a Mendelsohn
frame is the multiset of size |G| of the G € G and we usually use the “exponential”
notation for its description: type 1¢2/3% ... denotes i occurrences of holes of size 1, j
occurrences of holes of size 2, and so on.

For the Mendelsohn frame, Bennett, Wei and Zhu [1] have obtained the following
result.

Theorem 2.1 [1] A Mendelsohn frame of type g* exists if and only if u > 4 and
g(u—1) =0 (mod 3), with possible exceptions for u =6 and g € {3,21}.

The main technique used here is a variant of Stinson’s “Filling in Holes” con-
struction. As the “Filling in Holes” construction will generally involve adjoining
more than one infinite point to a frame, the notation for an incomplete resolvable
Mendelsohn design is required. Let v = w = s (mod 3), s = 1 or 2. An incomplete
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resolvable Mendelsohn design, IRMD({3, (3 + s)*},v,w), is a triple (X,Y, B) where
X is a set of v points, Y is a subset of X of size w (called a hole) and B is a collection
of cyclically ordered subsets of X (called blocks), each block having size 3 or 3 + s,
such that:

1. any ordered pair of distinct points from X\Y occurs together in exactly one
block of B;

2. B admits a partition into v — w parallel classes, each consisting of one block
of size 3 + s and %ﬁ blocks of size 3 on X, and w — 1 holey parallel classes,
each consisting of *Z* blocks of size 3 on X\Y.

Example 2.2 The following is an IRMD({3,5*},8, 2):

Point set: X = Zs, Y = {6,7}.

Parallel classes: (0,2,1),(3,5,6,4,7);(0,3,6),(1,4,2,5,7);
(0,4,3),(1,7,2,6,5); (0,7,5), (1,3,2,4,6);
(1,5,4),(0,6,2,3,7); (1,6,3), (0,5,2,7, 4).

Holey parallel classes: (0, 1, 2),(3, 4, 5).

Example 2.3 The following is an IRMD({3,4*},10,4):

Point set: X = Zy9, Y = {6,7,8,9}.

Parallel classes: (0,4,6),(1,3,7),(2,8,5,9);(0,5,7),(2,6,3),(1,8,4,9);
(0,6,1),(2,4,7),(3,9,5,8); (0,7,4), (L,6,5), (2,9,3,8);
(1,7,3),(2,5,6), (0,9,4,8); (2,7, 5), (3,6,4), (0,8, 1,9).

Holey parallel classes: (0,1,2),(3,4,5);(0,2,3),(1,5,4);(0,3,5),(1,4,2).

The Oberwolfach problem can be applied to the construction of resolvable Men-
delsohn designs. A subgraph F of graph G is called a factor of G if F' contains all
the vertices of G. A 2-factor of G is a factor which is regular of degree 2. A 2-
factorization of G is a partition of the edge set of G into 2—factors. More formally, a
2-factorization of G is a pair (X, B), where B is a collection of edge disjoint 2-factors
which partition the edge set of G with the vertex set X. An (my,ma, ..., m;)-2-factor
of G is a 2-factor consisting of cycles of lengths my, ma, ..., me. An (mq,mo, ..., my)-
2-factorization of G is a partition of the edge set of G into (my, ms, ..., m;)-2-factors.

Suppose n is odd and n = my + ms + --- + m;. The problem of determining
whether there exists an (my,ma, ..., m;)-2-factorization of K, is the Oberwolfach
problem, denoted OP(my,my,...,m;). In this paper our attention is restricted to
the case that all cycles are of length three except that each 2-factor contains one
cycle of length s, denoted by OP({3,s*},n). For OP({3,4*},n), Dejter, Franek,
Mendelsohn and Rosa [6] have obtained the following result.
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Theorem 2.4 [6] There exists an OP({3,4"},n) for every n = 1 (mod 6) with
n>"7.

For OP({3,5*},n), Sui and the second author of this paper have obtained the
following result.

Theorem 2.5 [7] There exists an OP({3,5*},n) for everyn =5 (mod 6) withn > 5
except for n = 11.

3 The existence of RMDs

First we shall give the main construction in this paper. It is a variant of Stinson’s
“Filling in Holes” construction.

Construction 3.1 Suppose w is a positive integer, w =1 or 2 (mod 3) and w > 4,
and s =4 when w =1 (mod 3) or s = 5 when w = 2 (mod 3). Suppose

1. there is a Mendelsohn frame of type g19s - - - gm;
2. there is an IRMD({3, s*}, g; + w,w) for every i < m;

3. there is an RMD({3, s*}, g + w).

Then there is an RMD({3,s*},v), where v = 31 <;<,, 9 + w.

Proof We start with a Mendelsohn frame of type g192--- gm (X, G, B), where G
= {G1,Gy,-+,Gp} and |Gi| = ¢ (1 < ¢ < m). For i < m, there are g; frame
holey parallel classes missing the group G;, and the same number of parallel classes
in the IRMD({3, s*}, g; + w, w) which contains a block of size five; match these up
arbitrarily, placing the g; points of the IRMD({3, s*}, g; + w, w) on the i-th group of
the frame and the w points in its hole on w new points.

Next, each IRMD({3,s*}, g; + w,w) contains w — 1 holey parallel classes. The
union of these holey parallel classes together with the w — 1 parallel classes of the
RMD({3,5"}, gm + w) forms w — 1 additional parallel classes. The remaining g,,
parallel classes of the RMD({3, s*}, g,, + w) can be matched arbitrarily with the g,,
frame holey parallel classes of the m-th group. This completes the construction.

It is easy to check that this construction gives the desired designs. The proof is
complete.

Next we discuss the two cases: v = 1 (mod 3) and v = 2 (mod 3). First we
consider the existence of RMD({3,4*},v) when v =1 (mod 3), v > 7.

Lemma 3.2 There exists a RMD({3,4*},v) for every v =1 (mod 6) with v > 7.
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Proof Start with an OP({3,4*},v) (for existence, see Theorem 2.4) and for each
cycle {a,b,c} or {x,y,z,w} of the design, we associate the blocks (a, b, ¢) and (¢, b, a)
or (z,y,z,w) and (w, z,y,x) of the RMD({3,4*},v).

Lemma 3.3 There exists an RMD({3,4*},v) for every v € {10,16,22}.

Proof The following is an RMD({3,4*}, 10):
Point set: Zy9.

Parallel classes:

)

(0,1,2),(3,4,5),(6,7,8,9);(0,2,1),(3,5,4), (6,9,8,7);

(0,3,6),(1,4,7),(2,8,5,9); (0,4,8),(1,3,9),(2,7,5,6)

(0,6,4),(2,5,7),(1,9,3,8);:(0,7,9),(2,6,3), (1,5,8,4);

(0,9,5),(1,7,3),( );(1,6,5),(2,9,4), ( )
)i (

)

0,9,5),(1,7,3),(2,4,6,8): (1,6,5), (2,9,4),(0,8,3,7
(1,8,6),(4,9,7),(0,5,2,3).

For short, an RMD({3,4*},16) is constructed in the Appendix. As for an
RMD({3,4*},22), it is constructed by adding an RMD({3,4*},7) to an
IRMD({3,4"},22,7). An IRMD({3,4*},22,7) is constructed in the Appendix and
an RMD({3,4*},7) is obtained from Lemma 3.2.

) )

Lemma 3.4 There exists an RMD({3,4*},v) for every v =4 (mod 6) with v > 28.

Proof Start with a Mendelsohn frame of type 6* with u > 4 (for existence, see
Lemma 2.1), and apply Construction 3.1 with w = 4 to obtain the desired designs;
the input designs we need, IRMD({3,4*},10,4), and RMD({3,4*},10) come from
Example 2.3 and Lemma 3.3.

Combining Lemma 3.2 to Lemma 3.4, we have the following result.
Theorem 3.5 There exists an RMD({3,4*},v) for everyv =1 (mod 3) withv > 7.

The proof of Theorem 1.2 The necessity obviously holds. The sufficiency comes
from Theorem 3.5 and it is easy to see that there exists no RMD({3,4"},4).

Next we consider the existence of RMD({3,5*},v) when v = 2 (mod 3), v > 5.

Lemma 3.6 There exists an RMD({3,5*},v) for every v =5 (mod 6) withv > 5
except for v = 11.

Proof Start with an OP({3,5*},v) (for existence, see Theorem 2.5) and for each
cycle {a,b,c} or {z,y,z,u,v} of the design, we associate the blocks (a,b,c) and
(¢,b,a) or (z,y, z,u,v) and (v,u, z,y,z) of the RMD({3,5*},v).

Lemma 3.7 There exists an RMD({3,5*},v) for every v € {8,11,14,20}.
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Proof The following is an RMD({3,5*},8):
Point set: Zg.
Parallel classes: (0,1,2),(3,4,5,6,7);(0,2,1),(3,5,4,7,6);

(0,3,6),(1,4,2,5,7); (0,4,3),(1,7,2,6,5);
(0,7,5),(1,3,2,4,6); (1,5,3), (0,6, 2,7, 4);

(1,6,4),(0,5,2,3,7).

For short, the RMD({3,5*},11) and RMD({3,5*},14) are constructed in the
Appendix. As for RMD({3,5*},20), it is constructed by adding an RMD({3,5"},5)
to an IRMD({3,5"},20,5). An IRMD({3,5*},20,5) is constructed in the Appendix
and an RMD(5) comes from Lemma 3.6.

7

Lemma 3.8 There exists an RMD({3,5*},v) for every v =2 (mod 6) with v > 26.

Proof Start with a Mendelsohn frame of type 6* with u > 4 (for existence, see
Lemma2.1), and apply Construction 3.1 with w = 2 to obtain the desired designs; the
input designs we need, IRMD({3,5*},8,2) and RMD({3,5*},8), come from Example
2.2 and Lemma 3.7.

Combining Lemma 3.6 to Lemma 3.8, we have the following result.
Theorem 3.9 There exists an RMD({3,5*},v) for every v = 2 (mod 3) withv > 5.

The proof of Theorem 1.3 The necessity obviously holds. The sufficiency comes
from Theorem 3.9.

Appendix

RMD({3,5*},11):
Point set: Zi;.

Parallel classes:

(0,1,2)(3,4,5)(6,7,8,9,10); (0,2,1)(3,5,4)(6,8,7,10,9);
(0,3,6)(1,4,7)(2,5,9,8,10); (0,4,8)(1,3,9)(2,6,5,10,7);
(0,5,7)(1,6,3)(2,9,4,10,8); (0,6,4)(2,8,5)(1,9,7,3,10);
(0,7,9)(1,10,5)(2,3,8,4,6); (0,9,3)(1,5,8)(2,7,6,10,4);
(1,7,4)(5,6,9)(0,8,3,2,10); (1,8,6)(2,4,9)(0,10,3,7,5).

RMD({3,5*},14):

Point set: Z4.

Parallel classes:

(0,1,11)(3,10,12)(4,9,6)(2,7,8,13,5); (0,2,5)(3,7,11)(4,6,9)(1,10,8,12,13);
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(0,4,1)(3,5,8)(7,10,9)(2,6,13,12,11); (0,7,13)(1,4,8)(2,3,9)(5,10,11,12,6);
(0,8,9)(1,12,2)(5,6,7)(3,11,10,13,4): (0,9,12)(1,8,5)(6,11,13)(2,10,4,7,3):
(0,10,3)(1,13,9)(4,11,8)(2,12,5,7,6); (0,13,10)(1,7,12)(3,8,6)(2,9,5,11,4):
(1,2,11)(6,12,10)(7,9,8)(0,5,13,3,4): (1,3,6)(2,4,13)(5,9,11)(0,12,8,10,7):
(1,5,3)(4,12,7)(9,13,11)(0,6,10,2,8): (1,9,10)(4,5,12)(6,8,11)(0,3,13,7,2):
(2,13,8)(3,12,9)(4,10,5)(0,11,7,1,6).

RMD({3,4*},16):
Point set: Zi6.
Parallel classes:

(0,9,10)(1,3,4)(5,15,7)(6,11,14)(2,13,8,12); (1,13,11)(2,10,14)(3,6,7)(5,9,8)(0,15,12,4);
(0,14,8)(1,4,5)(2,6,10)(11,13,15)(3,9,7,12); (0,12,13)(1,2,9)(3,5,8)(7,11,10)(4,14,15,6);
(0,11,3)(1,6,15)(4,8,9)(7,14,13)(2,12,10,5); (0,2,14)(3,7,10)(4,11,8)(5,12,6)(1,15,9,13);
(2,7,4)(5,13,9)(6,14,11)(8,10,15)(0,3,12,1); (0,13,5)(1,7,8)(2,3,11)(9,15,10)(4,6,12,14);
(0,6,9)(1,8,2)(3,10,4)(7,13,14)(5,11,12,15); (0,4,12)(1,5,14)(2,15,3)(7,9,11)(6,13,10,8);
(0,5,7)(1,14,10)(2,8,15)(3,13,6)(4,9,12,11); (0,7,2)(1,9,6)(3,15,14)(8,13,12)(4,10,11,5);
(0,8,11)(2,5,6)(4,7,15)(9,14,12)(1,10,13,3); (0,10,6)(1,12,7)(2,11,9)(4,15,13)(3,8,14,5);
(2,4,13)(3,14,9)(5,10,12)(6,8,7)(0,1,11,15).

IRMD({3,5*},20,5):

Point set: Zj5 J{oo;|1 <7 < 5}.

Parallel classes: develop the following modulo 15:
(0,2,1,7,3)(4,11,001)(5,13,002)(6,9,003)(12,10,004)(14,8,005).

Holey parallel classes:

(0,1,5)(3,4,8)(6,7,11)(9,10,14)(12,13,2); (1,2,6)(4,5,9)(7,8,12)(10,11,0)(13,14,3);
(2,3,7)(5,6,10)(8,9,13)(11,12,1)(14,0,4): (0,5,10)(1,6,11)(2,7,12)(3,8,13)(4,9,14).

IRMD({3,4*},22,7):

Point set: Zj5 U{oo;|1 <i < 7}

Parallel classes: develop the following modulo 15:
(0,3,1,001)(2,8,002)(4,11,003)(6,5,004)(12,9,005)(13,7,006 ) (14,10,007).

Holey parallel classes:

(0,1,5)(2,12,13)(3,4,8)(6,7,11)(9,10,14); (0,2,7)(1,9,11)(3,5,10)(4,12,14)(6,8,13);
(0,4,14)(1,11,12)(2,3,7)(5,6,10)(8,9,13): (0,5,13)(1,3,8)(2,10,12)(4,6,11)(7,9,14);
(0,8,10)(1,6,14)(2,4,9)(3,11,13)(5,7,12); (0,10,11)(1,2,6)(3,13,14)(4,5,9)(7,8,12).
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