The existence of resolvable Mendelsohn designs $RMD(\{3, s^*\}, v)$

YAN ZHANG BEILIANG DU

Department of Mathematics
Suzhou University
Suzhou 215006
P. R. China

Abstract

In this paper it is proved that, for any positive integer $v \equiv 1$ or $2 \pmod{3}$, $v \geq 5$, there exists a resolvable Mendelsohn design where each parallel class consists of blocks of size three and a unique block of size four (when $v \equiv 1 \pmod{3}$) or a unique block of size five (when $v \equiv 2 \pmod{3}$).

1 Introduction

Let X be a set of v points. A Mendelsohn design of X is a pair (X, \mathcal{B}) where \mathcal{B} is a collection of cyclicsubsets of X (called blocks) such that any ordered pair of distinct points from X occurs together in exactly one block in the collection. In graph-theoretic terms, a Mendelsohn design is equivalent to the decomposition of the complete symmetric directed graph K_v^* on v vertices into circuits. A Mendelsohn design is called resolvable if its block set admits partitions into parallel classes, each parallel class being a partition of the point set.

A Mendelsohn triple system of order v, briefly $\operatorname{MTS}(v)$, is a Mendelsohn design (X,\mathcal{B}) where \mathcal{B} is a collection of cyclically ordered 3-subsets of X. It is easy to see that the necessary condition for its existence is $v(v-1)\equiv 0\pmod 3$. An $\operatorname{MTS}(v)$ is called resolvable, denoted by $\operatorname{RMTS}(v)$, if its block set admits partitions into parallel classes. It is easy to see that the necessary condition for its existence is that v is a multiple of 3.

For RMTS(v), Bermond, Germa and Sotteau have obtained the following result.

Theorem 1.1 [2] An RMTS(v) exists if and only if $v \equiv 0 \pmod{3}$ and $v \neq 6$.

When v is not a multiple of 3, we can consider resolvable Mendelsohn designs analogously to Ĉerný, Horák and Wallis [5] and Cao and Du [4]. We introduce a resolvable Mendelsohn design which requires each parallel class to consist of blocks

of size three and a unique block of size four (when $v \equiv 1 \pmod{3}$) or a unique block of size five (when $v \equiv 2 \pmod{3}$). We denote these by RMD($\{3,4^*\},v$) or RMD($\{3,5^*\},v$) respectively. Some simple computations show that they contain v-1 parallel classes.

In this article we shall investigate the existence of RMD($\{3, 4^*\}, v$) and RMD($\{3, 5^*\}, v$). It is proved that these exist for all positive integers $v \equiv 1 \pmod{3}$ and $v \geq 7$ for RMD($\{3, 4^*\}, v$), and all positive integers $v \equiv 2 \pmod{3}$ and $v \geq 5$ for RMD($\{3, 5^*\}, v$).

Theorem 1.2 An $RMD(\{3,4^*\}, v)$ exists if and only if $v \equiv 1 \pmod{3}$ and $v \geq 7$.

Theorem 1.3 An $RMD(\{3,5^*\}, v)$ exists if and only if $v \equiv 2 \pmod{3}$ and $v \geq 5$.

2 Preliminaries

In this section we shall define some of the auxiliary designs and establish some of the fundamental results which will be used later. The reader is referred to [3] for more information on designs, and, in particular, Mendelsohn frames and the Oberwolfach problem.

Let X be a set of v points, \mathcal{G} be a partition of X (called holes), and \mathcal{A} be a collection of cyclically ordered 3-subsets of X (called blocks). Suppose there is a set \mathcal{P} of partial parallel classes of X, which satisfies the following properties:

- 1. Each $P \in \mathcal{P}$ is a partition of $X \setminus G$ for some $G \in \mathcal{G}$, where $P \subseteq \mathcal{A}$.
- 2. Every ordered pair of points which come from different holes of \mathcal{G} occurs consecutively in exactly one block of some $P \in \mathcal{P}$.
- 3. $\bigcup_{P\in\mathcal{P}} P = \mathcal{A}$.

Then the triple $(X, \mathcal{G}, \mathcal{A})$ is called a Mendelsohn frame. The type of a Mendelsohn frame is the multiset of size |G| of the $G \in \mathcal{G}$ and we usually use the "exponential" notation for its description: type $1^i 2^j 3^k \cdots$ denotes i occurrences of holes of size 1, j occurrences of holes of size 2, and so on.

For the Mendelsohn frame, Bennett, Wei and Zhu [1] have obtained the following result.

Theorem 2.1 [1] A Mendelsohn frame of type g^u exists if and only if $u \ge 4$ and $g(u-1) \equiv 0 \pmod{3}$, with possible exceptions for u = 6 and $g \in \{3, 21\}$.

The main technique used here is a variant of Stinson's "Filling in Holes" construction. As the "Filling in Holes" construction will generally involve adjoining more than one infinite point to a frame, the notation for an incomplete resolvable Mendelsohn design is required. Let $v \equiv w \equiv s \pmod{3}$, s = 1 or 2. An incomplete

resolvable Mendelsohn design, IRMD($\{3, (3+s)^*\}, v, w$), is a triple (X, Y, \mathcal{B}) where X is a set of v points, Y is a subset of X of size w (called a hole) and \mathcal{B} is a collection of cyclically ordered subsets of X (called blocks), each block having size 3 or 3+s, such that:

- 1. any ordered pair of distinct points from $X \setminus Y$ occurs together in exactly one block of \mathcal{B} :
- 2. \mathcal{B} admits a partition into v-w parallel classes, each consisting of one block of size 3+s and $\frac{v-3-s}{3}$ blocks of size 3 on X, and w-1 holey parallel classes, each consisting of $\frac{v-w}{3}$ blocks of size 3 on $X \setminus Y$.

Example 2.2 The following is an IRMD($\{3, 5^*\}$, 8, 2):

```
Point set: X = Z_8, Y = \{6, 7\}.

Parallel classes: (0, 2, 1), (3, 5, 6, 4, 7); (0, 3, 6), (1, 4, 2, 5, 7); (0, 4, 3), (1, 7, 2, 6, 5); (0, 7, 5), (1, 3, 2, 4, 6); (1, 5, 4), (0, 6, 2, 3, 7); (1, 6, 3), (0, 5, 2, 7, 4).

Holey parallel classes: (0, 1, 2), (3, 4, 5).
```

Example 2.3 The following is an $IRMD(\{3, 4^*\}, 10, 4)$:

```
Point set: X = Z_{10}, Y = \{6, 7, 8, 9\}.

Parallel classes: (0, 4, 6), (1, 3, 7), (2, 8, 5, 9); (0, 5, 7), (2, 6, 3), (1, 8, 4, 9); (0, 6, 1), (2, 4, 7), (3, 9, 5, 8); (0, 7, 4), (1, 6, 5), (2, 9, 3, 8); (1, 7, 3), (2, 5, 6), (0, 9, 4, 8); (2, 7, 5), (3, 6, 4), (0, 8, 1, 9).

Holey parallel classes: (0, 1, 2), (3, 4, 5); (0, 2, 3), (1, 5, 4); (0, 3, 5), (1, 4, 2).
```

The Oberwolfach problem can be applied to the construction of resolvable Mendelsohn designs. A subgraph F of graph G is called a factor of G if F contains all the vertices of G. A 2-factor of G is a factor which is regular of degree 2. A 2-factorization of G is a partition of the edge set of G into 2-factors. More formally, a 2-factorization of G is a pair (X, \mathcal{B}) , where \mathcal{B} is a collection of edge disjoint 2-factors which partition the edge set of G with the vertex set X. An (m_1, m_2, \ldots, m_t) -2-factor of G is a 2-factor consisting of cycles of lengths m_1, m_2, \ldots, m_t . An (m_1, m_2, \ldots, m_t) -2-factors.

Suppose n is odd and $n = m_1 + m_2 + \cdots + m_t$. The problem of determining whether there exists an (m_1, m_2, \ldots, m_t) -2-factorization of K_n is the Oberwolfach problem, denoted $OP(m_1, m_2, \ldots, m_t)$. In this paper our attention is restricted to the case that all cycles are of length three except that each 2-factor contains one cycle of length s, denoted by $OP(\{3, s^*\}, n)$. For $OP(\{3, 4^*\}, n)$, Dejter, Franck, Mendelsohn and Rosa [6] have obtained the following result.

Theorem 2.4 [6] There exists an $OP(\{3,4^*\},n)$ for every $n \equiv 1 \pmod{6}$ with $n \geq 7$.

For $OP(\{3,5^*\},n)$, Sui and the second author of this paper have obtained the following result.

Theorem 2.5 [7] There exists an $OP(\{3, 5^*\}, n)$ for every $n \equiv 5 \pmod{6}$ with $n \geq 5$ except for n = 11.

3 The existence of RMDs

First we shall give the main construction in this paper. It is a variant of Stinson's "Filling in Holes" construction.

Construction 3.1 Suppose w is a positive integer, $w \equiv 1$ or $2 \pmod{3}$ and $w \geq 4$, and s = 4 when $w \equiv 1 \pmod{3}$ or s = 5 when $w \equiv 2 \pmod{3}$. Suppose

- 1. there is a Mendelsohn frame of type $g_1g_2\cdots g_m$;
- 2. there is an IRMD($\{3, s^*\}, g_i + w, w$) for every i < m;
- 3. there is an RMD($\{3, s^*\}, g_m + w$).

Then there is an RMD($\{3, s^*\}$, v), where $v = \sum_{1 \le i \le m} g_i + w$.

Proof We start with a Mendelsohn frame of type $g_1g_2 \cdots g_m$ $(X, \mathcal{G}, \mathcal{B})$, where $\mathcal{G} = \{G_1, G_2, \cdots, G_m\}$ and $|G_i| = g_i$ $(1 \leq i \leq m)$. For i < m, there are g_i frame holey parallel classes missing the group G_i , and the same number of parallel classes in the IRMD($\{3, s^*\}, g_i + w, w$) which contains a block of size five; match these up arbitrarily, placing the g_i points of the IRMD($\{3, s^*\}, g_i + w, w$) on the *i*-th group of the frame and the w points in its hole on w new points.

Next, each IRMD($\{3, s^*\}$, $g_i + w$, w) contains w - 1 holey parallel classes. The union of these holey parallel classes together with the w - 1 parallel classes of the RMD($\{3, s^*\}$, $g_m + w$) forms w - 1 additional parallel classes. The remaining g_m parallel classes of the RMD($\{3, s^*\}$, $g_m + w$) can be matched arbitrarily with the g_m frame holey parallel classes of the m-th group. This completes the construction.

It is easy to check that this construction gives the desired designs. The proof is complete.

Next we discuss the two cases: $v \equiv 1 \pmod{3}$ and $v \equiv 2 \pmod{3}$. First we consider the existence of RMD($\{3,4^*\},v$) when $v \equiv 1 \pmod{3}, v \geq 7$.

Lemma 3.2 There exists a $RMD(\{3,4^*\},v)$ for every $v \equiv 1 \pmod{6}$ with $v \geq 7$.

Proof Start with an $OP(\{3,4^*\},v)$ (for existence, see Theorem 2.4) and for each cycle $\{a,b,c\}$ or $\{x,y,z,w\}$ of the design, we associate the blocks (a,b,c) and (c,b,a) or (x,y,z,w) and (w,z,y,x) of the $RMD(\{3,4^*\},v)$.

Lemma 3.3 There exists an $RMD(\{3,4^*\}, v)$ for every $v \in \{10, 16, 22\}$.

Proof The following is an RMD($\{3, 4^*\}$, 10):

Point set: Z_{10} .

```
Parallel classes: (0,1,2), (3,4,5), (6,7,8,9); (0,2,1), (3,5,4), (6,9,8,7); (0,3,6), (1,4,7), (2,8,5,9); (0,4,8), (1,3,9), (2,7,5,6); (0,6,4), (2,5,7), (1,9,3,8); (0,7,9), (2,6,3), (1,5,8,4); (0,9,5), (1,7,3), (2,4,6,8); (1,6,5), (2,9,4), (0,8,3,7); (1,8,6), (4,9,7), (0,5,2,3).
```

For short, an RMD($\{3,4^*\}$, 16) is constructed in the Appendix. As for an RMD($\{3,4^*\}$, 22), it is constructed by adding an RMD($\{3,4^*\}$, 7) to an IRMD($\{3,4^*\}$, 22, 7). An IRMD($\{3,4^*\}$, 22, 7) is constructed in the Appendix and an RMD($\{3,4^*\}$, 7) is obtained from Lemma 3.2.

Lemma 3.4 There exists an $RMD(\{3,4^*\}, v)$ for every $v \equiv 4 \pmod{6}$ with $v \geq 28$.

Proof Start with a Mendelsohn frame of type 6^u with $u \ge 4$ (for existence, see Lemma 2.1), and apply Construction 3.1 with w = 4 to obtain the desired designs; the input designs we need, $IRMD(\{3,4^*\},10,4)$, and $RMD(\{3,4^*\},10)$ come from Example 2.3 and Lemma 3.3.

Combining Lemma 3.2 to Lemma 3.4, we have the following result.

Theorem 3.5 There exists an $RMD(\{3,4^*\}, v)$ for every $v \equiv 1 \pmod{3}$ with $v \geq 7$.

The proof of Theorem 1.2 The necessity obviously holds. The sufficiency comes from Theorem 3.5 and it is easy to see that there exists no $RMD(\{3,4^*\},4)$.

Next we consider the existence of RMD($\{3,5^*\},v$) when $v\equiv 2\pmod 3$, $v\geq 5$.

Lemma 3.6 There exists an $RMD(\{3,5^*\}, v)$ for every $v \equiv 5 \pmod{6}$ with $v \geq 5$ except for v = 11.

Proof Start with an $OP(\{3,5^*\},v)$ (for existence, see Theorem 2.5) and for each cycle $\{a,b,c\}$ or $\{x,y,z,u,v\}$ of the design, we associate the blocks (a,b,c) and (c,b,a) or (x,y,z,u,v) and (v,u,z,y,x) of the RMD($\{3,5^*\},v$).

Lemma 3.7 There exists an $RMD(\{3,5^*\}, v)$ for every $v \in \{8, 11, 14, 20\}$.

Proof The following is an RMD($\{3,5^*\}$, 8):

Point set: Z_8 .

```
Parallel classes: (0,1,2), (3,4,5,6,7); (0,2,1), (3,5,4,7,6);

(0,3,6), (1,4,2,5,7); (0,4,3), (1,7,2,6,5);

(0,7,5), (1,3,2,4,6); (1,5,3), (0,6,2,7,4);

(1,6,4), (0,5,2,3,7).
```

For short, the RMD($\{3,5^*\}$, 11) and RMD($\{3,5^*\}$, 14) are constructed in the Appendix. As for RMD($\{3,5^*\}$, 20), it is constructed by adding an RMD($\{3,5^*\}$, 5) to an IRMD($\{3,5^*\}$, 20, 5). An IRMD($\{3,5^*\}$, 20, 5) is constructed in the Appendix and an RMD(5) comes from Lemma 3.6.

Lemma 3.8 There exists an $RMD(\{3,5^*\}, v)$ for every $v \equiv 2 \pmod{6}$ with $v \geq 26$.

Proof Start with a Mendelsohn frame of type 6^u with $u \geq 4$ (for existence, see Lemma 2.1), and apply Construction 3.1 with w = 2 to obtain the desired designs; the input designs we need, IRMD($\{3,5^*\}$, 8, 2) and RMD($\{3,5^*\}$, 8), come from Example 2.2 and Lemma 3.7.

Combining Lemma 3.6 to Lemma 3.8, we have the following result.

Theorem 3.9 There exists an $RMD(\{3,5^*\}, v)$ for every $v \equiv 2 \pmod{3}$ with $v \geq 5$.

The proof of Theorem 1.3 The necessity obviously holds. The sufficiency comes from Theorem 3.9.

Appendix

 $RMD({3,5^*},11):$

```
Point set: Z_{11}.

Parallel classes: (0,1,2)(3,4,5)(6,7,8,9,10); (0,2,1)(3,5,4)(6,8,7,10,9); (0,3,6)(1,4,7)(2,5,9,8,10); (0,4,8)(1,3,9)(2,6,5,10,7); (0,5,7)(1,6,3)(2,9,4,10,8); (0,6,4)(2,8,5)(1,9,7,3,10); (0,7,9)(1,10,5)(2,3,8,4,6); (0,9,3)(1,5,8)(2,7,6,10,4); (1,7,4)(5,6,9)(0,8,3,2,10); (1,8,6)(2,4,9)(0,10,3,7,5).
RMD(\{3,5^*\},14):
Point set: Z_{14}.

Parallel classes: (0,1,11)(3,10,12)(4,9,6)(2,7,8,13,5); (0,2,5)(3,7,11)(4,6,9)(1,10,8,12,13);
```

```
(0.4,1)(3.5,8)(7,10.9)(2.6,13.12.11); (0.7,13)(1.4.8)(2.3.9)(5.10.11.12.6);
(0.8,9)(1.12,2)(5.6,7)(3.11,10.13,4); (0.9,12)(1.8,5)(6.11,13)(2.10,4.7,3);
(0.10.3)(1.13.9)(4.11.8)(2.12.5.7.6); (0.13.10)(1.7.12)(3.8.6)(2.9.5.11.4);
(1,2,11)(6,12,10)(7,9,8)(0,5,13,3,4); (1,3,6)(2,4,13)(5,9,11)(0,12,8,10,7);
(1,5,3)(4,12,7)(9,13,11)(0,6,10,2,8); (1,9,10)(4,5,12)(6,8,11)(0,3,13,7,2);
(2,13,8)(3,12,9)(4,10,5)(0,11,7,1,6).
RMD({3, 4*}, 16):
Point set: Z_{16}.
Parallel classes:
(0,9,10)(1,3,4)(5,15,7)(6,11,14)(2,13,8,12);(1,13,11)(2,10,14)(3,6,7)(5,9,8)(0,15,12,4);
(0.14.8)(1.4.5)(2.6.10)(11.13.15)(3.9.7.12);(0.12.13)(1.2.9)(3.5.8)(7.11.10)(4.14.15.6);
(0.11.3)(1.6.15)(4.8.9)(7.14.13)(2.12.10.5); (0.2.14)(3.7.10)(4.11.8)(5.12.6)(1.15.9.13);
(2,7,4)(5,13,9)(6,14,11)(8,10,15)(0,3,12,1);(0,13,5)(1,7,8)(2,3,11)(9,15,10)(4,6,12,14);
(0,6,9)(1,8,2)(3,10,4)(7,13,14)(5,11,12,15);(0,4,12)(1,5,14)(2,15,3)(7,9,11)(6,13,10,8);
(0,5,7)(1,14,10)(2,8,15)(3,13,6)(4,9,12,11);(0,7,2)(1,9,6)(3,15,14)(8,13,12)(4,10,11,5);
(0.8,11)(2.5,6)(4.7,15)(9.14,12)(1.10,13,3); (0.10,6)(1.12,7)(2.11,9)(4.15,13)(3.8,14,5);
(2,4,13)(3,14,9)(5,10,12)(6,8,7)(0,1,11,15).
IRMD({3,5*}, 20, 5):
Point set: Z_{15} \cup \{\infty_i | 1 \le i \le 5\}.
Parallel classes: develop the following modulo 15:
(0,2,1,7,3)(4,11,\infty_1)(5,13,\infty_2)(6,9,\infty_3)(12,10,\infty_4)(14,8,\infty_5).
Holey parallel classes:
(0,1,5)(3,4,8)(6,7,11)(9,10,14)(12,13,2); (1,2,6)(4,5,9)(7,8,12)(10,11,0)(13,14,3);
(2,3,7)(5,6,10)(8,9,13)(11,12,1)(14,0,4); (0,5,10)(1,6,11)(2,7,12)(3,8,13)(4,9,14).
IRMD({3,4*}, 22, 7):
Point set: Z_{15} \cup \{\infty_i | 1 \le i \le 7\}.
Parallel classes: develop the following modulo 15:
(0.3,1,\infty_1)(2.8,\infty_2)(4.11,\infty_3)(6.5,\infty_4)(12.9,\infty_5)(13.7,\infty_6)(14.10,\infty_7).
Holey parallel classes:
(0.1.5)(2.12.13)(3.4.8)(6.7.11)(9.10.14); (0.2.7)(1.9.11)(3.5.10)(4.12.14)(6.8.13);
(0.4,14)(1.11,12)(2.3,7)(5.6,10)(8.9,13); (0.5,13)(1.3,8)(2.10,12)(4.6,11)(7.9,14);
(0.8,10)(1.6,14)(2.4,9)(3.11,13)(5.7,12); (0.10,11)(1.2,6)(3.13,14)(4.5,9)(7.8,12).
```

References

- [1] F.E. Bennett, R. Wei and L. Zhu, Resolvable Mendelsohn Triple Systems with equal sized holes, *J. Combin. Designs* 5 (1997), 329–340.
- [2] J.C. Bermond, A. Germa and D. Sotteau, Resolvable decomposition of K_n^* , J. Combin. Theory A 26 (1979), 179–185.
- [3] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institute, Zurich, 1985.
- [4] H. Cao and B. Du, Kirkman packing designs KPD $(\{w, s^*\}, v)$ and related threshold schemes, *Discrete Math.* 281 (2004), 83–95.
- [5] A. Ĉerný, P. Horák and W.D. Wallis, Kirkman's school projects, Discrete Math. 167/168 (1997), 189–196.
- [6] I.J. Dejter, F. Franek, E. Mendelsohn and A. Rosa, Triangles in 2-factorizations, J. Graph Theory 26 (1997), 83–94.
- [7] Q. Sui and B. Du, The Oberwolfach problem for a unique 5-cycle and all others of length 3, *Utilitas Math.* 65 (2004), 243–254.

(Received 19 Sep 2003)