Note on a closure concept and matching extension

Tsuyoshi Nishimura

Department of Mathematics Shibaura Institute of Technology Minuma-Ku, Saitama 330-8570 Japan

Abstract

We prove the following theorems:

- (i) Let G be a graph and let x be a locally 2n-connected vertex. Let $\{u,v\}$ be a pair of vertices in $V(G)-\{x\}$ such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G(u) \cup N_G(v) \cup \{u,v\}$. Then if G+uv is n-extendable, then G is n-extendable or G is a member of the exceptional family \mathcal{F} of graphs described.
- (ii) Let G be a (2n+1)-connected graph. Let $\{u, v, x\}$ be a three-vertex subset of V(G) such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G(u) \cup N_G(v) \cup \{u, v\}$. If G + uv is n-extendable, then G is n-extendable or G is a member of the exceptional family \mathcal{F} of graphs described.

We consider only finite simple graphs and follow Chartrand and Lesniak [2] for general terminology and notation. Let G be a graph with vertex set V(G) and edge set E(G). For $A \subset V(G)$, G[A] and G - A are the subgraphs of G induced by A and V(G) - A, respectively. Further, if F is a subgraph of G, we will write simply G[F] and G - F instead of G[V(F)] and G - V(F), respectively. For $A, B \subset V(G)$, if $A \cap B = \emptyset$, then $E_G(A, B)$ denotes the set of edges such that one endvertex is in A and the other is in B. The set of endvertices of an edge e is denoted by V(e) and for a matching M, let $V(M) = \bigcup_{e \in M} V(e)$. For a vertex $v \in V(G)$, $N_G(v)$ denotes the neighborhood of v in G and let $\deg_G(v) = |N_G(v)|$ denote the degree of v. Further, let $N_G[v]$ denote the closed neighborhood of v, that is, $N_G[v] = N_G(v) \cup \{v\}$. If $G[N_G(v)]$ is k-connected, then v is called locally k-connected.

Let $k \geq 0$ and p > 0 be integers with $k \leq p-1$ and G a graph with 2p vertices having a 1-factor. Then G is said to be k-extendable if every matching of size k in G can be extended to a 1-factor (a perfect matching). A graph G of order p is k-factor-critical, where k is an integer of the same parity as p with $0 \leq k \leq p$, if G - X has a 1-factor for any set X of k vertices of G. In particular, G is 0-factor-critical or 0-extendable if and only if G has a 1-factor.

In [4], we proved the following theorem about n-factor-criticality.

Theorem A. Let G be a graph and let x be a locally n-connected vertex. Let $\{u, v\}$ be a pair of vertices in $V(G) - \{x\}$ such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. Then G + uv is n-factor-critical if and only if G is n-factor-critical.

Further, we conjectured the following statement holds: Let G be a graph and let x be a locally 2n-connected vertex. Let $\{u,v\}$ be a pair of vertices in $V(G)-\{x\}$ such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. If G+uv is n-extendable, then G is n-extendable. But in [4], we showed this conjecture does not hold in contrast to many parallel results for extendability and factor-criticality. That is, there exists a graph G satisfying $x \in N_G(u) \cap N_G(v)$ which is locally 2n-connected, $uv \notin E(G), N_G(x) \subset N_G(u) \cap N_G(v)$ such that G is not n-extendable, but G + uv is n-extendable.

The purpose of this paper is to show that this conjecture is true, unless the graph is a member of a special exceptional family. Before we present our theorem, we define a family of graphs.

Let G be a graph satisfying the following properties:

- (i) there exists a subgraph B of G of order at least 2n+1 and there exists a vertex $x \in B$ such that B has an n-matching M (a matching of size n) but $B \{x\}$ does not have an n-matching,
- (ii) G B has |B| 2n + 2 odd components $C_1, ..., C_{|B|-2n+2}$,
- (iii) $\exists i \text{ and } j \in \{1, 2, ..., |B| 2n + 2\}$ with $i \neq j$ such that there exist two vertices $u \in C_i \cap N_G(x)$ and $v \in C_j \cap N_G(x)$ such that $N_G(x) \subset N_G[u] \cup N_G[v]$.

Let \mathcal{F} be a family of graphs G satisfying the above properties.

Theorem 1. Let G be a graph and let x be a locally 2n-connected vertex. Let $\{u, v\}$ be a pair of vertices in $V(G) - \{x\}$ such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. If G + uv is n-extendable, then G is n-extendable or $G \in \mathcal{F}$.

Theorem 2. Let G be a (2n+1)-connected graph. Let $\{u,v,x\}$ be a three-vertex subset of V(G) such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. If G + uv is n-extendable, then G is n-extendable or $G \in \mathcal{F}$.

We use the following lemma that is a variation of Tutte's theorem. Let o(H) denote the number of odd components of a graph H.

Lemma B (Chen[3]). Let G be a graph. Then G is n-extendable if and only if $o(G-S) \leq |S|-2n$ for all vertex subsets S containing an n-matching.

Proof of Theorem 1. Let G, x, u, and v be as in the statement of the theorem. Suppose G + uv is n-extendable but G is not n-extendable. Then there exists a

matching M of size n such that (G + uv) - V(M) has a perfect matching and G - V(M) does not have a perfect matching. Therefore, by Lemma B, there exists a vertex subset B with $V(M) \subset B$ such that $o(G - B) > |B| - 2n \ge o[(G + uv) - B]$.

Notice that $|V(G)| \equiv 0 \pmod 2$ since G + uv is n-extendable. Since $o(G - B) + |B| \equiv 0 \pmod 2$ and $o[(G + uv) - B] \ge o(G - B) - 2$, we have o(G - B) - 2 = o[(G + uv) - B] = |B| - 2n. We may assume $u \in C_1$ and $v \in C_2$, where C_1 and C_2 are odd components of G - B. Now let $C_3, \ldots, C_{|B|-2n+2}$ be the other odd components of G - B. These components are also odd components of (G + uv) - B. Now since $E_G(C_1, C_2) = \emptyset$ and $x \in N_G(u) \cap N_G(v)$, we may assume $x \in B$.

Case 1. |B| = 2n.

In this case, the two vertices u and $v \in N_G(x)$ are separated by $N_G(x) \cap B$ in $G[N_G(x)]$. Since $|N_G(x) \cap B| < 2n$, this contradicts the assumption that x is locally 2n-connected.

Case 2. |B| > 2n.

If there is a vertex subset $S \subset B - \{x\}$ with |S| = 2n and $V(M) \subset S$, since G + uv is n-extendable, (G + uv) - S has a perfect matching so that every vertex of B - S is matched with a vertex of distinct components $C_3, \ldots, C_{|B|-2n+2}$. In particular, we may assume x is matched with a vertex w of C_3 . However, since $N_G(x) \subset N_G[u] \cup N_G[v]$, w is adjacent to u or v in G. This is impossible since $E_G(C_1 \cup C_2, C_3) = \emptyset$, a contradiction.

Thus we may assume $x \in V(M)$ and $E(B-V(M)) = \emptyset$. Now let $xx' \in M$. Notice that for any matching M' of size n in B, we have o(G-B)-2=o[(G+uv)-B]=|B|-2n. Now since x is a locally 2n-connected vertex and $u \in N_G(x) \cap C_1$ and $v \in N_G(x) \cap C_2$, we have $|N_G(x) \cap B| \geq 2n$. Therefore there exists a vertex $y \in N_B(x)-V(M-\{xx'\})-\{x'\}$. If $x'y \in E(B)$, then we put $M'=(M-\{xx'\})\cup\{x'y\}$. If $x'y \notin E(B)$ and there exists a vertex $y' \in B-V(M)-\{y\}$ such that yy' is an edge in B, then we put $M'=(M-\{xx'\})\cup\{yy'\}$. By applying the argument as in the first part of this case for M' instead of M, we have a contradiction. Thus we may assume that $N_B(y) \subset V(M)-\{x'\}$ for every vertex $y \in N_B(x)-V(M)$. Similarly, $N_B(x') \subset V(M)$. Further since $E(B-V(M))=\emptyset$, $N_B(z)\subset V(M)-\{x\}$ for every vertex $z \in B-V(M)$. Therefore, for any n-matching M in B, $B-[V(M-\{xx'\})\cup\{x\}]$ induces an empty graph. Hence B has an n-matching M but $B-\{x\}$ does not have an n-matching, which implies G is in F. This completes the proof.

A Sketch of Proof of Theorem 2. Let G, x, u, and v be as in the statement of Theorem 2. Suppose M is an n-matching such that (G + uv) - V(M) has a perfect matching but G - V(M) does not have a perfect matching. By the same arguments as in the proof of Theorem 1, we have o(G - B) - 2 = o[(G + uv) - B] = |B| - 2n for some vertex subset B with $V(M) \subset B$. Further, we use the same notation and definitions as in the proof of Theorem 1. Therefore we may assume that $x \in B$, $u \in C_1$ and $v \in C_2$, where $C_1, C_2, ..., C_{|B|-2n+2}$ are the odd components of G - B.

Since G is (2n+1)-connected, we may assume $|B| \geq 2n+1$. By the same argument as in the proof of Case 2 of Theorem 1, if there is a vertex subset $S \subset B - \{x\}$ with |S| = 2n and $V(M) \subset S$, then we have a contradiction. Therefore $x \in V(M)$ and $E(B - V(M)) = \emptyset$ for every n-matching M in B. Now let $xx' \in M$. Since $|B| \geq 2n+1$, there exists a vertex $y \in B - V(M)$. If $x'y \in E(B)$, then when we set $M' = (M - \{xx'\}) \cup \{x'y\}$, we have an n-matching $M' \subset B$ such that $V(M') \subset B - \{x\}$, a contradiction. Thus $N_B(x') \subset V(M) - \{x'\}$. Similarly $N_B(w) \subset V(M) - \{x'\}$ for every vertex $w \in N_B(x) - V(M)$. Further, since $E(B - V(M)) = \emptyset$, $B - V(M - \{xx'\}) - \{x\}$ induces an empty graph. Hence B has an n-matching but $B - \{x\}$ has no n-matching. Then G is in \mathcal{F} .

If $G \in \mathcal{F}$, then G is not n-extendable, because, for $B \supset V(M)$, o(G - B) = o(G - V(M) - (B - V(M))) = |B| - 2n + 2 > |B| - 2n = |B - V(M)|. On the other hand, clearly \mathcal{F} contains a graph G such that G + uv is n-extendable. Actually, in [4], we construct such a graph. For the convenience of the reader, we show such a graph here again.

Let w, x, y, z be four vertices. We set $X = (n-1)K_2 \cup \{y, z\}$ and $Y = K_p \cup K_q \cup \{w\}$, where p, q are odd integers greater than n. And let $G = (\{x\} \oplus (X \oplus Y)) - \{xw\}$, where \oplus denotes the join. Further, let u (resp. v) be a vertex of K_p (resp. K_q). Then G satisfies the properties that $x \in N_G(u) \cap N_G(v)$ which is locally 2n-connected, $uv \notin E(G)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. And if we set $B = X \cup \{x\}$, then B contains an n-matching but $B - \{x\}$ does not contain an n-matching. So clearly G is in \mathcal{F} . But one can easily check that G + uv is n-extendable.

The converse statement of Theorem 1 does not hold. Let a,b,l, and m be positive odd integers with a+b=2n and $l\geq m\geq 2n+1$. Set $G=(K_a\cup K_b)\oplus (K_l\cup K_m)$. Now let x,u, and v be vertices in K_m,K_a , and K_b , respectively. We can easily see that G is n-extendable and that $\{u,v,x\}$ satisfies the hypotheses of the theorem, that is, x is a locally 2n-connected vertex, $uv\not\in E(G), x\in N_G(u)\cap N_G(v), N_G(x)\subset N_G[u]\cup N_G[v]$. However, G+uv is not n-extendable. To see this, choose an n-matching M in $K_a\cup K_b\cup \{uv\}$, then $(G+uv)-V(M)=K_l\cup K_m$ is consisted of two odd components. Therefore, G+uv is not n-extendable.

The connectivity assumption of Theorem 2 cannot be weakened. Let $G = K_{2n} \oplus 2K_{2l+1}$ and $x \in V(K_{2n})$. Let u, v be two vertices in distinct components of $G - K_{2n}$. Clearly $\{u, v, x\}$ satisfies the hypothesis. And one can easily check G is 2n-connected and G + uv is n-extendable, but G is not n-extendable and $G \notin \mathcal{F}$.

If a graph H is obtained from a graph G by iteratively joining all pairs $\{u,v\}$ satisfying the condition $uv \notin E(G)$, but there exists a locally n-connected vertex x (resp. a vertex x) such that $x \in N_G(u) \cap N_G(v)$ and $N_G(x) \subset N_G[u] \cup N_G[v]$ until there no longer remains any such pair, then H is called an n-closure (resp. a closure) of G and is denoted by $\operatorname{cl}_n(G)$ (resp. $\operatorname{cl}(G)$). Note that the n-closure of a given graph G is not determined uniquely (see [4]). From our Theorems, we have

the following corollaries.

Corollary 3. Let $G \notin \mathcal{F}$ be a graph. If $\operatorname{cl}_{2n}(G)$ is *n*-extendable, then G is *n*-extendable.

Corollary 4. Let $G \notin \mathcal{F}$ be a (2n+1)-connected graph. If cl(G) is n-extendable, then G is n-extendable.

Note.

The following theorem also holds by a proof similar to that of Theorem A in [4].

Theorem 5. Let G be a (n+1)-connected graph. Let $\{u, v, x\}$ be a three-vertex subset of V(G) such that $uv \notin E(G), x \in N_G(u) \cap N_G(v)$, and $N_G(x) \subset N_G[u] \cup N_G[v]$. Then G + uv is n-factor-critical if and only if G is n-factor-critical.

Here $K_n \oplus 2K_{2l+1}$ shows that the connectivity assumption cannot be weakened.

Corollary 6. Let G be a (n+1)-connected graph. G is n-factor-critical if and only if cl(G) is n-factor-critical.

Acknowledgement. The author wishes to thank the referees for their helpful comments.

References

- [1] H.J. Broersma and I. Schiermeyer, A closure concept based on neighbourhood unions of independent triples. Discrete Math. 124 (1994), 37–47.
- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs (Third edition) (1996) Chapman & Hall.
- [3] C. Chen, Binding number and toughness for matching extension. Discrete Math. 146 (1995), 303-306.
- [4] T. Nishimura, A closure concept in factor-critical graphs. Discrete Math. 259 (2002), 319–324.
- [5] M.D. Plummer and A. Saito, Closure and factor-critical graphs. Discrete Math. 215 (2000), 171–179.
- [6] Z. Ryjáček, On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70 (1997), 217–224.

(Received 4 Sep 2003; revised 12 Mar 2004)