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Abstract

We prove the following theorems:

(i) Let G be a graph and let = be a locally 2n-connected vertex. Let
{u,v} be a pair of vertices in V(G) — {z} such that wv ¢ E(G), © €
Ng(u) N Ng(v), and Ng(z) C Ng(u) U Ng(v) U{u,v}. Then if G +wuw is
n-extendable, then G is n-extendable or G is a member of the exceptional
family F of graphs described.

(ii) Let G be a (2n + 1)-connected graph. Let {u,v,z} be a three-vertex
subset of V(@) such that uwv ¢ E(G),z € Ng(u) N Ng(v), and Ng(z) C
Ng(u)UNg(v)U{u,v}. If G4uv is n-extendable, then G is n-extendable
or GG is a member of the exceptional family F of graphs described.

We consider only finite simple graphs and follow Chartrand and Lesniak [2] for
general terminology and notation. Let G be a graph with vertex set V(G) and edge
set E(G). For A C V(G), G[A] and G — A are the subgraphs of G induced by A
and V(G) — A, respectively. Further, if F is a subgraph of G, we will write simply
G[F] and G — F instead of G[V(F)] and G — V(F), respectively. For A, B C V(G),
if ANB =0, then Eg(A, B) denotes the set of edges such that one endvertex is in A
and the other is in B. The set of endvertices of an edge e is denoted by V(e) and for
a matching M, let V(M) = Uzem V(e). For a vertex v € V(G), Ng(v) denotes the
neighborhood of v in G and let degg(v) = |[Ng(v)| denote the degree of v. Further,
let Ng[v] denote the closed neighborhood of v, that is, Ng[v] = Ng(v) U {v}. If
G[N¢(v)] is k-connected, then v is called locally k-connected.

Let £ > 0 and p > 0 be integers with £ < p — 1 and G a graph with 2p vertices
having a 1-factor. Then G is said to be k-extendable if every matching of size k in G
can be extended to a 1-factor (a perfect matching). A graph G of order p is k- factor-
critical, where k is an integer of the same parity as p with 0 < k£ < p, if G — X has
a l-factor for any set X of k& vertices of G. In particular, G is O-factor-critical or
0-extendable if and only if G has a 1-factor.

In [4], we proved the following theorem about n-factor-criticality.
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Theorem A. Let G be a graph and let x be a locally n-connected vertex. Let {u,v}
be a pair of vertices in V(G) — {z} such that wv ¢ E(G),z € Ng(u) N Ng(v),
and Ng(z) C Ngu] U Nglv]. Then G + wv is n-factor-critical if and only if G is
n-factor-critical. a

Further, we conjectured the following statement holds: Let G be a graph and let
z be a locally 2n-connected vertex. Let {u,v} be a pair of vertices in V(G) — {z}
such that wv € E(G),z € Ng(u) N Ng(v), and Ng(z) C Ng[u] U Nglv]. If G+ wv is
n-extendable, then G is n-extendable. But in [4], we showed this conjecture does not
hold in contrast to many parallel results for extendability and factor-criticality. That
is, there exists a graph G satisfying ¢ € Ng(u)NNg(v) which is locally 2n-connected,
wv & E(G), Ng(z) C Ng(u) N Ng(v) such that G is not n-extendable, but G + uv is
n-extendable.

The purpose of this paper is to show that this conjecture is true, unless the graph
is a member of a special exceptional family. Before we present our theorem, we define
a family of graphs.

Let G be a graph satisfying the following properties:

(i) there exists a subgraph B of G of order at least 2n + 1 and there exists a vertex
x € B such that B has an n-matching M (a matching of size n) but B — {«}
does not have an n-matching,

(i) G — B has |B| —2n + 2 odd components C1, ..., C|p|—2n+2

(iii) Jéand j € {1,2,...,|B| — 2n + 2} with ¢ # j such that there exist two vertices
u € C; N Ng(z) and v € C; N Ng(z) such that Ng(z) C Nefu] U Ne[v].

Let F be a family of graphs G satisfying the above properties.

Theorem 1. Let G be a graph and let x be a locally 2n-connected vertex. Let {u,v}
be a pair of vertices in V(G) — {z} such that uwv ¢ E(G),z € Ng(u) N Ng(v), and
Ng(z) C Neglu]UNg[v]. If G+uv is n-extendable, then G is n-extendable or G € F.
Theorem 2. Let G be a (2n + 1)-connected graph. Let {u,v,z} be a three-vertex

subset of V(G) such that wv ¢ E(G),z € Ng(u)NNg(v), and Ng(z) C Ng[u]UNg[v].
If G + uv is n-extendable, then G is n-extendable or G € F.

We use the following lemma that is a variation of Tutte’s theorem. Let o(H)
denote the number of odd components of a graph H.

Lemma B (Chen[3]). Let G be a graph. Then G is n-extendable if and only if
o(G — S) <|S| — 2n for all vertex subsets S containing an n-matching. O

Proof of Theorem 1. Let G,z,u, and v be as in the statement of the theorem.
Suppose G + wv is n-extendable but G is not n-extendable. Then there exists a
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matching M of size n such that (G + wv) — V(M) has a perfect matching and
G — V(M) does not have a perfect matching. Therefore, by Lemma B, there exists a
vertex subset B with V(M) C B such that o(G — B) > |B| — 2n > o[(G + wv) — B].

Notice that |V(G)| = 0 (mod 2) since G + uv is n-extendable. Since o(G — B) +
|B| = 0 (mod 2) and o[(G + wv) — B] > o(G — B) — 2, we have o(G — B) — 2 =
o[(G+uv)— B] = |B| —2n. We may assume u € C; and v € Cy, where C} and Cs are
odd components of G — B. Now let Cs,....,C|p|-2,42 be the other odd components
of G — B. These components are also odd components of (G + uv) — B. Now since
Ec(C1,Cs) =0 and = € Ng(u) N Ng(v), we may assume z € B.

Case 1. |B| = 2n.

In this case, the two vertices v and v € Ng(z) are separated by Ng(z) N B in
G[Ng(z)]. Since |Ng(z) N B| < 2n, this contradicts the assumption that z is locally
2n-connected.

Case 2. |B| > 2n.

If there is a vertex subset S C B—{«} with |S| = 2n and V(M) C S, since G+uv
is n-extendable, (G + uv) — S has a perfect matching so that every vertex of B— S is
matched with a vertex of distinct components Cs,....,C|p|—2n+2. In particular, we may
assume z is matched with a vertex w of C3. However, since Ng(z) C Nglu] U Ng[v],
w is adjacent to w or v in G. This is impossible since Eg(Cy U Cy,C3) = 0, a
contradiction.

Thus we may assume z € V(M) and E(B-V(M)) = 0. Now let 22’ € M. Notice
that for any matching M’ of size n in B, we have o(G — B) — 2 = o[(G+wv) — B] =
|B| — 2n. Now since z is a locally 2n-connected vertex and v € Ng(z) N C; and
v € Ng(z) N Cy, we have |Ng(z) N B| > 2n. Therefore there exists a vertex y €
Np(z)-V(M —{zz'})—{2'}. It 2’y € E(B), then we put M' = (M —{zz'})U{z'y}.
If 2’y ¢ E(B) and there exists a vertex y' € B—V (M) —{y} such that yy' is an edge
in B, then we put M’ = (M —{zz'})U{yy'}. By applying the argument as in the first
part of this case for M’ instead of M, we have a contradiction. Thus we may assume
that Ng(y) C V(M) —{z'} for every vertex y € Ng(z) — V(M). Similarly, Ng(z') C
V(M). Further since E(B — V(M)) = 0, Ng(z) C V(M) — {z} for every vertex
z € B —V(M). Therefore, for any n-matching M in B, B — [V(M — {zz'}) U {z}]
induces an empty graph. Hence B has an n-matching M but B — {z} does not have
an n-matching, which implies G is in F. This completes the proof. O

A Sketch of Proof of Theorem 2. Let G, z,u, and v be as in the statement of
Theorem 2. Suppose M is an n-matching such that (G + uv) — V(M) has a perfect
matching but G — V(M) does not have a perfect matching. By the same arguments
as in the proof of Theorem 1, we have o(G — B) — 2 = o[(G 4+ wv) — B] = |B| — 2n
for some vertex subset B with V(M) C B. Further, we use the same notation and
definitions as in the proof of Theorem 1. Therefore we may assume that © € B,
u € 1 and v € Oy, where C1,C),....,C|B|—2n42 are the odd components of G — B.
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Since G is (2n+1)-connected, we may assume |B| > 2n+1. By the same argument
as in the proof of Case 2 of Theorem 1, if there is a vertex subset S C B — {z} with
S| = 2n and V(M) C S, then we have a contradiction. Therefore z € V(M)
and E(B — V(M)) = 0 for every n-matching M in B. Now let z2/ € M. Since
|B| > 2n + 1, there exists a vertex y € B — V(M). If 'y € E(B), then when
we set M' = (M — {zz'}) U {2'y}, we have an n-matching M’ C B such that
V(M') C B—{z}, a contradiction. Thus Ng(z') C V(M)—{z'}. Similarly Ng(w) C
V(M) —{a'} for every vertex w € Ng(z) —V (M). Further, since E(B—V(M)) = 0,
B -V (M — {zz'}) — {z} induces an empty graph. Hence B has an n-matching but
B — {z} has no n-matching. Then G is in F. O

If G € F, then G is not n-extendable, because, for B O V(M), o(G — B) =
o(G-V(M)—(B-V(M))) =|B|-2n+2> |B|—2n = |B—V(M)|. On the other
hand, clearly F contains a graph G such that G + uv is n-extendable. Actually, in
[4], we construct such a graph. For the convenience of the reader, we show such a
graph here again.

Let w, z,y, z be four vertices. We set X = (n — 1)K U{y, 2} and Y = K, UK, U
{w}, where p, ¢ are odd integers greater than n. Andlet G = ({z}®(X@Y))—{zw},
where @ denotes the join. Further, let u (resp. v) be a vertex of K, (resp. K,).
Then G satisfies the properties that € Ng(u)NNg(v) which is locally 2n-connected,
wv ¢ E(G), and Ng(z) C Ng[u]UNg[v]. And if we set B = X U{z}, then B contains
an n-matching but B — {z} does not contain an n-matching. So clearly G is in F.
But one can easily check that G + uv is n-extendable.

The converse statement of Theorem 1 does not hold. Let a, b, [, and m be positive
odd integers with a+b = 2nand I > m > 2n+1. Set G = (K,UK,)®(K,UK,,). Now
let x, u,and v be vertices in K,,, K, , and K, respectively. We can easily see that G is
n-extendable and that {u,v,x} satisfies the hypotheses of the theorem, that is, x is a
locally 2n-connected vertex, uv € E(G),z € Ng(u)NNg(v), Ne(z) C Ng[u]UNg[v].
However, G + wv is not n-extendable. To see this, choose an n-matching M in
K,UK,U{uv}, then (G+uv)—V (M) = K;UK,, is consisted of two odd components.
Therefore, G + uv is not n-extendable.

The connectivity assumption of Theorem 2 cannot be weakened. Let G = Ky, &
2Ky41 and z € V(Ky,). Let u,v be two vertices in distinct components of G — K.
Clearly {u,v,z} satisfies the hypothesis. And one can easily check G is 2n-connected
and G + uv is n-extendable, but G is not n-extendable and G ¢ F.

If a graph H is obtained from a graph G by iteratively joining all pairs {u,v}
satisfying the condition wv ¢ E(G), but there exists a locally n-connected vertex
x (resp. a vertex z) such that # € Ng(u) N Ng(v) and Ng(z) C Nglu] U Ng[v]
until there no longer remains any such pair, then H is called an n-closure (resp. a
closure) of G and is denoted by cl,(G) (resp. cl(G@)). Note that the n-closure of a
given graph G is not determined uniquely (see [4]). From our Theorems, we have
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the following corollaries.

Corollary 3. Let G ¢ F be a graph. If cly,(G) is n-extendable, then G is n-
extendable. a

Corollary 4. Let G ¢ F be a (2n + 1)-connected graph. If cl(G) is n-extendable,
then G is n-extendable. O

Note.
The following theorem also holds by a proof similar to that of Theorem A in [4].

Theorem 5. Let G be a (n + 1)-connected graph. Let {u,v,z} be a three-vertex
subset of V(G) such that uv ¢ E(G),z € Ng(u)NNg(v), and Ng(z) C Ng[u]UNg[v].
Then G + uv is n-factor-critical if and only if G is n-factor-critical. a

Here K, @ 2Ky, shows that the connectivity assumption cannot be weakened.

Corollary 6. Let G be a (n + 1)-connected graph. G is n-factor-critical if and only
if cI(G) is n-factor-critical. O
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