Chords in graphs

Weizhen Gu Xingde Jia

Department of Mathematics
Texas State University-San Marcos
San Marcos, TX 78666
U.S.A.

Haidong Wu*

Department of Mathematics University of Mississippi University, MS 38677 U.S.A.

Abstract

We characterize all simple graphs such that each edge is a chord of some cycle. As a consequence, we characterize all simple 2-connected graphs such that, for any two adjacent vertices x and y, the local connectivity $k(x,y) \geq 3$. We also make a conjecture about chords for 3-connected graphs.

1 Introduction

All graphs considered in the paper are undirected and simple. Suppose that e is an edge of a graph G. For simplicity, we will use $E(G)\setminus e$ to denote $E(G)\setminus e$. An edge e is a *chord* of a cycle C if E(C) can be partitioned into two sets C_1 and C_2 such that both $C_1 \cup e$ and $C_2 \cup e$ are cycles. We say that an edge is a *chord* of the graph if it is a chord of some cycle in the graph. A graph is chordal if each cycle of size at least four has a chord. The following is a characterization for chordal graphs due to Hajnal and Surányi, and Dirac, respectively (see [3, Theorem 8.11]).

Theorem 1.1 A graph G is chordal if and only if either G is complete or G can be obtained from two chordal graphs G_1 and G_2 (having fewer vertices than that of G) by identifying two complete subgraphs of the same order in G_1 and G_2 .

^{*} This author's research was partially supported by the Summer Research Grant of the College of Liberal Arts at the University of Mississippi in 2003.

A graph G is minimally k-connected if G is k-connected, but for each edge e of G, the deletion $G \setminus e$ is not k-connected. Dirac [4] and Plummer [6] independently proved the following result.

Theorem 1.2 Let G be a 2-connected simple graph. Then no cycle has a chord if and only if G is minimally 2-connected.

If a graph G has minimum degree at least three, then it is shown that it has a cycle with a chord. In [1], Ali and Staton investigated minimum degree conditions to force the existence of a cycle with k chords. Theorem 1.1 determines all graphs such that each cycle of size at least four has a chord. Theorem 1.2 determines all 2-connected graphs such that no cycle has a chord. In this paper, we answer the following natural question.

Problem 1: Determine all simple graphs such that each edge is a chord of some cycle.

We will use \mathcal{D} to denote the class of graphs such that each edge is a chord. By Whitney's theorem [8], a simple graph with at least four vertices is 3-connected if and only if every two vertices are connected by at least three internally disjoint paths. Thus each edge in a 3-connected graph is a chord of some cycle. Hence the class of graphs \mathcal{D} contains all 3-connected graphs. Our main result shows that we can generate all such graphs based on 3-connected graphs.

First we describe two well-known useful graph operations (see, for example, [5]). Let G_1 and G_2 be two graphs with no common vertices or edges. Let $e_1 = u_1v_1$ be an edge of G_1 and $e_2 = u_2v_2$ be an edge of G_2 . Identify u_1 and u_2 and relabel as u. Identify v_1 and v_2 and relabel as v (the edges e_1 and e_2 are identified too and relabelled as e). We obtain a graph $P(G_1, G_2)$, called the parallel connection of G_1 and G_2 with respect to the edges e_1 and e_2 . The graph $P(G_1, G_2) \setminus e$ is called the 2-sum of G_1 and G_2 , denoted by $G_1 \oplus_2 G_2$. Let S be a subset of V(G). We use G[S] to denote the subgraph induced by S. Before stating our main result, we define a class of graphs $\mathcal G$ and a graph operation first.

Figure 1.

Our class of graphs \mathcal{G} is constructed from K_2, K_3 , or any 3-connected graph G. First suppose that we start with a 3-connected graph G. Let S be a non-empty set of edges of G. Take a graph $N \cong K_4$. For each edge e in S, label an edge of N as e first, then perform either the parallel connection or 2-sum operation between G and N along the edge e. We obtain a graph in G by repeating the operation for each element of S, while replacing G with the newly-obtained graph. There are six more graphs in G which we will describe next. Start with a triangle. Let S be the set of all edges in the triangle in the above construction. One of the graphs constructed is T_0 , shown in Figure 1. The other graphs T_1, T_2 , and T_3 can be obtained from T_0 by deleting one, two, and three edges in the set $\{uv, uw, vw\}$. Finally, sticking three copies of K_4 along a common edge (K_2) , we get the graph H_0 . Remove uv from H_0 , we get the graph H_1 (see Figure 1.) Next we define a graph operation Θ . We use K_4 to denote the graph obtained by deleting an edge from K_4 .

Definition 1.3 Let G_1 and G_2 be two simple graphs. Suppose that for i=1,2, the graph G_i has a 2-element vertex-cut $\{u_i,v_i\}$, such that $G_i-\{u_i,v_i\}$ has a component with vertex set S_i where the subgraph $G[S_i\cup\{u_i,v_i\}]-u_iv_i$ is isomorphic to K_4^- . We define a new graph $G_1 \uplus G_2$ as follows (see Figure 2). From G_1-S_1 and G_2-S_2 , identify u_1 and u_2 and relabel as u, then identify v_1 and v_2 and relabel as v, and remove any multiple edges if there are any (when $u_iv_i \in E(G_i)$ for i=1,2).

Figure 2.

The next result is the main result of this paper. It has a similar flavor to that of Theorem 1. A proof of the theorem will be given in the next section.

Theorem 1.4 Let G be a simple graph. Then each edge of G is a chord of some cycle if and only if each block of any component of G is either 3-connected, or is a graph in G, or can be constructed by a sequence of operations G starting from graphs in G.

For any two non-adjacent vertices $x, y \in V(G)$, the local connectivity k(x, y) is defined to be the minimum number of vertices that separates x and y. For $xy \in E(G)$, $k(x, y) = k_{G-xy}(x, y) + 1$. A graph is 3-connected if and only if the local connectivity

is at least three for any two vertices of G. Our main result characterizes all simple 2-connected graphs such that the local connectivity of any two adjacent vertices is at least three.

Corollary 1.5 Let G be a simple 2-connected graph. Then for each edge $xy \in E(G)$, the local connectivity $k(x,y) \geq 3$ if and only if G is either 3-connected, or is a graph in G, or can be constructed by a sequence of operations \oplus starting from graphs in G.

Next we introduce some notation which will be needed in the proof. Let S be a vertex cut of G. We use G - S to denote the subgraph obtained by deleting S from G. A minimum component of a graph G is a component of G with minimum size.

2 Proof of the main result

In this section, we will prove our main result. First we prove several lemmas.

Lemma 2.1 Let G be a graph such that each edge is a chord. Then each block of any component of G is both 2-connected and 3-edge-connected.

Proof. Let H be a block of a component of G. Then each edge of H is a chord of some cycle in H. Hence H is not a single edge and therefore is 2-connected. For each edge e = uv in H, there are at least two internally disjoint paths connecting u and v in the graph H - uv. Suppose that H is not 3-edge-connected and $T = \{uv, u_1v_1\}$ is a 2-element edge-cut. Then H - uv has a cut edge. Thus H - uv cannot have two internally disjoint paths connecting u and v, a contradiction.

Lemma 2.2 Let G be a 2-connected graph such that each edge is a chord. Then each edge of $H = G \oplus_2 K_4$ (or $P(G, K_4)$) is a chord of some cycle of H.

Proof. We will give a proof for $H = G \oplus_2 K_4$ only. The case for $P(G, K_4)$ is obvious. Suppose that H is obtained by first identifying a common edge uv of G and $K \cong K_4$, then deleting the edge uv. Now let $e \neq uv$ be any edge of H. If $e \in E(G)$, then e is a chord of some cycle C of G. If C is also a cycle of H, then e is a chord of a cycle of H. If C is not a cycle of C, then $C \setminus uv \cup \{uw, wv\}$ is a cycle of C. Clearly, $C \cap \{u, v\}$, then $C \cap \{uv\}$ is a cycle of C. Then $C \cap \{uv\}$ is a chord of cycle $C \cap \{uv\}$ in $C \cap \{uv\}$ is a cycle of $C \cap \{uv\}$ in $C \cap \{uv\}$ is a cycle of $C \cap \{uv\}$ in $C \cap \{uv\}$ is a cycle of $C \cap \{uv\}$ in $C \cap \{uv\}$ in $C \cap \{uv\}$ is a cycle of $C \cap \{uv\}$ in $C \cap \{uv\}$ in $C \cap \{uv\}$ is a chord. This completes the proof of the lemma.

Lemma 2.3 Let G_1 and G_2 be two 2-connected graphs and $G = G_1 \uplus G_2$. Suppose that each edge of G_i is a chord of G_i for i = 1, 2. Then each edge of G is a chord of some cycle.

Proof. We use the same notation as in Definition 1.3. Let e be any edge of H. Without loss of generality, assume that $e \in E(G_1)$. Thus e is a chord of a cycle C of G_1 . First suppose that $e \neq uv$. If neither w_1 nor t_1 is in C (see Figure 2), then C is also a cycle of G having e as a chord. If either w_1 or t_1 is in C, then as $\{u_1, v_1\}$ is a 2-element vertex-cut, we deduce that both u_1 and v_1 are in C. The vertices u_1 and v_1 divides the cycle C into two u_1v_1 -paths. As $e \neq uv$ is a chord of C, we conclude that one path, denoted by $P_1[u,v]$, must be in G. As G_2 is 2-connected, there is a path $P_2[u_2,v_2]$ in the graph $G_2 - \{w_2,t_2\}$ (otherwise, both u_2 and v_2 are cut-vertices of G_2 , a contradiction). Now in G, $P_1[u_1,v_1] \cup P_2[u_2,v_2]$ is a cycle. Clearly this cycle has e as a chord. Now suppose that e = uv. Pick a u_iv_i -path $P[u_i,v_i]$ in $G_i - \{w_i,t_i\}$ for i = 1, 2. Then $P_1[u_1,v_1] \cup P_2[u_2,v_2]$ is a cycle having e as a chord. This completes the proof of the lemma.

Next we prove our main theorem. Recall that we use \mathcal{D} to denote the class of graphs such that each edge is a chord of some cycle.

Proof of Theorem 1.4. Clearly, each edge of G is a chord if and only if each edge of all blocks of any component of G is a chord. Thus we may assume that G is a block.

If G is 3-connected, then from Whitney's theorem, each edge is a chord. It is easy to check that each graph T_0, T_1, T_2, T_3, H_0 , and H_1 is in \mathcal{D} . By Lemma 2.2, each graph of \mathcal{G} is in \mathcal{D} . By Lemma 2.3, if a graph G is constructed by a sequence of operations \mathfrak{B} starting from graphs in \mathcal{G} , then each edge of G is a chord.

Now we prove the converse. Suppose that every edge of G is a chord and that G is connected. Clearly G has at least four vertices. Thus G is 2-connected as it is a block. We use induction on n = |V(G)|. If $n \leq 4$, it is straightforward to see that G must be K_4 and the theorem holds. Suppose that G is not 3-connected, and G is not a member of G. By Lemma 2.1, G is 3-edge-connected. As G is not 3-connected, there is a 2-element vertex-cut $S = \{u, v\}$ of G. Then G - S has at least two components.

Claim 1. Let T be the vertex set of a component of G - S. If |T| = 2, then $G[(S \cup T)] - uv \cong K_4^-$.

Proof. The claim follows from the fact that $d_G(x) \geq 3$ for each $x \in T$ since, by Lemma 2.1, G is 3-edge-connected.

Claim 2. Let $S = \{u, v\}$ be a 2-element vertex-cut of G. Suppose that there are two subgraphs H_1 and H_2 of G such that $V(H_1) \cup V(H_2) = V(G)$ and $V((H_1) \cap V(H_2) = S$. If $min\{|V(H_1)|, |V(H_2)|\} \geq 5$, then there are two graphs $G_1 \in \mathcal{D}, G_2 \in \mathcal{D}$ such that $G = G_1 \uplus G_2$. Moreover, both G_1 and G_2 have fewer number of vertices than G.

Figure 3.

Proof. If $uv \in E(G)$, let $G_1 = P(H_1, K_4)$ and $G_2 = P(H_2, K_4)$, where uv is the commonly identified edge. If $uv \notin E(G)$, add uv to G first then define G_1 and G_2 similarly with the only difference being deleting the edge uv in the construction of G_1 and G_2 (see Figure 2). Then as $|V(H_1)|, |V(H_2)| \geq 5$, both G_1 and G_2 have fewer number of vertices than G has. Moreover, it is straightforward to check that $G_1 \in \mathcal{D}, G_2 \in \mathcal{D}$ by the construction of G_1 and G_2 .

Now we continue the proof of the theorem. If G has no 2-element vertex-cut, then G is 3-connected and the theorem holds. Suppose that G has a 2-element vertex-cut S. Then there are two subgraphs H_1 and H_2 of G such that $V((H_1) \cup V(H_2) = V(G)$ and $V(H_1) \cap V(H_2) = S$. Suppose that there exist such subgraphs H_1 and H_2 such that $min\{|V(H_1)|,|V(H_2)|\} \geq 5$. By Claim 2, there are two graphs $G_1 \in \mathcal{D}, G_2 \in \mathcal{D}$ such that $G = G_1 \uplus G_2$. Moreover, both G_1 and G_2 have fewer number of vertices than G has. By induction, the theorem holds.

Otherwise, for each 2-element vertex-cut S and each subgraphs H_1 and H_2 of G such that $V(H_1) \cup V(H_2) = V(G)$ and $V((H_1) \cap V(H_2) = S$, we have $\min\{|V(H_1)|, |V(H_2)|\} = 4$. Next we complete the proof of the theorem by showing that $G \in \mathcal{G}$. By Lemma 2.1, G is 3-edge connected. Thus $\delta(G) \geq 3$. Hence each component of G - S has at least two vertices. By our assumption, it is straightforward to see that G - S has at most three components. Moreover, if G - S has exactly three components, then each such component has exactly two vertices. Using Claim 1, it is easy to see that G is either H_0 or H_1 .

Therefore, we may assume that G-W has exactly two components for each 2-element vertex-cut W of G. For each minimum component T of G-W, we deduce that |V(T)|=2 by our assumption. Suppose that $W=\{p,q\}$. By Claim 1, $G[(W\cup T)]-uv\cong K_4^-$. Remove V(T) from G, then add an edge pq. Repeat this process for each 2-vertex cut of G. Finally remove any multiple edges to get a graph H. During this process, all subgraphs of the form K_4^- has been reduced. If H has exactly one edge, then $G\cong P(K_4,K_4)$, or $K_4\oplus_2 K_4$ and the theorem holds. Now suppose that H is a triangle with edges labelled as a,b, and c. Then G can be obtained from H and copies of K_4 by performing the operation of parallel connection or 2-sum along the edges a,b, and c sequentially. As each edge is a chord of some cycle, it is straightforward to check now that G is one of T_0, T_1, T_2 or T_3 . Suppose that H has at least four vertices. Clearly H is 2-connected. Now we show that H must be

3-connected. Suppose that H has 2-element vertex-cut W. Then W is clearly also a 2-element vertex-cut of G. Thus G-W has exactly two components and has one 2-element component T_1 . By Claim 1, we conclude that $G[(S \cup T_1] - uv \cong K_4^-]$ and therefore T_1 is removed in T_1 and T_2 contradiction. This completes the proof of the theorem.

3 A conjecture

A well-known conjecture of Thomassen (see, for example, [2]) is the following:

Conjecture 1 Each longest cycle in a 3-connected graph has a chord.

We make the following conjecture which is stronger than the above conjecture.

Conjecture 2 Let G be a 3-connected graph and e be an edge of G. Then among all the cycles containing e, each longest such cycle has a chord.

While the above two conjectures seem to be very hard, the following weaker result can be proved.

Theorem 3.1 Let G be a 2-connected simple graph with minimum degree at least three. Then each edge lies in a cycle which contains a chord.

This result follows from a stronger result of Voss [7]. But the proof of that result is long. Here we give a simple proof of this weaker result.

Proof. Suppose that the theorem fails. As $\delta(G) \geq 3$, G has at least 4 vertices. Let e be any edge of G. Take a longest cycle C containing e. Then clearly $|C| \geq 3$. Suppose that |C| = 3. Let $f \in E(G) \setminus C$. As G is 2-connected, there is a cycle C_1 containing both e and f. As G is simple and |C| = 3, we deduce that $|C_1| = 3$ and $C \cap C_1 = \{e\}$. Thus $C \cup C_1 \setminus e$ is a 4-element cycle, a contradiction. Hence $|C| \geq 4$. Let $C = a_1 a_2 \dots a_n a_1$, where $n \geq 4$ and $e = a_n a_1$. As G is 2-connected with minimum degree at least three, for each vertex a_i , there is an a_{k_i} for some $1 \leq k_i \leq n, k_i \neq i$ and a path $P[a_i, a_{k_i}]$ such that $V(P[a_i, a_{k_i}]) \cap V(C) = \{a_i, a_{k_i}\}$. Although there might be more than one path, we assume that path from a_{k_i} to the cycle is also $P[a_i, a_{k_i}]$. In other words, we assume that $a_{k_k} = a_i$. As C is a longest cycle of G containing e, we conclude that

- (a) $k_i \neq i 1, i + 1 \text{ for all } 2 \leq i \leq n 1$.
- (b) For $1 \le i \le n-1$, $P[a_i, a_{k_i}]$ and $P[a_{i+1}, a_{k_{i+1}}]$ do not meet except possibly at the end vertex (i.e., the only possible vertex they could meet is when $a_{k_i} = a_{k_{i+1}}$.)
 - (c) Suppose that $k_i > i$ for some i where $2 \le i \le n$. Then $k_{i+1} \le k_i$.

Proof. by (b), $V(P[a_i, a_{k_i}]) \cap V(P[a_{i+1}, a_{k_{i+1}}]) = \emptyset$. Suppose that $k_{i+1} > k_i$. We deduce that $a_n a_1 a_2 \dots a_i P[a_i, a_{k_i}] a_{k_{i-1}} \dots a_{i+1} P[a_{i+1}, a_{k_{i+1}}] a_{k_{i+1}+1} \dots a_n$ is a cycle containing e. Clearly this cycle has a chord $a_i a_{i+1}$, a contradiction.

Now we complete the proof of the theorem. Clearly, $k_2 > 2$ by (a). Hence $k_3 \le k_2$. If $k_3 > 3$, then $k_4 \le k_3$. Continue the process and suppose that t (where $k_2 \ge t \ge 2$) is the largest number such that $k_i > i$ for all $2 \le i \le t$. Using (c) and the fact that $P[a_2, a_{k_2}]$ is a path, it is straightforward to see that t exists and that $2 \le t \le k_2 - 1$. By (c), we deduce that $k_2 \ge k_3 \ge \dots \ge k_t$. By (a), $t \le k_t - 2$. Hence $t + 1 < k_t$. By the choice of t and (a), we have $1 \le k_{t+1} \le t - 1$. Denote k_{t+1} by j. As $2 \le j + 1 \le t$, $k_{j+1} \ge k_t \ge t + 2$. By (b) again, $V(P[a_j, a_{k_j}]) \cap V(P[a_{j+1}, a_{k_{j+1}}]) = \emptyset$, noting that $k_j = t + 1$. Thus $a_n a_1 \dots a_j P[a_j, a_{k_j}] a_t \dots a_{j+1} P[a_{j+1}, a_{k_{j+1}}] a_{k_{j+1}} \dots a_n$ is a cycle containing e. Clearly this cycle has a chord $a_j a_{j+1}$, a contradiction. This completes the proof of the theorem.

References

- A. Ali, and W. Staton, The extremal question for cycles with chords, Ars Combinatoria 51 (1999), 193–197.
- [2] J. A. Bondy, Basic graph theory: paths and circuits, in *Handbook of combinatorics*, Vol. 1, 3–110, Elsevier, Amsterdam, 1995.
- [3] G. Chartrand and L. Lesniak, *Graphs and digraphs*, Chapman & Hall/CRC, 3rd edition, 1996.
- [4] G. A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967), 204-216.
- [5] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
- [6] M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968), 85–94.
- [7] H. Voss, Graphs having circuits with at least two chords, J. Combin. Theory, Ser. B 32 (1982), 264–285.
- [8] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.

(Received 15 Aug 2003)