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Abstract

We characterize all simple graphs such that each edge is a chord of some
cycle. As a consequence, we characterize all simple 2-connected graphs
such that, for any two adjacent vertices x and y, the local connectivity
E(z,y) > 3. We also make a conjecture about chords for 3-connected
graphs.

1 Introduction

All graphs considered in the paper are undirected and simple. Suppose that e is an
edge of a graph G. For simplicity, we will use E(G)\e to denote E(G)\{e}. An edge
e is a chord of a cycle C' if E(C) can be partitioned into two sets Cy and Cy such
that both C; Ue and C5 U e are cycles. We say that an edge is a chord of the graph
if it is a chord of some cycle in the graph. A graph is chordal if each cycle of size at
least four has a chord. The following is a characterization for chordal graphs due to
Hajnal and Surdnyi, and Dirac, respectively (see [3, Theorem 8.11]).

Theorem 1.1 A graph G is chordal if and only if either G is complete or G can be
obtained from two chordal graphs G and Gy (having fewer vertices than that of G)
by identifying two complete subgraphs of the same order in Gy and Gs.
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A graph G is minimally k-connected if G is k-connected, but for each edge e of
G, the deletion G\e is not k-connected. Dirac [4] and Plummer [6] independently
proved the following result.

Theorem 1.2 Let G be a 2-connected simple graph. Then no cycle has a chord if
and only if G is minimally 2-connected.

If a graph G has minimum degree at least three, then it is shown that it has a
cycle with a chord. In [1], Ali and Staton investigated minimum degree conditions
to force the existence of a cycle with k& chords. Theorem 1.1 determines all graphs
such that each cycle of size at least four has a chord. Theorem 1.2 determines all
2-connected graphs such that no cycle has a chord. In this paper, we answer the
following natural question.

Problem 1: Determine all simple graphs such that each edge is a chord of some
cycle.

We will use D to denote the class of graphs such that each edge is a chord. By
Whitney’s theorem [8], a simple graph with at least four vertices is 3-connected if and
only if every two vertices are connected by at least three internally disjoint paths.
Thus each edge in a 3-connected graph is a chord of some cycle. Hence the class
of graphs D contains all 3-connected graphs. Our main result shows that we can
generate all such graphs based on 3-connected graphs.

First we describe two well-known useful graph operations (see, for example, [5]).
Let G; and G, be two graphs with no common vertices or edges. Let e; = ujv; be
an edge of Gy and ey = usvy be an edge of Go. Identify u; and wus and relabel as
u. Identify v; and v, and relabel as v (the edges e; and e, are identified too and
relabelled as e). We obtain a graph P(G1, G,), called the parallel connection of G,
and Gy with respect to the edges e; and e,. The graph P(Gp,Gs)\e is called the
2-sum of G; and Gs, denoted by G; @2 Gy. Let S be a subset of V(G). We use G[S]
to denote the subgraph induced by S. Before stating our main result, we define a
class of graphs G and a graph operation first.
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Figure 1.
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Our class of graphs G is constructed from K5, K3, or any 3-connected graph G.
First suppose that we start with a 3-connected graph G. Let S be a non-empty set
of edges of G. Take a graph N = K,. For each edge e in S, label an edge of N as e
first, then perform either the parallel connection or 2-sum operation between G and
N along the edge e. We obtain a graph in G by repeating the operation for each
element of S, while replacing G with the newly-obtained graph. There are six more
graphs in G which we will describe next. Start with a triangle. Let S be the set of
all edges in the triangle in the above construction. One of the graphs constructed
is Ty, shown in Figure 1. The other graphs 77,75, and T3 can be obtained from Ty
by deleting one, two, and three edges in the set {uv,uw,vw}. Finally, sticking three
copies of K4 along a common edge (K,), we get the the graph Hy. Remove uv from
Hy, we get the graph H; (see Figure 1.) Next we define a graph operation &. We
use K, to denote the graph obtained by deleting an edge from Kj.

Definition 1.3 Let Gy and G5 be two stmple graphs. Suppose that for i =1,2, the
graph G; has a 2-element vertex-cut {u;,v;}, such that G; — {u;,v;} has a component
with vertex set S; where the subgraph G[S; U{u;, v;}] — wv; is isomorphic to K, . We
define a new graph G W Gy as follows (see Figure 2). From Gy — Sy and Gy — S,
identify w1 and uy and relabel as w, then identify vi and vy and relabel as v, and
remove any multiple edges if there are any (when uw;v; € E(G;) fori=1,2).
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Figure 2.

The next result is the main result of this paper. It has a similar flavor to that of
Theorem 1. A proof of the theorem will be given in the next section.

Theorem 1.4 Let G be a simple graph. Then each edge of G is a chord of some
cycle if and only if each block of any component of G is either 3-connected, or is a
graph in G, or can be constructed by a sequence of operations & starting from graphs

mg.

For any two non-adjacent vertices z,y € V(G), the local connectivity k(z,y) is
defined to be the minimum number of vertices that separates z and y. For zy € E(G),
k(z,y) = kg—zy(x,y)+1. A graph is 3-connected if and only if the local connectivity
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is at least three for any two vertices of G. Our main result characterizes all simple
2-connected graphs such that the local connectivity of any two adjacent vertices is
at least three.

Corollary 1.5 Let G be a simple 2-connected graph. Then for each edge vy € E(G),
the local connectivity k(x,y) > 3 if and only if G is either 3-connected, or is a graph
n G, or can be constructed by a sequence of operations W starting from graphs in G.

Next we introduce some notation which will be needed in the proof. Let S be a
vertex cut of G. We use G — S to denote the subgraph obtained by deleting S from
G. A minimum component of a graph G is a component of G with minimum size.

2 Proof of the main result

In this section, we will prove our main result. First we prove several lemmas.

Lemma 2.1 Let G be a graph such that each edge is a chord. Then each block of
any component of G is both 2-connected and 3-edge-connected.

Proof. Let H be a block of a component of G. Then each edge of H is a chord of
some cycle in H. Hence H is not a single edge and therefore is 2-connected. For each
edge e = wv in H, there are at least two internally disjoint paths connecting u and
v in the graph H — uv. Suppose that H is not 3-edge-connected and T = {uv,uiv; }
is a 2-element edge-cut. Then H — wv has a cut edge. Thus H — wv cannot have two
internally disjoint paths connecting u and v, a contradiction. a

Lemma 2.2 Let G be a 2-connected graph such that each edge is a chord. Then
each edge of H= G ®s K4 (or P(G, Ky)) is a chord of some cycle of H.

Proof. We will give a proof for H = G@®y K4 only. The case for P(G, K,) is obvious.
Suppose that H is obtained by first identifying a common edge uv of G and K = Ky,
then deleting the edge uv. Now let e # uv be any edge of H. If e € E(G), then e
is a chord of some cycle C' of G. If C is also a cycle of H, then e is a chord of a
cycle of H. If C is not a cycle of H, then uv € C. Let w € V(K) — {u,v}, then
C\uvU{uw,wv} is a cycle of H. Clearly, e is still a chord of this cycle. Now suppose
that f ¢ E(G). Then f is a chord of cycle Cy in K. If uwv ¢ C), then C) is still a
cycle of H. If wv € (4, then take a uv—path P in G — uv. This path exists as G
is 2-connected. Now Cy = C; U P — wv is also a cycle having f as a chord. This
completes the proof of the lemma. O

Lemma 2.3 Let Gy and Gy be two 2-connected graphs and G = G1 W Gs. Suppose
that each edge of G; is a chord of G; fori =1,2. Then each edge of G is a chord of
some cycle.
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Proof. We use the same notation as in Definition 1.3. Let e be any edge of H.
Without loss of generality, assume that e € E(G;). Thus e is a chord of a cycle C of
G,. First suppose that e # wov. If neither w; nor ¢; is in C' (see Figure 2), then C is
also a cycle of G having e as a chord. . If either w; or ¢; is in C, then as {u,v:} is a
2-element vertex-cut, we deduce that both u; and v; are in C'. The vertices u; and
vy divides the cycle C into two u;v;—paths. As e # uv is a chord of C, we conclude
that one path, denoted by Pi[u,v], must be in G. As G is 2-connected, there is a
path Ps[us,vs] in the graph Gy — {ws, t2} (otherwise, both us and v, are cut-vertices
of G, a contradiction). Now in G, P;[u;, v1]U Pylus, v5] is a cycle. Clearly this cycle
has e as a chord. Now suppose that e = uv. Pick a w;v;-path Plu;, v;] in G; — {w;, t;}
for i = 1,2. Then Pi[uy,v1]U Palus,vs] is a cycle having e as a chord. This completes
the proof of the lemma. O

Next we prove our main theorem. Recall that we use D to denote the class of
graphs such that each edge is a chord of some cycle.

Proof of Theorem 1.4. Clearly, each edge of G is a chord if and only if each edge
of all blocks of any component of G is a chord. Thus we may assume that G is a
block.

If G is 3-connected, then from Whitney’s theorem, each edge is a chord. It is
easy to check that each graph Ty, 71,75, T3, Hy, and H; is in D. By Lemma 2.2, each
graph of G is in D. By Lemma 2.3, if a graph G is constructed by a sequence of
operations W starting from graphs in G, then each edge of G is a chord.

Now we prove the converse. Suppose that every edge of G is a chord and that
G is connected. Clearly G has at least four vertices. Thus G is 2-connected as it
is a block. We use induction on n = |V(G)|. If n < 4, it is straightforward to
see that G must be K4 and the theorem holds. Suppose that G is not 3-connected,
and G is not a member of §. By Lemma 2.1, G is 3-edge-connected. As G is not
3-connected, there is a 2-element vertex-cut S = {u,v} of G. Then G — S has at
least two components.

Claim 1. Let T be the vertex set of a component of G — S. If |T| = 2, then
G(SUT)] —w = K, .

Proof. The claim follows from the fact that dg(z) > 3 for each = € T since, by
Lemma 2.1, G is 3-edge-connected. o

Claim 2. Let S = {u,v} be a 2-element vertex-cut of G. Suppose that there are two
subgraphs H; and H, of G such that V(H;)UV(Hz) = V(G) and V((H;)NV(H,) =
S. If min{|V(H1)|,|V(H2)|} > 5, then there are two graphs G; € D,Gy € D such
that G = G W G5. Moreover, both G; and G5 have fewer number of vertices than
G.



122 WEIZHEN GU, XINGDE JIA AND HAIDONG WU

u U, u,
t, t
C» T <»
v v, v,
G G Gs
Figure 3.

Proof. If w € E(G), let Gy = P(Hy,K4) and Gy = P(H,, K4), where uv is the
commonly identified edge. If uv ¢ E(G), add wv to G first then define G; and
G4 similarly with the only difference being deleting the edge uv in the construction
of Gy and Gy(see Figure 2). Then as |V(Hy)l|,|V(Hz)| > 5, both G; and G have
fewer number of vertices than G has. Moreover, it is straightforward to check that
G, € D,Gy € D by the construction of GG; and Gj. a

Now we continue the proof of the theorem. If G has no 2-element vertex-cut, then
G is 3-connected and the theorem holds. Suppose that G has a 2-element vertex-cut
S. Then there are two subgraphs H; and Hj of G such that V((H;)UV (Hy) = V(G)
and V(H;) NV(H,) = S. Suppose that there exist such subgraphs H; and Hj such
that min{|V(H,)|,|V(Hz)|} > 5. By Claim 2, there are two graphs G; € D,G, € D
such that G = G; W G,. Moreover, both G; and G5 have fewer number of vertices
than G has. By induction, the theorem holds.

Otherwise, for each 2-element vertex-cut S and each subgraphs H; and H, of G
such that V(H,) UV (H,) = V(G) and V((H:) N V(Hy) = S, we have min{|V(H;)],
|V(H2)|} = 4. Next we complete the proof of the theorem by showing that G € G.
By Lemma 2.1, G is 3-edge connected. Thus 6(G) > 3. Hence each component of
G — S has at least two vertices. By our assumption, it is straightforward to see
that G — S has at most three components. Moreover, if G — S has exactly three
components, then each such component has exactly two vertices. Using Claim 1, it
is easy to see that G is either Hy or H;.

Therefore, we may assume that G — W has exactly two components for each
2-element vertex-cut W of G. For each minimum component T of G — W, we
deduce that |V(T)| = 2 by our assumption. Suppose that W = {p,q}. By Claim
1, GIWUT)] —uv = K, . Remove V(T') from G, then add an edge pq. Repeat
this process for each 2-vertex cut of G. Finally remove any multiple edges to get a
graph H. During this process, all subgraphs of the form K, has been reduced. If
H has exactly one edge, then G = P(Ky, K4), or Ky @2 K4 and the theorem holds.
Now suppose that H is a triangle with edges labelled as a, b, and ¢. Then G can be
obtained from H and copies of K, by performing the operation of parallel connection
or 2-sum along the edges a,b, and ¢ sequentially. As each edge is a chord of some
cycle, it is straightforward to check now that G is one of Tg, T1, 15 or T3. Suppose that
H has at least four vertices. Clearly H is 2-connected. Now we show that H must be
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3-connected. Suppose that H has 2-element vertex-cut W. Then W is clearly also
a 2-element vertex-cut of G. Thus G — W has exactly two components and has one
2-element component T;. By Claim 1, we conclude that G[(SUT;] — wv = K and
therefore Tj is removed in H and W cannot be a vertex-cut of H, a contradiction.
This completes the proof of the theorem. O

3 A conjecture

A well-known conjecture of Thomassen (see, for example, [2]) is the following:
Conjecture 1 Each longest cycle in a 3-connected graph has a chord.
We make the following conjecture which is stronger than the above conjecture.

Conjecture 2 Let G be a 3-connected graph and e be an edge of G. Then among
all the cycles containing e, each longest such cycle has a chord.

While the above two conjectures seem to be very hard, the following weaker result
can be proved.

Theorem 3.1 Let G be a 2-connected simple graph with minimum degree at least
three. Then each edge lies in a cycle which contains a chord.

This result follows from a stronger result of Voss [7]. But the proof of that result
is long. Here we give a simple proof of this weaker result.

Proof. Suppose that the theorem fails. As §(G) > 3, G has at least 4 vertices. Let
e be any edge of G. Take a longest cycle C' containing e. Then clearly |C] > 3.
Suppose that |C| = 3. Let f € E(G)\C. As G is 2-connected, there is a cycle C}
containing both e and f. As G is simple and |C| = 3, we deduce that |Cy| = 3
and C N C; = {e}. Thus C U Ci\e is a 4-element cycle, a contradiction. Hence
|C| > 4. Let C = ayay...ana1, where n > 4 and e = aya;. As G is 2-connected
with minimum degree at least three, for each vertex a;, there is an a;, for some
1 <k < n,k; #iand a path Pla;, ax,] such that V(P[a;, ay,]) N V(C) = {a;, ax, }.
Although there might be more than one path, we assume that path from ay, to the
cycle is also Pla;,ay,]. In other words, we assume that ak,, = a;. As C'is a longest
cycle of G containing e, we conclude that

(@) ki£i—1i+1forall2<i<n-—1.
(b) For 1 <4 < n—1, Pla;,ay] and Pla;y,ay,,,] do not meet except possibly at
the end vertex (i.e., the only possible vertex they could meet is when ay, = ay,,,.)
(c) Suppose that k; > i for some i where 2 < i < n. Then ki1 < k.
Proof. by (b), V(Plas;, ar,]) NV (Plait1, ax,,,]) = 0. Suppose that ki, > k;. We de-

duce that a,a1a; ... a;Pla;, agag_1 ... a1 Plagey, g, Jag, 41 - - - an i a cycle con-
taining e. Clearly this cycle has a chord a;a;y1, a contradiction.
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Now we complete the proof of the theorem. Clearly, k2 > 2 by (a). Hence k3 < k.
If k3 > 3, then kg < k3. Continue the process and suppose that ¢ (where ky > ¢ > 2)
is the largest number such that k; > i for all 2 <4 < t. Using (c) and the fact that
Plag, ay,] is a path, it is straightforward to see that ¢ exists and that 2 <t < ky — 1.
By (c), we deduce that ky > k3 > ... > k;. By (a), t <k — 2. Hence t +1 < k. By
the choice of ¢ and (a), we have 1 < k;; < t—1. Denote kg by j. As2 < j+1<¢t,
kjy1 > ke > t+2. By (b) again, V(P[ay, ar,]) N V(Plajs1, ax;,,]) = 0, noting that
kj = t+ 1. Thus ana;...a;Plaj,ax]a; ... aj1Plajy, akj“}akjlﬂ ...a, is a cycle
containing e. Clearly this cycle has a chord aja;1;, a contradiction. This completes
the proof of the theorem. a
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