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Abstract

The computation of the maximum toughness among graphs with n ver-
tices and m edges is completed for n < 14. In the process, some questions
and conjectures are addressed. Most notably, an example on 14 vertices
of a 5-regular %—tough graph with two K, s-centers is presented. This

refutes a conjecture that r-regular f-tough graphs must be K 3-free.

1 Introduction

A graph G = (V,E) is an (n,m)-graph if [V| = n and |E| = m. The toughness [1]
of a non-complete graph G = (V, E) is

7(G) = min{% 1S CVand w(G—-S) > 1},
where w(G —5) is the number of components in the subgraph of G induced by V' —S.
A graph G is said to be t-tough if 7(G) > t. A 7-set for G is a separating set S
for which 7(G) = |S|/w(G — S). Among all (n,m)-graphs, the maximum toughness
[1, 7,3, 5] is denoted by T,,(m). An (n,m)-graph G is said to be maximally tough if
7(G) = Ty(m) and supertough if

n(G) =3 V—mJ .
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All standard notation and terminology not presented here can be found in [11].

It is a simple consequence of the definitions that the toughness of a graph is at
most half of its connectivity [1]. Consequently, T},(m) is at most half of the maximum
connectivity among (n,m)-graphs [5]. Since Harary [8] showed, for m > n, that
the maximum connectivity among (n,m)-graphs is |2m/n], supertough graphs are
maximally tough. However, maximally tough graphs need not be supertough. For
fixed n, the function 7, is obviously nondecreasing.

The search for graphs which are maximally tough or supertough has focused
on the presence of K s-centers. These are vertices with 3 non-adjacent neighbors.
Graphs without K7 s3-centers are said to be K 3-free. Matthews and Sumner [10] show
that the absence of K 3-centers in a graph eases the computation of its toughness.

Theorem 1.1 ([10]). If a graph G is K 3-free, then 7(G) = ”(Z,G).

Using this theorem has been the standard technique for proving graphs to be
supertough. Goddard and Swart conjectured that this is the only means for con-
structing regular supertough graphs.

Conjecture 1.2 ([7]). For any r > 3, if G is r-regular and 7(G) = %, then G is
K 3-free.

Jackson and Katerinis established this conjecture for r» = 3.
Theorem 1.3 ([9]). If G is cubic and T(G) = 2, then G is K, 3-free.

We show in Section 3 that Conjecture 1.2 fails when r = 5. The other objective
of this paper is to complete the computation of the values of T,,(m) for all n < 14.
Section 2 contains general results that settle many of those values. Section 3 addresses
the remaining values and summarizes all of them. The most intricate computations
are presented in Section 4.

2 Families of Maximally Tough Graphs

Most Harary graphs [8] turn out to be supertough.

Theorem 2.1 ([7],[5]). Letn >3, n <m < "(" ) and r = |2z, If
(i) r is even, or

i) r>202]  (ie. m>nl2)
then Ty(m) = .

For r odd, the first author [3] provides a further class of supertough graphs.

Theorem 2.2 ([1],[3]). Let r be odd withr >3, a even with2 <a<r -1,k >1,

andn =ka(r+2—a). I f"’<m<"r+1) then T, (m) = L.
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Question 2.3 ([5]). For r odd and n even, does the equality T,,(%) = § imply, for
some even a with 2 < a <1 —1, that a(r + 2 — a) divides n?

The values of T,,(m) for |2m/n| < 2 are quite easy to compute and are presented
in [5]. The computation of T,,(m) for [2m/n| = 3 is almost completed in [4] with a
family of nearly cubic graphs.

Theorem 2.4 ([6],[4]). Let n > 5.
(a) Ifn=0 orb mod 6, then

To(m)=3  for [%] <m < 2n.

(b) If n=1,3 or 4 mod 6, then

3[Fl+1 __ 3n

: Jor [2]1+1<m < 2n.

(¢) If n=2 mod 6, then
3lgl+t _
Ly(m) = { b1 form =TT,
: for [2]+2<m < 2n.
Moreover, Ts(13) = 3.

For n =1,2,3, or 4 mod 6 and m = [3n/2] or [3n/2] + 1, those (n,m)-graphs
provided in [4] that are maximally tough but not supertough all have K 3-centers.
In Theorem 2.4, only a computation in part (¢) remains open.

Conjecture 2.5 ([4]). Ifn > 8 and n =2 mod 6, then T,([3]+1) = ;ﬁji

Conjecture 2.5 is settled above in the case n = 8 and is settled below (Theorem
3.6) in the case n = 14. The potential for extending the arguments we use is discussed
at the end in Remark 4.2.

3 Computing T,,(m) for n < 14

The computation of T,,(m) for n < 12 is completed in [5] and [6] with the exception
that one open question is left for n = 11. In fact, the value T71(29) should not have
been listed in [5], and what should have appeared in its place is that the (11, 30)-
graph provided in [3] gives T11(30) = 3. The open question remaining for n < 12 is
thus corrected here.

Question 3.1 ([5]). What are T11(28) and T1;(29)7

It turns out that both values are the same.
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Theorem 3.2. Ty;(28) = T11(29) = L.

Theorem 3.2 is a consequence of the following lemma whose proof is given in
Section 4.

Lemma 3.3. If G is a 5-connected (11,29)-graph, then G contains 2K, + Ks as an
induced subgraph.

Proof of Theorem 3.2. The %—tough (11, 28)-graph given in [6] establishes that % <
T11(28) < T311(29). To establish equalities throughout, suppose to the contrary that
there is an (11,29)-graph G with 7(G) > L. It follows that x(G) = 5. The comple-
ment of the induced subgraph 2K; + K, guaranteed by Lemma 3.3 now serves as a
disconnecting set S with

)

w(G-95) 3

This contradiction establishes our result. O

The graphs pictured in Figures 1 through 3 help us to establish several values of
T,(m) for n = 13 or 14. The example in Figure 3 refutes Conjecture 1.2, since it
is a 5-regular g—tough graph and the two topmost pictured vertices are K 3-centers.
That example also answers Question 2.3 in the negative, since n = 14 is neither
divisible by 10 nor 12. The graph in Figure 1 is also supertough and not K s-free,
since the central pictured vertex is a K 3-center. Although that graph is not regular,

it is nearly so.

Figure 1: A (13,33)-graph with toughness 2

Wiy
AN )
ik

Figure 2: A (13,46)-graph with toughness 13—0 is pictured with solid edges. The
addition of the dotted edge gives a (13,47)-graph with toughness

Pt

Theorem 3.4. T13(46) = %.
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Figure 3: A (14,35)-graph with toughness 3

The proof of Theorem 3.4 is given in Section 4. However, a simple consequence
of Theorem 3.4 is proven here.

Corollary 3.5. If G is a 7-connected (13,46)-graph, then G contains three indepen-
dent vertices.

Proof. By Theorem 3.4, any (13, 46)-graph must have a disconnecting set S with
|S] 10
— < —.
w(G-S5)~ 3
If G is also 7-connected, then |S| > 7, and this forces w(G — S) > 3. O
Theorem 3.6. T14(22) = L.

The proof of Theorem 3.6 is given in Section 4. The values of T,,(m) for n = 13,14
and [3n/2] < m < n|n/3]| are listed in Table 1.

H m ‘ n=13 ‘ Justification H H m ‘ n=14 ‘ Justification H
20 % Theorem 2.4 21 % Theorem 2.4
21 -25 % Theorem 2.4 22 % Theorem 3.6
26-32| 2 | Theorem 2.1 23—-27| % | Theorem 2.4
33— 38 2 Figure 1 28 — 34 2 Theorem 2.1
39 — 45 3 Theorem 2.1 35 —41 % Figure 3
46 2 | Theorem 3.4 42-48| 3 | Theorem 2.1
47 - 51 % Figure 2 49 — 55 % Theorem 2.2

Table 1: Maximum Toughness Values for n = 13 or 14

4 Proofs for the Trickier Values

This section contains the proofs of Lemma 3.3 and Theorems 3.4 and 3.6. In these
proofs we employ some further standard notation. For a vertex v in a given graph,
N(v) denotes the set of neighbors of v, and N[v] = {v} U N(v). For a set U of
vertices, (U) denotes the subgraph induced by U.
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Proof of Lemma 3.3. Suppose G is a 5-connected (11,29)-graph. It follows that G
has degree sequence 8,5,...,50or 7,6,5,...,50r 6,6,6,5,...,5.

Claim 1: No set of 3 vertices of degree 5 in G is independent.

Suppose to the contrary that a set A of 3 degree 5 vertices is independent.
Since G does not contain an induced subgraph 2K; + K», each of the 8
vertices of G — A is adjacent to at least 2 vertices of A. This gives
16 < 3, cadeg(u) = 15, a contradiction. Q.E.D.

Claim 2: There are vertices yi,y2,x such that y; has maximum degree, y, has
maximum degree among the remaining vertices, and z is a degree 5 common neighbor
of y; and y».

If deg(y;) > 7, then there are not enough vertices in G for N(y;) and
N(ys) to be disjoint. The only potential problem is when deg(y;) =
deg(ys) = 6 and y; and y, are adjacent. However, that problem cannot
exist for every pair of the three degree 6 vertices. Q.E.D.

Case 1: x is adjacent to all vertices of degree greater than 5.

Since deg(y;) > 6, there is a neighbor z of y; outside of N[z]. Since the vertices
of G — N[z] have degree 5, and they are not adjacent to x, it follows from Claim 1
that (G — NJz]) is complete. Let zy, 5, ys be the vertices of N(z) — {y1,y2}, where
deg(z1) = deg(z2) = 5. Since z; and z» are not adjacent to z and deg(z) = 5, it
follows from Claim 1 that z; is adjacent to 3. The known structure of G is pictured
in Figure 4.

I Lo

Y2 U3

T Y1 z

Figure 4: Building an (11, 29)-graph in Case 1.

Since k(G) = 5, the 5 vertices of G — N[z] must each have distinct neighbors
in N(z). (Otherwise, those neighbors would form a disconnecting set with fewer
than 5 vertices.) So, z is the only vertex of G — NJz] that is adjacent to y;. If
deg(y1) > 7, then there are not enough available neighbors for y;. So assume that
deg(y1) = deg(y2) = deg(ys) = 6. Since yi,ys,ys each have only one neighbor in
G — NJz], they each must be adjacent to the four other vertices in N(z). However,
this gives deg(z1), deg(x2) > 6, a contradiction.

Case 2: z is not adjacent to all vertices of degree greater than 5, and hence the
degree sequence is 6,6,6,5,...,5.
Let @1, a2, z3 be the degree 5 neighbors of . For the vertices outside of N(z), let u
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be the degree 6 vertex, and let uy, us, us, uy be the degree b vertices. It follows from
Claim 1 that ({u1,us,us,us}) is complete. Let

k= |N(u) N {ur, ua, ug, ug}|.

If k < 2, then, x, u, and two vertices from {uy,us, uz, us} — N(u) induce the subgraph
2K, + K. Hence, k > 3. Say uj,us,us € N(u). Since the set (N({u1,u2,us}) N
N(z))U{u,us} disconnects G, |N({u1,u2,us})NN(z)| > 3. Moreover, equality must
hold since deg(u;) = deg(ug) = deg(us) = 5. That is,

each vertex in {u;,us, u3} has a unique neighbor in N(z). (4.1)

Since every pair of vertices from {x1, 22, 3} must therefore have a vertex of {uy, us, ug}
that is not adjacent to the pair, it follows from Claim 1 that ({z, s, x3}) is complete.
The known structure of G is pictured in Figure 5.

Al 5] U2 U1

Y2 I3 U3 Uy

T Y1 u
Figure 5: Building an (11, 29)-graph in Case 2.

Let F be the set of edges between G — N[z] and N(z). Since the set of endpoints
of F in N(z) disconnects G, and x(G) = 5, it must be that

the set of endpoints of F' in N(z) is all of N(z). (4.2)
Since the number of edges in (G — Nlz]) is 6 + &, and

26 = Z deg(v) =2(6 + k) + |F|,

veG—N][z]
it follows that |F| = 14 — 2k. Hence, the number of edges in (N[z]) is
29 — (6 + k) — (14 — 2k) = 9 + k.

Let D be the set of edges in (N[z]) incident with {y;,y2}. From Figure 5, we see
that |D| = (9 + k) — 6 = 3 + k.

Subcase 2a: k = 4.
Since |F| = 6, it follows from (4.2) that at most 3 edges of F' can be incident with
{y1,y2}. So, 12 = deg(y1) + deg(y2) < (|D| + 1) 4+ 3 = 11, a contradiction.

Subcase 2b: k= 3.
Let R = (N(us4) UN(u)) N N(z). If |R| <4, then there is some vertex z in N(z) —
(N(us) U N(u)), and the vertices ug, u, z, z induce 2K; + K. So |R| > 5. Therefore,
the 5 edges in F incident with {u4,u} each have a distinct neighbor in N(z). This
together with (4.1) tells us that at most 4 edges of F' can be incident with {y1,ys2}.
So, deg(y1) + deg(ys) < (|D| + 1) + 4 = 11, a contradiction. O
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Proof of Theorem 3.4. The graph in Figure 2 establishes that T13(46) >
establish equality, suppose to the contrary that there is a (13,46)-graph G
7(G) > . Tt follows that x(G) =7 and G has degree sequence 8,7,...,7.

Claim 1: No set of 3 vertices in G is independent.

If 3 vertices of G are independent, then the other 10 vertices form a
disconnecting set S such that

S| _ 10

wG-S5) 3’
a contraction. Q.E.D.

Claim 2: If v is any vertex of degree 7, then (G — N[v]) is complete.

Let a and b be any two distinct vertices of (G — N[v]). Since v is not
adjacent to these vertices, Claim 1 tells us that they must be adjacent to
each other. Q.E.D.

Claim 3: If u and v are non-adjacent of degree 7, then |N(u) N N(v)| = 3.

It follows from Claim 1 that |[N(u) U N(v)| = 11. Hence,
11 = |N(u)| + |N(v)] = |N(u) " N(v)| = 14 — [N(u) N N(v)|. Q.E.D.

Let z be a vertex of degree 7 that is adjacent to the vertex of degree 8.

«l3

To
with

The

vertex of degree 8 must then have a degree 7 neighbor z outside of N[z]. By Claim
3, IN(z) N N(z)] = 3. Let W = {w;, wp,ws} represent N(z) N N(z). The ver-
tex of degree 8 is in W. By Claim 2, (G — N[z]) and (G — NJz]) are complete.
Let X = {x1, %2, 3,4} represent N[z] — W, and let Z = {z1, 29, 23, 24} represent
N[z] — W. This accounts for all of the vertices of G and the 26 straight solid edges

pictured in Figure 6.

Claim 4: For allv € XU Z, we have 1 < |N(v) N W| < 2.

If there is an 2/ € X that is adjacent to each vertex of W, then the 6
vertices in N(z') N N(z) disconnect G, a contradiction. A symmetric
argument shows that no vertex in Z can be adjacent to all of W. Now
suppose that there is an 2/ € X that is adjacent to no vertex of W. Since
deg(z') = 7, there is some 2’ € Z that is not adjacent to 2’. By Claim
2, the vertices {wy,ws,ws, z,2'} of G — N[z'] must induce a complete
subgraph. However, this makes 2" adjacent to all of W and contradicts our
earlier observation. Symmetrically, every vertex of Z must be adjacent
to some vertex of W. Q.E.D.

Claim 5: There is a matching between X and Z.

The result follows from Hall’s Matching Theorem once we show that each
subset A of X has neighbors in a subset of Z of size at least |A|. Since
each 2’ € A is adjacent to some 2z’ € Z and each 2z’ € Z adjacent to some
a' € A, the desired property holds for |A| = 1,4.
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Case 1: |A| =2.

Without loss of generality, suppose to the contrary that A = {x1, 2} is
only adjacent to z’ from Z. Since Claim 4 tells us that 2’ has a neighbor
in W, it follows that w1, x. are the only vertices of X adjacent to z'.
Thus, the 6 vertices {%, w1, ws, w3, x3, 4} disconnect G, a contradiction.
Case 2: |A| = 3. Let 2’ be the element of X — A.

If A is only adjacent to a two element subset of Z, then 2’ must be
adjacent to the other two, say zi, z9. Since {z1, 22} is not adjacent to A,
reversing the roles of X and Z reduces this to Case 1. Q.E.D.

By reindexing Z if necessary, we may assume, for each i, that z; is adjacent to
z;. We now know that G contains the 30 solid edges pictured in Figure 6. Let j be

Figure 6: Building a (13,46)-graph with 7 > .

the number of edges joining X and Z that are not pictured as solid edges in Figure
6, and let k& be the number of edges in (W).

Claim 6: j < 1.

Suppose to the contrary that j > 2. Without loss of generality, say z;
is adjacent to z,. It follows from Claim 4 that no further edges incident
with 2; or z; can join X with Z. So w, is adjacent to z; for some j # 2.
If j # 1, then N(z;)N(z1) contains {z1, 22, z2, x;}, contradicting Claim
3. So it must be that x5 is adjacent to z;. If ; and x5 are adjacent to the
same vertex w of W then the 6 vertices {z3, x4, %, 21, 22, w} disconnect G,
a contradiction. Without loss of generality, say that x; is adjacent to w,
for ¢ = 1,2. Since (G — NJ[z1]) is complete, z3 is adjacent to wy and wj.
Since (G — N[z]) is complete, z3 is adjacent to w;. That z3 is adjacent
to all of W contradicts Claim 4. Q.E.D.

Claim 1 tells us that £ > 1, and Claim 6 tell that j < 1. The number of edges
between W and X U Z is 46 — (30 + k + j) = 16 — k — j. From the equation

3
84+7+7=> deg(w;)=6+2k+ (16 —k — j)
i=1
it follows that j = k£ = 1. Without loss of generality, say that z; is adjacent to
z» and that w, is adjacent to ws. Now xz; has one yet unspecified neighbor, and
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it must be in W. Since (G — N[z4]) is complete, it must be that z; is adjacent to
wi. A similar argument shows that z, is adjacent to w;. Moreover, the vertices
23,24, We, w3 in G — N[z;] must induce a complete subgraph, as must the vertices
T3, T4, W2, w3 iIn G— NJzs]. This accounts for all of the edges (solid and dotted) shown
in Figure 6. Since x5 and z; each need two additional neighbors in W, it follows that
deg(ws) + deg(ws) > 15, a contradiction. O

Our proof of Theorem 3.6 uses a coloring lemma.

Lemma 4.1. Let G be a (14,22)-graph with 7(G) > 3. Then, G is 3-colorable.

Proof. Note that G must be 3-connected and have degree sequence 5,3,...,3 or
4,4,3,...,3. If G has degree sequence 5,3, ...,3, then Theorem 5 of [2] tells us that
G is 3-colorable. So it suffices to assume now that G has degree sequence 4,4, 3, ..., 3.

Brooks’ Theorem tells us that G is 4 colorable. Let x and y be the two degree 4
vertices.

Claim 1: If {v1,v9} is a pair of degree 3 vertices of G, then |N(v1) N N(vg)| < 1.

Suppose to the contrary that u; and us are distinct vertices in N(v;) N
N(v2). It must be that v; is not adjacent to v, since otherwise {u1,us}
would form a 2-element disconnecting set for G. It now follows that
S = N(v1) U N(vy) forms a disconnecting set and

7(G) < 15

I B
“w(@-=-5) "3

a contradiction. Q.E.D.

Case 1: x and y are not adjacent.

Suppose to the contrary that G is not 3-colorable. Form a (13,22)-graph G’ by
identifying x and y to a single vertex. Note that G’ must be 2-connected, have de-
gree sequence 8,3,...,3, and be 4-colorable. Since a 3-coloring of G’ can easily be
used to give a 3-coloring of G, it must be that G’ has chromatic number 4. Theo-
rem 1 of [2] then tells us that G’ is critical. However, by Theorem 4 of [2], there is
no critical graph on 13 vertices containing a vertex of degree 8. Thus G’ cannot exist.

Case 2: x and y are adjacent.

Let {z1,zy,23,y} = N(z) and {y1,2, 3,2} = N(y). It follows from Claim 1 that
[{z1, 22,23} N {y1,y2,y3}| < 1, since any pair of vertices in the intersection would
have z and y as common neighbors, contradicting that claim. We may assume
@1 & {y1,v2,y3}. Let {21, 22,2} = N(z1). It also follows from Claim 1 that

|{Zla22}m{ylay27y3}| S 17 (43)

since otherwise the pair {z;, 22} would contradict that claim. Note that z; and y
are not adjacent. Form a graph G’ on 13 vertices from G by identifying z; and y
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to a common vertex, say y'. It follows from (4.3) that |N(z;) N N(y)| < 2 and so
degei(y') =5 or 6.
Subcase 2a: degei(y') = 6.

Here G’ is a (13,21)-graph with degree sequence 6,3, ...,3. Since G' — {y'} can be 3-
colored, G’ can be 4-colored. Suppose toward a contradiction that G' has chromatic
number 4. Since G is 3-connected, G' must be 2-connected. Theorem 1 of [2] then
tells us that G’ is critical. It therefore follows from Theorem 4 of [2] that G’ must
be one of the four graphs pictured in Figure 7. In any case, using the labels from

SV 7

VA AVVA

V.
N

Y

‘!
@‘4'h.
N\

Figure 7: All critical 4-chromatic graphs with degree sequence 6,3, ...,3.

Figure 7, the disconnecting set S = {s1, sq, 53, 2,3} gives
|S] 5 4

@G- 1°%
a contradiction. Hence, G’ must be 3-colorable. Since z; and y are not adjacent, a
3-coloring for G is easily obtainable from one for G'.
Subcase 2b: degeq(y') = 5.
Say z1 = y1 and {z1,y,w} = N(z1). Here, z; has degree 2 in G'. Form G” from
G’ by replacing z; in G’ by K4 minus an edge as shown in Figure 8. Observe that

! . ! ! n
Y 21 = w N Y z 2] w
i@

Figure 8: Forming G from G’ by eliminating degree 2.

G" has 16 vertices and degree sequence 5,3,...,3, where degq (y') = 5. Since G” is
certainly connected, Theorem 5 of [2] tells us that G can be 3-colored. Note that
the vertices 2] and 2] labeled in Figure 8 must receive the same color. By coloring
21 in G the common color of z} and 27, and coloring z; and y in G the color of ', it
is clear that the 3-coloring of G” can be used to specify a 3-coloring of G. O
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Proof of Theorem 3.6. Let G be a maximally tough (14, 22)-graph. Theorem 2.4(c)
tells us that 7(G) > L. Consequently, £(G) = 3 and G has degree sequence 5,3, .. .,3
or 4,4,3,...,3. It remains to show that 7(G) < L.

Claim 1: If G has 6 independent vertices, then 7(G) < L.
Taking S to be the other 8 vertices gives
|51 8

7

We know from Lemma 4.1 that G has a 3-coloring. If one of the color classes has
6 or more vertices, then by Claim 1, 7(G) < I. So we need only consider the case
in which each color class has 5 or fewer vertices. That is, we may denote the color
classes by A, B, and C so that |A| =4 and |B| = |C| = 5. We may further assume
that each vertex of A is adjacent to at least one vertex of B and to at least one
vertex of C'. Otherwise, an offending vertex from A could be recolored to enlarge B
or C to size 6. Define Ap to be the set of vertices in A that are adjacent to exactly
one vertex of B, and define Ac similarly. Note that Ag U Ac # A only if at least
one vertex of degree greater than 3 is in A.

Case 1: AU Ag = A.
Either |Ap| < 2 or |A¢| < 2. So assume that |Ap| < 2. For § = A U B, we have
|S| <7 and w(G - S) =w(AcUC) =|C| =5. Thus, 7(G) < I.

Case 2: ApU Ag = A — {w}, where w is a vertex of degree greater than 3.

Here |Ap U A¢| = 3, and either |[Ag| < 1 or |[A¢| < 1. So assume |Ag| < 1. For
S =Ap U {w}U B, we have |S| <7 and w(G — S) = w(AcUC) = |C| = 5. Thus,
T(G) < L

Case 3: AU Ac = A — {w, v}, where w and v are vertices of degree 4.

Each of w and v must be adjacent to exactly 2 vertices of B and 2 vertices of C.
Now count the edges between A and B U C. There are 3 each from the 2 vertices
in A\ {w,v} and 4 each from w and v. This accounts for 14 and leaves 8 edges
between B and C. We may assume that each vertex of B is adjacent to at least
one vertex in C or by recoloring we could enlarge C to 6 vertices. Thus, with 8
edges between B and C, there are at least 2 vertices  and y in B that are adjacent
to only 1 vertex in C. For § = AU (B \ {z,y}), we have |S| < 4+ 3 = 7 and
w(G = 8) =w(CU{z,y}) =|C| =5. Thus, 7(G) < L. O

Remark 4.2. By using a bit more machinery than that used to prove Lemma 4.1, we
can further prove that, for any n > 20, if n =2 mod 6, then any (n, %n + 1)-graph
with 7(G) > % 1s 3-colorable. Then, using a much more intricate argument than that
used in the proof of Theorem 3.6, we can establish Conjecture 2.5 in the case n = 20.
However, our argument does not extend to n > 26. Since our techniques are overly
complicated for n = 20 and fail for n = 26, we only answer Conjecture 2.5 here for

n < 14.
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